
CSCE 658: Randomized Algorithms – Spring 2024
Problem Set 2

Due: Tuesday, February 20, 2024, 5:00 pm CT

Problem 1. (30 points total) Concentration and anti-concentration.

Let p ∈ (0, 1) be a fixed constant and suppose a coin that lands HEADS with probability p and
TAILS with probability 1 − p is flipped a total of n times. Let X be the random variable for the
total number of HEADS observed.

1. (5 points) What is E [X]? What is E
[
X2]? What is Var [X]?

2. (10 points) Show that for any constant C > 0, there exists a constant γ > 0 such that

Pr
[
|X − E [X] | ≥ γ

√
pn log n

]
≤ 1

nC
.

3. STOP AND THINK: Before doing the next problem, suppose p = 1
2 . What do you think

Pr
[
X = n

2
]

is? Did the subsequent bounds match your intuition?

(10 points) Show that for even n and p = 1
2 , there exist constants C1, C2 > 0 such that

C1√
n

≤ Pr
[
X = n

2

]
≤ C2√

n
.

HINT: For the following problem, use Stirling’s formula, so that for all n ≥ 1,
√

2πn

(
n

e

)n

e
1

12n+1 < n! <
√

2πn

(
n

e

)n

e
1

12n .

4. (5 points) Conclude that for p = 1
2 and for any constant C ≤ 1, there exists a constant α > 0

such that
Pr
[

n

2 − α ·
√

n < X <
n

2 + α ·
√

n

]
≤ C.

Note that as opposed to concentration inequalities, which upper bound the probability that
X deviates from its mean, the above result upper bounds the probability that X is close to
its mean. These inequalities are known as anti-concentration inequalities.

Problem 2. (30 points total) Markov and Chebyshev.

In class, we saw there are settings where Chebyshev’s inequality gives sharper tail bounds than
Markov’s inequality. In this problem we show that 1) there are settings where Markov’s inequality
can be more informative than Chebyshev’s inequality and 2) there are settings where either inequality
is tight.

1. (5 points) Define p(x) =


1

|x|3 |x| ≥ 1
0 otherwise

.

Show that p(x) is a valid probability density function.
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2. (10 points) Let p(x) be defined as in the previous problem describe the distribution of a
random variable X and let Y = X + 1. Prove using Markov’s inequality that Pr [Y ≥ 4] ≤ 1

4 .
Then prove that Y does not have finite variance.

NOTE: As a result of your proof, it follows that we cannot apply Chebyshev’s inequality to
upper bound Pr [Y ≥ 4] ≤ t for any t < 1. Hence we can acquire tail bounds using Markov’s
inequality that do not immediately follow from Chebyshev’s inequality.

3. (5 points) Let α > 1 be any fixed constant. Prove that Markov’s inequality is tight by
describing the distribution of a random variable X such that Pr [X ≥ α · E [X]] = 1

α .

4. (10 points) Let α > 1 be any fixed constant. Prove that Chebyshev’s inequality is tight by
describing the distribution of a random variable X such that E [X] = 0, Var [X] = 1, and
Pr [|X − E [X] | ≥ α] = Var[X]

α2 .

Problem 3. (30 points total) Exponential tail bounds.

Let X1, . . . , Xn ∈ {0, 1} be independent random variables, not necessarily identically distributed,
and let X = X1 + . . . + Xn and µ = E [X].

1. (5 points) Use the inequality 1 + x ≤ ex for all x ∈ R to show that E
[
eλXi

]
≤ eE[Xi]·(eλ−1) for

all i ∈ {1, . . . , n} and all λ ∈ R.

2. (5 points) Show that for all λ ∈ R, we have

E
[
eλX

]
≤ eeλ−1)·µ.

3. (5 points) Use Markov’s inequality appropriately to prove that:

Pr [X ≥ (1 + δ) · µ] ≤ e(eλ−1)µ

eλ(1+δ)µ .

4. (5 points) Find, with proof, the value of λ for which the inequality is sharpest by minimizing
the right hand side of the previous inequality.

5. (5 points) Conclude that

Pr [X ≥ (1 + δ) · µ] ≤
(

eδ

(1 + δ)1+δ

)µ

.

6. (5 points) Use Markov’s inequality appropriately with λ = ln 1
1−δ to prove that for any

δ ∈ (0, 1):

Pr [X ≤ (1 − δ) · µ] ≤
(

e−δ

(1 − δ)1−δ

)µ

.
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Problem 4. (30 points total) Pairwise independence.

Often, generating and storing a large collection of independent random variables is expensive.
Sometimes, our analysis does not require random variables to be fully independent, but only k-wise
independent, in which case we can efficiently store realizations of these random variables. In this
problem, we will study the case k = 2 and how such random variables might be generated.

A collection X1, . . . , Xn of random variables is pairwise independent if for all i ̸= j and all a, b ∈ R,
we have

Pr [Xi = a | Xj = b] = Pr [Xi = a] .

1. (5 points) Let p be a prime number and Zp denote the integers mod p. Let r and s be chosen
independently and uniformly at random from Zp. Prove that for fixed A and B, we can solve
the system of equations A ≡ ri + s (mod p) and B ≡ rj + s (mod p) uniquely for r and s.

2. (10 points) Let p ≫ n be a prime number and Zp denote the integers mod p. Let r and s
be chosen independently and uniformly at random from Zp and for each i ∈ {1, . . . , n}, let
Xi = ri + s (mod p). Show that for i ̸= j, Xi and Xj are uniformly distributed on Zp and
pairwise independent.

3. (5 points) Storing n fully independent random variables requires n words of space. Describe how
we can use two words of space to generate n random variables that are pairwise independent.

4. (10 points) Show that if X1, . . . , Xn are pairwise independent random variables and X =
X1 + . . . + Xn, then

Var [X] = Var [X1] + . . . + Var [Xn] .
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