CSCE 658: Randomized Algorithms

Lecture 10

Samson Zhou

CountSketch Error Analysis

- $c_{a}=s(i) \cdot s(i) \cdot f_{i}+\sum_{j \neq i, \text { with } j: h(j)=a} s(i) \cdot s(j) \cdot f_{j}$
- Since $s(i) \in\{-1,+1\}$, we have $s(i) \cdot s(i)=1$
- What is the expectation of the error term for f_{i} ?

CountSketch Error Analysis

- $c_{a}=s(i) \cdot s(i) \cdot f_{i}+\sum_{j \neq i, \text { with } j: h(j)=a} s(i) \cdot s(j) \cdot f_{j}$
- What is the expectation of the error term for f_{i} ?
- $\mathrm{E}\left[\sum_{j \neq i, \text { with } j: h(j)=a} s(i) \cdot s(j) \cdot f_{j}\right]=\Sigma_{j \neq i} \mathrm{E}\left[s(i) \cdot s(j) \cdot f_{j} \cdot I_{h(j)=h(i)}\right]$

CountSketch Error Analysis

- $c_{a}=s(i) \cdot s(i) \cdot f_{i}+\sum_{j \neq i, \text { with } j: h(j)=a} s(i) \cdot s(j) \cdot f_{j}$
- What is the expectation of the error term for f_{i} ?
- $\mathrm{E}\left[\sum_{j \neq i, \text { with } j: h(j)=a} s(i) \cdot s(j) \cdot f_{j}\right]=0$

CountSketch Error Analysis

- $c_{a}=s(i) \cdot s(i) \cdot f_{i}+\sum_{j \neq i, \text { with } j: h(j)=a} s(i) \cdot s(j) \cdot f_{j}$
- What is the expectation of the error term for f_{i} ?
- $\mathrm{E}\left[\sum_{j \neq i, \text { with } j: h(j)=a} s(i) \cdot s(j) \cdot f_{j}\right]=0$
- What is the variance of the error term for f_{i} ?

CountSketch Error Analysis

- Variance is at most the $2^{\text {nd }}$ moment of the error term
- $\mathrm{E}\left[\left(\sum_{j \neq i, \text { with } j: h(j)=a} s(i) \cdot s(j) \cdot f_{j}\right)^{2}\right]$

CountSketch Error Analysis

- Variance is at most the $2^{\text {nd }}$ moment of the error term
- $\mathrm{E}\left[\left(\sum_{j \neq i, \text { with } j: h(j)=a} s(i) \cdot s(j) \cdot f_{j}\right)^{2}\right]=\sum_{j \neq i} \mathrm{E}\left[\left|f_{j}\right|^{2} \cdot I_{h(j)=h(i)}\right]$

CountSketch Error Analysis

- Variance is at most the $2^{\text {nd }}$ moment of the error term
- $\mathrm{E}\left[\left(\sum_{j \neq i, \text { with } j: h(j)=a} s(i) \cdot s(j) \cdot f_{j}\right)^{2}\right]=\sum_{j \neq i} \mathrm{E}\left[\left|f_{j}\right|^{2} \cdot I_{h(j)=h(i)}\right]$

$$
=\Sigma_{j \neq i} \mathrm{E}\left[I_{h(j)=h(i)}\right] \cdot\left|f_{j}\right|^{2}
$$

CountSketch Error Analysis

- Variance is at most the $2^{\text {nd }}$ moment of the error term
- $\mathrm{E}\left[\left(\sum_{j \neq i, \text { with } j: h(j)=a} s(i) \cdot s(j) \cdot f_{j}\right)^{2}\right]=\sum_{j \neq i} \mathrm{E}\left[\left|f_{j}\right|^{2} \cdot I_{h(j)=h(i)}\right]$

$$
=\Sigma_{j \neq i} \mathrm{E}\left[I_{h(j)=h(i)}\right] \cdot\left|f_{j}\right|^{2}
$$

$$
=\Sigma_{j \neq i} \operatorname{Pr}[h(j)=h(i)] \cdot\left|f_{j}\right|^{2}
$$

CountSketch Error Analysis

- Variance is at most the $2^{\text {nd }}$ moment of the error term
- $\mathrm{E}\left[\left(\sum_{j \neq i, \text { with } j: h(j)=a} s(i) \cdot s(j) \cdot f_{j}\right)^{2}\right]=\sum_{j \neq i} \mathrm{E}\left[\left|f_{j}\right|^{2} \cdot I_{h(j)=h(i)}\right]$

$$
\begin{aligned}
& =\Sigma_{j \neq i} \mathrm{E}\left[I_{h(j)=h(i)}\right] \cdot\left|f_{j}\right|^{2} \\
& =\Sigma_{j \neq i} \operatorname{Pr}[h(j)=h(i)] \cdot\left|f_{j}\right|^{2} \\
& =\Sigma_{j \neq i} \frac{1}{b} \cdot\left|f_{j}\right|^{2} \leq \frac{\|f\|_{2}^{2}}{b}
\end{aligned}
$$

CountSketch Error Analysis

- Variance is at most the $2^{\text {nd }}$ moment of the error term
- $\mathrm{E}\left[\left(\sum_{j \neq i, \text { with } j: h(j)=a} s(i) \cdot s(j) \cdot f_{j}\right)^{2}\right]=\sum_{j \neq i} \mathrm{E}\left[\left|f_{j}\right|^{2} \cdot I_{h(j)=h(i)}\right]$

$$
\begin{aligned}
& =\Sigma_{j \neq i} \mathrm{E}\left[I_{h(j)=h(i)}\right] \cdot\left|f_{j}\right|^{2} \\
& =\Sigma_{j \neq i} \operatorname{Pr}[h(j)=h(i)] \cdot\left|f_{j}\right|^{2} \\
& =\Sigma_{j \neq i} \frac{1}{b} \cdot\left|f_{j}\right|^{2} \leq \frac{\|f\|_{2}^{2}}{b}
\end{aligned}
$$

- Set $b=\frac{81 k^{2}}{\varepsilon^{2}}$, then the variance is at most $\frac{\varepsilon^{2}\|f\|_{2}^{2}}{81 k^{2}}$

CountSketch Error Analysis

- Set $b=\frac{81 k^{2}}{\varepsilon^{2}}$, then the variance is at most $\frac{\varepsilon^{2}\|f\|_{2}^{2}}{81 k^{2}}$
- By Chebyshev's inequality, the error for f_{i} is at most $\frac{\varepsilon}{3 k}\|f\|_{2}$ with probability at least $\frac{2}{3}$
- How to ensure accuracy for all $i \in[n]$?

CountSketch Error Analysis

- By Chebyshev's inequality, the error for f_{i} is at most $\frac{\varepsilon}{3 k}\|f\|_{2}$ with probability at least $\frac{2}{3}$
- How to ensure accuracy for all $i \in[n]$?
- Repeat $\ell:=O(\log n)$ times to get estimates e_{1}, \ldots, e_{ℓ} for each $i \in$ $[n]$ and set $\widehat{f}_{i}=\operatorname{median}\left(\mathrm{e}_{1}, \ldots, \mathrm{e}_{\ell}\right)$

CountSketch Error Analysis

- Claim: For all estimated frequencies \widehat{f}_{i} by CountSketch, we have

$$
f_{i}-\frac{\varepsilon\|f\|_{2}}{3 k} \leq \widehat{f}_{i} \leq f_{i}+\frac{\varepsilon\|f\|_{2}}{3 k}
$$

CountSketch Summary

- CountSketch solves the L_{2} heavy-hitters problem: Given a set S of m elements from [n] that induces a frequency vector $f \in R^{n}$ and a threshold parameter $\varepsilon \in(0,1)$, output a list that includes:
- The items from [n] that have frequency at least $\varepsilon \cdot\|f\|_{2}$
- No items with frequency less than $\frac{\varepsilon}{2} \cdot\|f\|_{2}$
- Space usage: $O\left(\frac{1}{\varepsilon^{2}} \log ^{2} n\right)$ bits of space

L_{2} Estimation

- Goal: Given a set S of m elements from [n] that induces a frequency vector $f \in R^{n}$ and an accuracy parameter $\varepsilon \in(0,1)$, output a $(1+\varepsilon)$-approximation to $\|f\|_{2}$
- Find Z such that $(1-\varepsilon) \cdot\|f\|_{2} \leq Z \leq(1+\varepsilon) \cdot\|f\|_{2}$
- Find Z^{\prime} such that $(1-\varepsilon) \cdot\|f\|_{2}^{2} \leq Z^{\prime} \leq(1+\varepsilon) \cdot\|f\|_{2}^{2}$

F_{2} Moment Estimation

- Goal: Find Z^{\prime} such that $(1-\varepsilon) \cdot\|f\|_{2}^{2} \leq Z^{\prime} \leq(1+\varepsilon) \cdot\|f\|_{2}^{2}$

F_{2} Moment Estimation

- Goal: Find Z^{\prime} such that $(1-\varepsilon) \cdot\|f\|_{2}^{2} \leq Z^{\prime} \leq(1+\varepsilon) \cdot\|f\|_{2}^{2}$

17773771411115117175177

F_{2} Moment Estimation

- Goal: Find Z^{\prime} such that $(1-\varepsilon) \cdot\|f\|_{2}^{2} \leq Z^{\prime} \leq(1+\varepsilon) \cdot\|f\|_{2}^{2}$

17773771411115117175177

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
10	0	1	1	2	0	9

Johnson-Lindenstrauss Lemma

- Distributional Johnson-Lindenstrauss Lemma: Given $\Pi \in R^{m \times n}$ with $m=O\left(\frac{\log 1 / \delta}{\varepsilon^{2}}\right)$ and each entry drawn from $\frac{1}{\sqrt{m}} N(0,1)$, then for any $x \in R^{n}$ and setting $y=\Pi x$, then with probability at least $1-\delta$

$$
(1-\varepsilon)\|x\|_{2} \leq\|y\|_{2} \leq(1+\varepsilon)\|x\|_{2}
$$

F_{2} Moment Estimation

- Algorithm: Generate $\Pi \in R^{m \times n}$ with $m=O\left(\frac{\log 1 / \delta}{\varepsilon^{2}}\right)$ and each entry drawn from $\frac{1}{\sqrt{m}} N(0,1)$. Set $g=\Pi \cdot f$
- Whenever there is an update to a coordinate of f, update g

F_{2} Moment Estimation

- Algorithm: Generate $\Pi \in R^{m \times n}$ with $m=O\left(\frac{\log 1 / \delta}{\varepsilon^{2}}\right)$ and each entry drawn from $\frac{1}{\sqrt{m}} N(0,1)$. Set $g=\Pi \cdot f$

17773771411115117175177

- Whenever there is an update to a coordinate of f, update g

F_{2} Moment Estimation

- Algorithm: Generate $\Pi \in R^{m \times n}$ with $m=O\left(\frac{\log 1 / \delta}{\varepsilon^{2}}\right)$ and each entry drawn from $\frac{1}{\sqrt{m}} N(0,1)$. Set $g=\Pi \cdot f$

17773771411115117175177

- Whenever there is an update to a coordinate of f, update g
- $f=f+e_{1}$
- $f=f+e_{7}$
- $f=f+e_{7}$

F_{2} Moment Estimation

- Algorithm: Generate $\Pi \in R^{m \times n}$ with $m=O\left(\frac{\log 1 / \delta}{\varepsilon^{2}}\right)$ and each entry drawn from $\frac{1}{\sqrt{m}} N(0,1)$. Set $g=\Pi \cdot f$

17773771411115117175177

- Whenever there is an update to a coordinate of f, update g
- $f=f+e_{1}, g=g+\Pi e_{1}$
- $f=f+e_{7}, g=g+\Pi e_{7}$
- $f=f+e_{7}, g=g+\Pi e_{7}$

AMS Algorithm

- Generate a random sign vector $s \in\{-1,+1\}^{n}$
- Maintain $Z=\langle s, f\rangle$
- Output $W:=Z^{2}$
1
1
2
1
2
1
1
1
2
1
1
2
2
2
1

AMS Algorithm

- What values of Z did you get?
- $Z=\langle s, f\rangle=s_{1} f_{1}+s_{2} f_{2}+\cdots+s_{n} f_{n}$
- What values of W did you get?
- $W=Z^{2}=\sum_{i, j} s_{i} S_{j} f_{i} f_{j}$

AMS Algorithm

- What values of W did you get?
- $W=Z^{2}=\sum_{i, j} s_{i} s_{j} f_{i} f_{j}$

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
9	6	0	0	0	0	0

AMS Algorithm

- What is $\mathrm{E}[W]$?
- $Z=\langle s, f\rangle=s_{1} f_{1}+s_{2} f_{2}+\cdots+s_{n} f_{n}$
- $W=Z^{2}=\sum_{i, j} s_{i} S_{j} f_{i} f_{j}$
- $\mathrm{E}[W]=\sum_{i, j} \mathrm{E}\left[s_{i} S_{j} f_{i} f_{j}\right]=\sum_{i} \mathrm{E}\left[f_{i}^{2}\right]=\|f\|_{2}^{2}$

AMS Algorithm

- What is $\operatorname{Var}[W]$?

- $Z=\langle s, f\rangle=s_{1} f_{1}+s_{2} f_{2}+\cdots+s_{n} f_{n}$
- $W^{2}=Z^{4}=\sum_{a, b, c, d} s_{a} s_{b} s_{c} s_{d} f_{a} f_{b} f_{c} f_{d}$
- $\mathrm{E}\left[W^{2}\right]=\sum_{a, b, c, d} \mathrm{E}\left[s_{a} s_{b} s_{c} s_{d} f_{a} f_{b} f_{c} f_{d}\right]=\sum_{i} \mathrm{E}\left[f_{i}^{4}\right]+6 \sum_{i \neq j} \mathrm{E}\left[f_{i}^{2} f_{j}^{2}\right] \leq$ $6\|f\|_{2}^{4}$

AMS Algorithm

- By Chebyshev's inequality, W will be a 9-approximation to $\|f\|_{2}^{2}$ with probability $\frac{2}{3}$

AMS Algorithm

- How to get $(1+\varepsilon)$-approximation?
- Repeat $O\left(\frac{1}{\varepsilon^{2}}\right)$ times and take the average

AMS Algorithm

- Space of algorithm: $O\left(\frac{1}{\varepsilon^{2}}\right)$ words of space or $O\left(\frac{1}{\varepsilon^{2}} \log m\right)$ bits of space

