
CSCE 658: Randomized Algorithms – Spring 2024
Problem Set 1

Due: Thursday, February 1, 2024, 5:00 pm CT

Problem 1. (30 points total) Suppose we want to generate some randomness. A natural way is to
use a fair coin to generate the randomness.

1. (10 points) Suppose we have a coin that lands heads with probability 1
2 and tails with

probability 1
2 . Describe, with proof, a procedure that uses this coin to generate a random bit

that is 0 with probability 1
3 and 1 with probability 2

3 .
HINT: The procedure is allowed to fail to generate an output bit, provided that 1) conditioned
on the event that a bit is output, the output bit is 0 with probability 1

3 and 1 with probability
2
3 , and 2) the probability that a bit is output is positive.

2. (10 points) Unfortunately, now we only have a coin that lands heads with probability 1
3 and

tails with probability 2
3 . Describe, with proof, a procedure that uses this coin to generate a

random bit that is 0 with probability 1
2 and 1 with probability 1

2 .

3. (10 points) Unfortunately, now we do not even know the probability distribution of our coin.
Indeed, suppose we now have a coin that lands heads with an unknown probability p ∈ (0, 1).
Let k ≥ 1 be an integer. Describe, with proof, a procedure that uses this coin to generate a
random bit that is 0 with probability 1

k and 1 with probability 1 − 1
k .

Problem 2. (30 points total) Karger’s min-cut algorithm

1. (10 points) Let A be an algorithm that prints “SUCCESS” with probability p > 0 each time
it is called. Show that if we call the algorithm A independently a total of m := O

(
1
p

)
times,

then with probability at least 0.99, it will print “SUCCESS” at least one of the m times.
HINT: You may use the fact that 1 − x ≤ e−x for all real numbers x.

2. (10 points) Recall that in class, we showed that Karger’s min-cut algorithm succeeds with
probability at least 2

n(n−1) . Describe with proof, an algorithm that uses Karger’s min-cut
algorithm as a black-box subroutine, i.e., it cannot change any algorithmic aspects of Karger
and finds the min-cut with probability at least 0.99. Your algorithm must use a total of O(n3)
edge contractions.

3. (10 points) A graph G can have many different min cuts. Use the analysis of Karger’s min-cut
algorithm to show that a connected graph G on n vertices has at most n(n−1)

2 different min
cuts.

(Continued on next page)
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Problem 3. (30 points total) Suppose that we improve Karger’s min-cut algorithm in the following
manner. We first run Karger’s algorithm and contract edges until there is a graph G’ that consists
of k vertices and super-vertices. We then independently run Karger’s algorithm m times in parallel
on G′ and report the minimum of the outputs of the m independent instances.

Show that if k =
√

n and m = 4n log n, then there exists a constant C such that we output the
min-cut with probability at least C

n .

HINT: First analyze the probability that G′ preserves a fixed min-cut of G.

NOTE: The goal in Problem 2 was to find the min-cut with probability 0.99, using O(n3) edge
contractions. This improved version of Karger’s algorithm uses O(n2.5) edge contractions.

Problem 4. (30 points total) Random variables and probability distributions.

1. (10 points) Let X and Y be random real-valued variables with probability distributions p and
q respectively. Suppose that we have E [X] = E [Y ]. Either prove that p ≡ q, i.e., p(x) = q(x)
for all x ∈ R, or give a counterexample, with justification.

2. (10 points) Let X and Y be random real-valued variables with probability distributions p and
q respectively. Suppose that p(x) = q(−x) for all x ∈ R. Show that E

[
X2]

= E
[
Y 2]

.

3. (10 points) Let X and Y be random real-valued variables with probability distributions p and
q respectively. Suppose that we have E [X] = E [Y ] and Var [X] = Var [Y ]. Either prove that
p ≡ q, i.e., p(x) = q(x) for all x ∈ R, or give a counterexample, with justification.
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