CSCE 658: Randomized Algorithms

Lecture 10

Samson Zhou

- $s(i) \cdot c_a = s(i) \cdot s(i) \cdot f_i + \sum_{j \neq i, \text{ with } j: h(j) = a} s(i) \cdot s(j) \cdot f_j$
- Since $s(i) \in \{-1, +1\}$, we have $s(i) \cdot s(i) = 1$
- What is the expectation of the error term for f_i ?

- $s(i) \cdot c_a = s(i) \cdot s(i) \cdot f_i + \sum_{j \neq i, \text{ with } j:h(j)=a} s(i) \cdot s(j) \cdot f_j$
- What is the expectation of the error term for f_i ?
- $E\left[\sum_{j\neq i, \text{ with } j:h(j)=a} s(i) \cdot s(j) \cdot f_j\right] = \sum_{j\neq i} E\left[s(i) \cdot s(j) \cdot f_j \cdot I_{h(j)=h(i)}\right]$

- $s(i) \cdot c_a = s(i) \cdot s(i) \cdot f_i + \sum_{j \neq i, \text{ with } j: h(j) = a} s(i) \cdot s(j) \cdot f_j$
- What is the expectation of the error term for f_i ?
- $\operatorname{E}\left[\sum_{j\neq i, \text{ with } j:h(j)=a} s(i) \cdot s(j) \cdot f_j\right] = 0$

- $s(i) \cdot c_a = s(i) \cdot s(i) \cdot f_i + \sum_{j \neq i, \text{ with } j: h(j) = a} s(i) \cdot s(j) \cdot f_j$
- What is the expectation of the error term for f_i ?
- $\operatorname{E}\left[\sum_{j\neq i, \text{ with } j:h(j)=a} s(i) \cdot s(j) \cdot f_j\right] = 0$
- What is the variance of the error term for f_i ?

- \bullet Variance is at most the 2^{nd} moment of the error term
- $\operatorname{E}\left[\left(\sum_{j\neq i, \text{ with } j:h(j)=a} s(i) \cdot s(j) \cdot f_j\right)^2\right]$

•
$$\operatorname{E}\left[\left(\sum_{j\neq i, \text{ with } j:h(j)=a} s(i) \cdot s(j) \cdot f_j\right)^2\right] = \sum_{j\neq i} \operatorname{E}\left[\left|f_j\right|^2 \cdot I_{h(j)=h(i)}\right]$$

•
$$\operatorname{E}\left[\left(\sum_{j\neq i, \text{ with } j:h(j)=a} s(i) \cdot s(j) \cdot f_j\right)^2\right] = \sum_{j\neq i} \operatorname{E}\left[\left|f_j\right|^2 \cdot I_{h(j)=h(i)}\right]$$

= $\sum_{j\neq i} \operatorname{E}\left[I_{h(j)=h(i)}\right] \cdot \left|f_j\right|^2$

•
$$\operatorname{E}\left[\left(\sum_{j\neq i, \text{ with } j:h(j)=a} s(i) \cdot s(j) \cdot f_j\right)^2\right] = \sum_{j\neq i} \operatorname{E}\left[\left|f_j\right|^2 \cdot I_{h(j)=h(i)}\right]$$

= $\sum_{j\neq i} \operatorname{E}\left[I_{h(j)=h(i)}\right] \cdot \left|f_j\right|^2$
= $\sum_{j\neq i} \Pr[h(j)=h(i)] \cdot \left|f_j\right|^2$

•
$$\operatorname{E}\left[\left(\sum_{j \neq i, \text{ with } j:h(j)=a} s(i) \cdot s(j) \cdot f_{j}\right)^{2}\right] = \sum_{j \neq i} \operatorname{E}\left[\left|f_{j}\right|^{2} \cdot I_{h(j)=h(i)}\right]$$

 $= \sum_{j \neq i} \operatorname{E}\left[I_{h(j)=h(i)}\right] \cdot \left|f_{j}\right|^{2}$
 $= \sum_{j \neq i} \Pr[h(j) = h(i)] \cdot \left|f_{j}\right|^{2}$
 $= \sum_{j \neq i} \frac{1}{h} \cdot \left|f_{j}\right|^{2} \leq \frac{\|f\|_{2}^{2}}{h}$

•
$$\operatorname{E}\left[\left(\sum_{j \neq i, \text{ with } j:h(j)=a} s(i) \cdot s(j) \cdot f_j\right)^2\right] = \sum_{j \neq i} \operatorname{E}\left[\left|f_j\right|^2 \cdot I_{h(j)=h(i)}\right]$$

 $= \sum_{j \neq i} \operatorname{E}\left[I_{h(j)=h(i)}\right] \cdot \left|f_j\right|^2$
 $= \sum_{j \neq i} \Pr[h(j) = h(i)] \cdot \left|f_j\right|^2$
 $= \sum_{j \neq i} \frac{1}{b} \cdot \left|f_j\right|^2 \leq \frac{\|f\|_2^2}{b}$
• Set $b = \frac{81k^2}{\varepsilon^2}$, then the variance is at most $\frac{\varepsilon^2 \|f\|_2^2}{81k^2}$

• Set
$$b = \frac{81k^2}{\epsilon^2}$$
, then the variance is at most $\frac{\epsilon^2 \|f\|_2^2}{81k^2}$

- By Chebyshev's inequality, the error for f_i is at most $\frac{\varepsilon}{3k} \|f\|_2$ with probability at least $\frac{2}{3}$
- How to ensure accuracy for all $i \in [n]$?

- By Chebyshev's inequality, the error for f_i is at most $\frac{\varepsilon}{3k} ||f||_2$ with probability at least $\frac{2}{3}$
- How to ensure accuracy for all $i \in [n]$?

• Repeat $\ell \coloneqq O(\log n)$ times to get estimates e_1, \dots, e_{ℓ} for each $i \in [n]$ and set $\hat{f}_i = \text{median}(e_1, \dots, e_{\ell})$

• Claim: For all estimated frequencies \hat{f}_i by CountSketch, we have

$$f_i - \frac{\varepsilon \|f\|_2}{3k} \le \widehat{f}_i \le f_i + \frac{\varepsilon \|f\|_2}{3k}$$

CountSketch Summary

- CountSketch solves the L_2 heavy-hitters problem: Given a set S of m elements from [n] that induces a frequency vector $f \in \mathbb{R}^n$ and a threshold parameter $\varepsilon \in (0, 1)$, output a list that includes:
 - The items from [n] that have frequency at least $\varepsilon \cdot \|f\|_2$
 - No items with frequency less than $\frac{\varepsilon}{2} \cdot \|f\|_2$

• Space usage:
$$O\left(\frac{1}{\epsilon^2}\log^2 n\right)$$
 bits of space

L₂ Estimation

• Goal: Given a set *S* of *m* elements from [*n*] that induces a frequency vector $f \in \mathbb{R}^n$ and an accuracy parameter $\varepsilon \in (0, 1)$, output a $(1 + \varepsilon)$ -approximation to $||f||_2$

- Find Z such that $(1 \varepsilon) \cdot ||f||_2 \le Z \le (1 + \varepsilon) \cdot ||f||_2$
- Find Z' such that $(1 \varepsilon) \cdot ||f||_2^2 \le Z' \le (1 + \varepsilon) \cdot ||f||_2^2$

F_2 Moment Estimation

• Goal: Find Z' such that $(1 - \varepsilon) \cdot ||f||_2^2 \le Z' \le (1 + \varepsilon) \cdot ||f||_2^2$

F₂ Moment Estimation

• Goal: Find Z' such that $(1 - \varepsilon) \cdot ||f||_2^2 \le Z' \le (1 + \varepsilon) \cdot ||f||_2^2$

1777377141115117175177

F_2 Moment Estimation

• Goal: Find Z' such that $(1 - \varepsilon) \cdot ||f||_2^2 \le Z' \le (1 + \varepsilon) \cdot ||f||_2^2$

17773771411115117175177

f_1	f_2	f_3	f_4	f_5	f_6	f_7
10	0	1	1	2	0	9

Johnson-Lindenstrauss Lemma

• Distributional Johnson-Lindenstrauss Lemma: Given $\Pi \in \mathbb{R}^{m \times n}$ with $m = O\left(\frac{\log 1/\delta}{\varepsilon^2}\right)$ and each entry drawn from $\frac{1}{\sqrt{m}}N(0,1)$, then for any $x \in \mathbb{R}^n$ and setting $y = \Pi x$, then with probability at least $1 - \delta$

 $(1 - \varepsilon) \|x\|_2 \le \|y\|_2 \le (1 + \varepsilon) \|x\|_2$

F₂ Moment Estimation

• Algorithm: Generate $\Pi \in \mathbb{R}^{m \times n}$ with $m = O\left(\frac{\log 1/\delta}{\varepsilon^2}\right)$ and each entry drawn from $\frac{1}{\sqrt{m}}N(0,1)$. Set $g = \Pi \cdot f$

• Whenever there is an update to a coordinate of f, update g

F₂ Moment Estimation

• Algorithm: Generate $\Pi \in \mathbb{R}^{m \times n}$ with $m = O\left(\frac{\log 1/\delta}{\epsilon^2}\right)$ and each entry drawn from $\frac{1}{\sqrt{m}}N(0,1)$. Set $g = \Pi \cdot f$

17773771411115117175177

• Whenever there is an update to a coordinate of f, update g

F_2 Moment Estimation

• Algorithm: Generate $\Pi \in \mathbb{R}^{m \times n}$ with $m = O\left(\frac{\log 1/\delta}{\varepsilon^2}\right)$ and each entry drawn from $\frac{1}{\sqrt{m}}N(0,1)$. Set $g = \Pi \cdot f$

17773771411115117175177

- Whenever there is an update to a coordinate of f, update g
- $f = f + e_1$
- $f = f + e_7$
- $f = f + e_7$

F₂ Moment Estimation

• Algorithm: Generate $\Pi \in \mathbb{R}^{m \times n}$ with $m = O\left(\frac{\log 1/\delta}{\varepsilon^2}\right)$ and each entry drawn from $\frac{1}{\sqrt{m}}N(0,1)$. Set $g = \Pi \cdot f$

17773771411115117175177

- Whenever there is an update to a coordinate of f, update g
- $f = f + e_1, g = g + \Pi e_1$
- $f = f + e_7, g = g + \Pi e_7$
- $f = f + e_7, g = g + \Pi e_7$

• Generate a random sign vector $s \in \{-1, +1\}^n$

• Maintain $Z = \langle s, f \rangle$

• Output $W \coloneqq Z^2$

- What values of Z did you get?
- $Z = \langle s, f \rangle = s_1 f_1 + s_2 f_2 + \dots + s_n f_n$
- What values of *W* did you get?
- $W = Z^2 = \sum_{i,j} s_i s_j f_i f_j$

- What values of *W* did you get?
- $W = Z^2 = \sum_{i,j} s_i s_j f_i f_j$

f_1	f_2	f_3	f_4	f_5	f_6	f_7
9	6	0	0	0	0	0

- What is **E**[*W*]?
- $Z = \langle s, f \rangle = s_1 f_1 + s_2 f_2 + \dots + s_n f_n$
- $W = Z^2 = \sum_{i,j} s_i s_j f_i f_j$
- $E[W] = \sum_{i,j} E[s_i s_j f_i f_j] = \sum_i E[f_i^2] = ||f||_2^2$

- What is Var[W]?
- $Z = \langle s, f \rangle = s_1 f_1 + s_2 f_2 + \dots + s_n f_n$
- $W^2 = Z^4 = \sum_{a,b,c,d} s_a s_b s_c s_d f_a f_b f_c f_d$
- $\mathbb{E}[W^2] = \sum_{a,b,c,d} \mathbb{E}[s_a s_b s_c s_d f_a f_b f_c f_d] = \sum_i \mathbb{E}[f_i^4] + 6 \sum_{i \neq j} \mathbb{E}[f_i^2 f_j^2] \le 6 \|f\|_2^4$

• By Chebyshev's inequality, W will be a 9-approximation to $||f||_2^2$ with probability $\frac{2}{3}$

• How to get $(1 + \varepsilon)$ -approximation?

• Repeat $O\left(\frac{1}{\varepsilon^2}\right)$ times and take the average

• Space of algorithm: $O\left(\frac{1}{\epsilon^2}\right)$ words of space or $O\left(\frac{1}{\epsilon^2}\log m\right)$ bits of space