CSCE 658: Randomized Algorithms

Lecture 1

Samson Zhou

Randomized Algorithms

- A randomized algorithm is any algorithm that makes random choices during its execution, i.e., it uses randomly generated values to decide the each step of its execution
- The steps taken by a randomized algorithm might differ across multiple executions, even if the input remains the same
- The output may differ across multiple executions

Why Randomized Algorithms?
\qquad

Wall

Tir into
(a) Photes

Eigustioms
[Subscrignions 151
8. Subsenters 15.555 .3951

Mark Zuckerberg

New Yonk el Bonn on May 14, 1984
wall
More *

Mark Zucherbers

Cetting reaby for f8 - at Fscebook HC

Older Posts

© 101,918 pvople lae thit:
Q Vew all 107 comment! View at 4.003 shares
mant actort
\$0 Mank ubberibed to updates from Paul Tarpan and 9 other peoplo.

Gmail -

Refresh

COMPOSE
Inbox (3,879)
Starred
Important
Sent Mail
Google
is:unread is:important

Drafts (5)
Crunch gym discount code - LifeTimeFitt

Google

Randomized Algorithms

- Efficiency and Speed: Randomized algorithms can provide better runtimes compared to deterministic algorithms
- Random sampling and random projects are used to handle large datasets
- Simplicity and Elegance: Randomized algorithms often offer solutions that are simpler and more elegant than deterministic counterparts
- Primality testing can use randomization to efficiently determine whether a given number is like to be prime (Miller-Rabin primality testing)

Randomized Algorithms

- Probabilistic Guarantees: Errors may be acceptable in practice, e.g., input may be noisy or exact solutions are hard to achieve
- Failure probabilities can often be tuned to only occur negligibly
- Avoiding Worst-Case Scenarios: Deterministic algorithms sometimes suffer from worst-case scenarios that might be unlikely to occur in practice. By introducing randomness, randomized algorithms can avoid being consistently unlucky and perform well on average.
- Quicksort often performs better than deterministic counterparts, e.g., heapsort

2017 Equifax Data Breach

"Equifax agreed to a $\$ 700$ million settlement over the privacy breach, but $\$ 425$ million of that was set aside to repay consumers as a restitution fund."

YАНОО!

\pm FA)Adobe ${ }^{\circ}$

eHarmony

LastPass ****

Dropbox

Randomized Algorithms

- Cryptography and Security: Randomized algorithms play a significant role in cryptography and security protocols.
- They are used to generate random numbers, which is crucial for encryption, key generation, and other security-related processes.
- Privacy: Randomization is used to add noise to datasets to protect the privacy of individuals, while still maintaining accuracy.
- Fundamental mechanisms to guarantee differential privacy (DP)

Randomized Algorithms

- Machine Learning and Data Analysis: Randomization is commonly used in machine learning
- Randomization is used to prevent overfitting, augment data to increase diversity, perform mini-batch training, efficient tune hyperparameters

Toy Problem

- I am going to give you a string A and your partner a string B
- You are allowed to say a single digit (0-9) to your partner
- Your goal is to determine whether $A=B$ with probability 75\%

Toy Problem

- $A=7$

Toy Problem

- $B=3$

Toy Problem

- $A=7, B=3$
- $A=24$

Toy Problem

- $A=7, B=3$
- $B=24$

Toy Problem

- $A=7, B=3$
- $A=24, B=24$
- $A=7231$

Toy Problem

- $A=7, B=3$
- $A=24, B=24$
- $B=7213$

Toy Problem

- $A=7, B=3$
- $A=24, B=24$
- $A=7231, B=7213$
- $A=11112111$

Toy Problem

- $A=7, B=3$
- $A=24, B=24$
- $A=7231, B=7213$
- $B=11111211$

Toy Problem

- $A=7, B=3$
- $A=24, B=24$
- $A=7231, B=7213$
- $A=11112111, B=11111211$

Logistics

- HRBB 126, TR, 5:30-6:45 pm CT
- Office Hours: PETR 424, 4:15-5:15 pm CT on Thursdays, or by appointment
- Course materials: https://samsonzhou.github.io/csce658-s24

Primary Goals

- Understand common tools for randomized algorithms
- Effectively and formally prove statements related to fundamental results in randomized algorithms, as measured by the homework problem sets
- Either:
- Demonstrate the ability to conduct state-of-the-art research on randomized algorithms through a final project
- Demonstrate the ability to design and analyze algorithms by leveraging the power of randomness, evaluated by a final examination

Secondary Goals

- Communicate technical ideas in a collaborative environment, as facilitated by the problem set groups (familiarity with LaTeX, practice communicating technical ideas)

Grading

- Group homework problem sets 50\%
- Groups of ≈ 5 students, one submission per group
- Must be in LaTeX, submitted virtually via e-mail (or Canvas if necessary) by the deadline
- Final exam 50\% OR final research project 50\%
- Group of n students: $4+6 n$ page final report + final presentation
- At least 10 research meetings with me over the semester

Useful Background

- Big Oh notation, e.g., $O\left(\log ^{10} n\right), O(\sqrt{n}), O\left(n^{2}\right)$
- Reductions, e.g., NP-hardness
- Mathematical maturity, exposure to reading and writing proofs

Questions?

Probability Basics

- Random variable (X)
- Sample space (Ω): Set of possible values (discrete/continuous, finite/infinite)
- Probability: $\operatorname{Pr}[X=x]$ represents the probability that the random variable X achieves value $x \in \Omega$

Joint and Conditional Probability

- Joint distribution: $\operatorname{Pr}[X=x, Y=y]$ is the probability X and Y achieve values x and y respectively
- Conditional distribution: $\operatorname{Pr}[X=x \mid Y=y]$ is the probability that X achieves the value x when Y achieves the value y

$$
\operatorname{Pr}[X=x \mid Y=y]=\frac{\operatorname{Pr}[X=x, Y=y]}{\operatorname{Pr}[Y=y]}
$$

- Marginal distribution: $\operatorname{Pr}[X=x]=\sum_{y \in \Omega_{Y}} \operatorname{Pr}[X=x \mid Y=y]$

Independence

- Random variables X and Y are independent if $\operatorname{Pr}[X=x]=$ $\operatorname{Pr}[X=x \mid Y=y]$ for all possible outcomes $x \in \Omega_{X}, y \in \Omega_{Y}$

Independence

- Suppose we have a bag with 1 red marble and 1 blue marble.
- We draw a marble randomly from the bag
- We put the marble back in the bag
- We randomly draw another marble from the bag
- Let X be the color of the first marble drawn
- Let Y be the color of the second marble drawn
- Are X and Y independent?

Independence

- Suppose we have a bag with 1 red marble and 1 blue marble.
- We draw a marble randomly from the bag
- We DO NOT put the marble back in the bag
- We randomly draw another marble from the bag
- Let X be the color of the first marble drawn
- Let Y be the color of the second marble drawn
- Are X and Y independent?

Boole's Inequality (Union Bound)

- Let S_{1}, \ldots, S_{k} be a set of events that occur with probability p_{1}, \ldots, p_{k}
- The probability that at least one of the events S_{1}, \ldots, S_{k} occurs is at most $p_{1}+\cdots+p_{k}$
- Implication: the probability that NONE of the events S_{1}, \ldots, S_{k} occur is at least $1-\left(p_{1}+\cdots+p_{k}\right)$

Boole's Inequality (Union Bound)

- $\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]$

- Proof by induction

Equality Problem

- Alice is given a string A and Bob is given a string B, each of length n, and they must determine whether $A=B$, using the minimum amount of communication
- Any deterministic protocol must use $\Omega(n)$ bits of communication, but there exists a randomized protocol that uses $O(\log n)$ bits of communication

Equality Problem

- Algorithm: Suppose Alice and Bob have access to a randomly generated string $x \in\{1,2,3, \ldots, q\}^{n}$. Alice sends over $A x$ and Bob determines whether $A x=B x$
- If $A=B$, then $A x=B x$ so the protocol succeeds
- If $A \neq B$, then what is the probability that $A x \neq B x$?

Schwartz-Zippel Lemma

- If $A \neq B$, then what is the probability that $A x \neq B x$, i.e., $(A-B) x \neq 0$?
- Note $(A-B) x$ is a linear polynomial in x
- [Schwartz-Zippel] Suppose P is a degree d polynomial in x_{1}, \ldots, x_{n}. Let r_{1}, \ldots, r_{n} be randomly drawn from $\{1,2,3, \ldots, q\}$. Then

$$
\operatorname{Pr}\left[P\left(r_{1}, \ldots, r_{n}\right)=0\right] \leq \frac{d}{q}
$$

Schwartz-Zippel Lemma

- [Schwartz-Zippel] Suppose P is a degree d polynomial in x_{1}, \ldots, x_{n}. Let r_{1}, \ldots, r_{n} be randomly drawn from $\{1,2,3, \ldots, q\}$. Then

$$
\operatorname{Pr}\left[P\left(r_{1}, \ldots, r_{n}\right)=0\right] \leq \frac{d}{q}
$$

- Proof by induction
- Base case: For $n=1$, a degree d polynomial has d roots, so probability that r_{1} hits a root is at most $\frac{d}{q}$
- Otherwise, write $P\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=0}^{d} x_{1}^{i} \cdot F_{i}\left(x_{2}, \ldots, x_{n}\right)$

Schwartz-Zippel Lemma

- Since $P\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=0}^{d} x_{1}^{i} \cdot F_{i}\left(x_{2}, \ldots, x_{n}\right)$ is nonzero, there exists nonzero $F_{i}\left(x_{2}, \ldots, x_{n}\right)$ with degree $d-i$
- Take the largest such i. By induction, $\operatorname{Pr}\left[F_{i}\left(r_{2}, \ldots, r_{n}\right)=0\right] \leq$ $\frac{d-i}{q}$
- Then $P\left(x_{1}, r_{2} \ldots, r_{n}\right)$ is a polynomial of degree i so by induction, $\operatorname{Pr}\left[P\left(x_{1}, \ldots, x_{n}\right)=0\right] \leq \frac{i}{q}$

Schwartz-Zippel Lemma

- Take the largest such i. By induction, $\operatorname{Pr}\left[F_{i}\left(r_{2}, \ldots, r_{n}\right)=0\right] \leq$ $d-i$
- Then $P\left(x_{1}, r_{2} \ldots, r_{n}\right)$ is a polynomial of degree i so by induction, $\operatorname{Pr}\left[P\left(x_{1}, \ldots, x_{n}\right)=0\right] \leq \frac{i}{q}$
- By union bound, $\operatorname{Pr}\left[P\left(r_{1}, \ldots, r_{n}\right)=0\right] \leq \frac{d}{q}$

Equality Problem

- Algorithm: Suppose Alice and Bob have access to a randomly generated string $x \in\{1,2,3, \ldots, q\}^{n}$. Alice sends over $A x$ and Bob determines whether $A x=B x$
- If $A=B$, then $A x=B x$ so the protocol succeeds
- If $A \neq B$, then what is the probability that $A x \neq B x$?
- By Schwartz-Zippel, the probability that $A x \neq B x$ is at least $\frac{9}{10}$

