
CSCE 658: Randomized Algorithms – Spring 2024
Problem Set 3

Due: Thursday, March 7, 2024, 5:00 pm CT

Problem 1. (30 points total) CountSketch tail bounds.

For any vector x ∈ Rn and any integer k ≥ 1, we define Tailk(x) to be the vector x, but
with the k entries of largest magnitude to be set to 0, breaking ties arbitrarily. For example if
x = (−100, 40, 40, 1), then Tail2(x) can be either (0, 0, 40, 1) or (0, 40, 0, 1).

1. (5 points) Show that for any parameter α ≥ 1 and k ≤ n− 1, there exists x ∈ Rn such that

α · ∥Tailk(x)∥2 < ∥x∥2.

That is, the length of a tail vector of x can be arbitrarily smaller than the length of the vector
x.

2. (20 points) Show that CountSketch actually provides an L2 tail guarantee. More specifically,
for ε ∈ (0, 1), suppose we use CountSketch with O

(
1
ε2 · log n

)
buckets to extract estimates

x̂i for the value of each coordinate xi. Show that with probability 1− 1
n2 , we simultaneously

have that for all i ∈ [n],
|x̂i − xi| ≤ ε · ∥Tailk(x)∥2,

where k = 1
ε2 .

HINT: The analysis in class demonstrated an error of ε · ∥x∥2. For each i ∈ [n], what event
needs to occur for the top k coordinates to not affect the estimate x̂i of xi?

3. (5 points) Conclude that at the end of an insertion-deletion stream, CountSketch with
O(k log n) buckets can with high probability, recover the exact coordinates of a vector that is
k-sparse, even if at intermediate times in the stream, the underlying frequency is not k-sparse.

Problem 2. (30 points total) Fp moment estimation.

Let p ≥ 1 be a fixed constant. Suppose f ∈ Rn is defined by an insertion-only stream of length
m, where each update increments a coordinate of f . Suppose we sample an update t ∈ [m] in the
stream, uniformly at random, and set a counter c to be the number of times the item appears in the
stream after time t (including time t). After the stream ends, we set Z = cp − (c− 1)p.

For example, suppose the stream consists of the updates 1, 2, 2, 1, 4, 1, 2, 1, which induces the
frequency vector f = (4, 3, 0, 1) and suppose we sample the fourth update of the stream, corresponding
to a 1. Then we see a total of three instances of 1, after that time (inclusive), so that c = 3 and
Z = 3p − 2p. For p = 3 then, we would have Z = 27− 8 = 19.

1. (5 points) Show that E [Z] = fp−1
j , conditioned on sampling j ∈ [n].

2. (5 points) Let F = m · Z. Show that E [F ] = ∥f∥pp.
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3. (10 points) Show that Var [F ] ≤ p · ∥f∥1 · ∥f∥2p−1
2p−1.

HINT: You may use the fact that for all x ≥ 1 and p ≥ 1, we have xp − (x− 1)p ≤ pxp−1.

4. (10 points) Give an algorithm that uses O
(

1
ε2 n1−1/p

)
· log(nm) bits of space and with

probability at least 2
3 , outputs an estimate F̂ such that

(1− ε)∥f∥pp ≤ F̂ ≤ (1 + ε)∥f∥pp.

Justify both its correctness-of-approximation and space complexity.

HINT: You may use the fact that for all ∥f∥1 · ∥f∥2p−1
2p−1 ≤ n1−1/p∥f∥2p

p .

Problem 3. (30 points total) Easy as 123 (approximate counting).

1. (3 points) Suppose we want to count the number of updates, i.e., the length of a data stream.
Describe a naïve streaming algorithm that uses O(log m) bits of space if the stream has length
m, where m is not known in advance.

Consider the following algorithm:

Algorithm 1 Approximate counting
1: C ← 0
2: for each stream update do
3: Flip a coin that is HEADS with probability 1

2C

4: if the coin is HEADS then
5: C ← C + 1
6: return Z = 2C − 1

2. (9 points) Compute, with proof, E [Z].

HINT: Use induction on the length m of the stream.

3. (9 points) Compute Var [Z] by showing, with proof, that E
[
22C

]
= 3

2m2 + 3
2m + 1.

HINT: Use induction on the length m of the stream.

4. (9 points) Give an algorithm that with probability at least 2
3 , uses O(log log m) bits of space

and outputs an estimate M̂ such that
m

2 ≤ M̂ ≤ 2m,

where m is the length of the stream, but is not known in advance. Justify both its correctness-
of-approximation and space complexity.
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Problem 4. (30 points total) Communication complexity.

In the index problem, Alice has a vector x ∈ {0, 1}n and Bob has a position i ∈ [n] and their goal is
for Bob to determine whether xi = 0 or xi = 1 after receiving a message from Alice. It is known that
any protocol for indexing that succeeds with probability at least 2

3 requires Ω(n) communication
from Alice and Bob.

1. (10 points) Suppose a frequency vector x ∈ Rn is implicitly defined through a insertion-only
data stream requires Ω(n) space. Let A be a streaming algorithm that processes x, receives a
query i ∈ [n] after the data stream, and outputs xi with probability at least 2

3 . Show by a
reduction from indexing that A must use Ω(n) bits of space.

In the set-disjointness communication, Alice has a vector x ∈ {0, 1}n and Bob has a vector y ∈ {0, 1}n
and their goal is to determine whether there exists an index i ∈ [n] such that xi = yi = 1. It is
known that any protocol for set-disjointness that succeeds with probability at least 2

3 requires Ω(n)
communication between Alice and Bob.

2. (10 points) Show that any streaming algorithm that with probability at least 2
3 , outputs the

largest coordinate i ∈ [n] of a frequency vector x ∈ Rn that is implicitly defined through a
insertion-only data stream requires Ω(n) space.

3. (10 points) Consider an insertion-only data stream consisting of edges of a graph G with n
vertices. Show that any streaming algorithm that with probability at least 2

3 , detects whether
a graph contains a triangle requires Ω(n2) space.
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