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CountSketch Error Analysis

• 𝑠 𝑖 ⋅ 𝑐𝑎 = 𝑠 𝑖 ⋅ 𝑠 𝑖 ⋅ 𝑓𝑖 + σ𝑗≠𝑖, with 𝑗:ℎ 𝑗 =𝑎 𝑠 𝑖 ⋅ 𝑠 𝑗 ⋅ 𝑓𝑗

• Since 𝑠 𝑖 ∈ {−1, +1}, we have 𝑠 𝑖 ⋅ 𝑠 𝑖 = 1

• What is the expectation of the error term for 𝑓𝑖?



CountSketch Error Analysis

• 𝑠 𝑖 ⋅ 𝑐𝑎 = 𝑠 𝑖 ⋅ 𝑠 𝑖 ⋅ 𝑓𝑖 + σ𝑗≠𝑖, with 𝑗:ℎ 𝑗 =𝑎 𝑠 𝑖 ⋅ 𝑠 𝑗 ⋅ 𝑓𝑗

• What is the expectation of the error term for 𝑓𝑖?

• E σ𝑗≠𝑖, with 𝑗:ℎ 𝑗 =𝑎 𝑠 𝑖 ⋅ 𝑠 𝑗 ⋅ 𝑓𝑗 = Σ𝑗≠𝑖E 𝑠 𝑖 ⋅ 𝑠 𝑗 ⋅ 𝑓𝑗 ⋅ 𝐼ℎ 𝑗 =ℎ(𝑖)



CountSketch Error Analysis

• 𝑠 𝑖 ⋅ 𝑐𝑎 = 𝑠 𝑖 ⋅ 𝑠 𝑖 ⋅ 𝑓𝑖 + σ𝑗≠𝑖, with 𝑗:ℎ 𝑗 =𝑎 𝑠 𝑖 ⋅ 𝑠 𝑗 ⋅ 𝑓𝑗

• What is the expectation of the error term for 𝑓𝑖?

• E σ𝑗≠𝑖, with 𝑗:ℎ 𝑗 =𝑎 𝑠 𝑖 ⋅ 𝑠 𝑗 ⋅ 𝑓𝑗 = 0



CountSketch Error Analysis

• 𝑠 𝑖 ⋅ 𝑐𝑎 = 𝑠 𝑖 ⋅ 𝑠 𝑖 ⋅ 𝑓𝑖 + σ𝑗≠𝑖, with 𝑗:ℎ 𝑗 =𝑎 𝑠 𝑖 ⋅ 𝑠 𝑗 ⋅ 𝑓𝑗
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• E σ𝑗≠𝑖, with 𝑗:ℎ 𝑗 =𝑎 𝑠 𝑖 ⋅ 𝑠 𝑗 ⋅ 𝑓𝑗 = 0

• What is the variance of the error term for 𝑓𝑖?



CountSketch Error Analysis

• Variance is at most the 2nd moment of the error term

• E σ𝑗≠𝑖, with 𝑗:ℎ 𝑗 =𝑎 𝑠 𝑖 ⋅ 𝑠 𝑗 ⋅ 𝑓𝑗
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CountSketch Error Analysis

• Set 𝑏 =
81𝑘2

𝜀2 , then the variance is at most 
𝜀2 𝑓 2
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• By Chebyshev’s inequality, the error for 𝑓𝑖 is at most 
𝜀
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• How to ensure accuracy for all 𝑖 ∈ [𝑛]?



CountSketch Error Analysis

• By Chebyshev’s inequality, the error for 𝑓𝑖 is at most 
𝜀

3𝑘
𝑓 2 with 

probability at least 
2

3

• How to ensure accuracy for all 𝑖 ∈ [𝑛]?

• Repeat ℓ ≔ 𝑂(log 𝑛) times to get estimates 𝑒1, … , 𝑒ℓ for each 𝑖 ∈
[𝑛] and set ෡𝑓𝑖 = median(e1, … , eℓ)



CountSketch Error Analysis

• Claim: For all estimated frequencies ෡𝑓𝑖 by CountSketch, we have

𝑓𝑖 −
𝜀 𝑓 2

3𝑘
≤ ෡𝑓𝑖 ≤ 𝑓𝑖 +

𝜀 𝑓 2

3𝑘



CountSketch Summary

• CountSketch solves the 𝐿2 heavy-hitters problem: Given a set 𝑆 of 
𝑚 elements from [𝑛] that induces a frequency vector 𝑓 ∈ 𝑅𝑛 and a 
threshold parameter 𝜀 ∈ (0, 1), output a list that includes:

• The items from [𝑛] that have frequency at least 𝜀 ⋅ 𝑓 2

• No items with frequency less than 
𝜀

2
⋅ 𝑓 2

• Space usage: 𝑂
1

𝜀2 log2 𝑛  bits of space



𝐿2 Estimation

• Goal: Given a set 𝑆 of 𝑚 elements from [𝑛] that induces a 
frequency vector 𝑓 ∈ 𝑅𝑛 and an accuracy parameter 𝜀 ∈ (0, 1), 
output a (1 + 𝜀)-approximation to 𝑓 2

• Find 𝑍 such that 1 − 𝜀 ⋅ 𝑓 2 ≤ 𝑍 ≤ 1 + 𝜀 ⋅ 𝑓 2

• Find 𝑍′ such that 1 − 𝜀 ⋅ 𝑓 2
2 ≤ 𝑍′ ≤ 1 + 𝜀 ⋅ 𝑓 2
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𝐹2 Moment Estimation
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𝐹2 Moment Estimation

• Goal: Find 𝑍′ such that 1 − 𝜀 ⋅ 𝑓 2
2 ≤ 𝑍′ ≤ 1 + 𝜀 ⋅ 𝑓 2

2

1 7 7 7 3 7 7 1 4 1 1 1 1 5 1 1 7 1 7 5 1 7 7

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 

10 0 1 1 2 0 9



Johnson-Lindenstrauss Lemma

• Distributional Johnson-Lindenstrauss Lemma: Given Π ∈ 𝑅𝑚×𝑛 with 

𝑚 = 𝑂
log 1/𝛿

𝜀2  and each entry drawn from 
1

𝑚
𝑁 0,1 , then for any 

𝑥 ∈ 𝑅𝑛 and setting 𝑦 = Π𝑥, then with probability at least 1 − 𝛿

1 − 𝜀 𝑥 2 ≤ 𝑦 2 ≤ 1 + 𝜀 𝑥 2



𝐹2 Moment Estimation

• Algorithm: Generate Π ∈ 𝑅𝑚×𝑛 with 𝑚 = 𝑂
log 1/𝛿

𝜀2  and each entry 

drawn from 
1

𝑚
𝑁 0,1 . Set 𝑔 = Π ⋅ 𝑓

• Whenever there is an update to a coordinate of 𝑓, update 𝑔
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log 1/𝛿

𝜀2  and each entry 

drawn from 
1

𝑚
𝑁 0,1 . Set 𝑔 = Π ⋅ 𝑓

• Whenever there is an update to a coordinate of 𝑓, update 𝑔

• 𝑓 = 𝑓 + 𝑒1

• 𝑓 = 𝑓 + 𝑒7

• 𝑓 = 𝑓 + 𝑒7
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𝐹2 Moment Estimation

• Algorithm: Generate Π ∈ 𝑅𝑚×𝑛 with 𝑚 = 𝑂
log 1/𝛿

𝜀2  and each entry 

drawn from 
1

𝑚
𝑁 0,1 . Set 𝑔 = Π ⋅ 𝑓

• Whenever there is an update to a coordinate of 𝑓, update 𝑔

• 𝑓 = 𝑓 + 𝑒1, 𝑔 = 𝑔 + Π𝑒1

• 𝑓 = 𝑓 + 𝑒7, 𝑔 = 𝑔 + Π𝑒7

• 𝑓 = 𝑓 + 𝑒7, 𝑔 = 𝑔 + Π𝑒7
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AMS Algorithm

• Generate a random sign vector 𝑠 ∈ −1, +1 𝑛

• Maintain 𝑍 = ⟨𝑠, 𝑓⟩

• Output 𝑊 ≔ 𝑍2
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AMS Algorithm

• What values of 𝑍 did you get?

• 𝑍 = 𝑠, 𝑓 = 𝑠1𝑓1 + 𝑠2𝑓2 + ⋯ + 𝑠𝑛𝑓𝑛

• What values of 𝑊did you get?

• 𝑊 = 𝑍2 = σ𝑖,𝑗 𝑠𝑖𝑠𝑗𝑓𝑖𝑓𝑗



AMS Algorithm

• What values of 𝑊did you get?

• 𝑊 = 𝑍2 = σ𝑖,𝑗 𝑠𝑖𝑠𝑗𝑓𝑖𝑓𝑗

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 

9 6 0 0 0 0 0



AMS Algorithm

• What is E 𝑊 ?

• 𝑍 = 𝑠, 𝑓 = 𝑠1𝑓1 + 𝑠2𝑓2 + ⋯ + 𝑠𝑛𝑓𝑛

• 𝑊 = 𝑍2 = σ𝑖,𝑗 𝑠𝑖𝑠𝑗𝑓𝑖𝑓𝑗

• E 𝑊 = σ𝑖,𝑗 E 𝑠𝑖𝑠𝑗𝑓𝑖𝑓𝑗 = σ𝑖 E 𝑓𝑖
2 = 𝑓 2

2



AMS Algorithm

• What is Var 𝑊 ?

• 𝑍 = 𝑠, 𝑓 = 𝑠1𝑓1 + 𝑠2𝑓2 + ⋯ + 𝑠𝑛𝑓𝑛

• 𝑊2 = 𝑍4 = σ𝑎,𝑏,𝑐,𝑑 𝑠𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑓𝑎𝑓𝑏𝑓𝑐𝑓𝑑

• E 𝑊2 = σ𝑎,𝑏,𝑐,𝑑 E 𝑠𝑎𝑠𝑏𝑠𝑐𝑠𝑑𝑓𝑎𝑓𝑏𝑓𝑐𝑓𝑑 = σ𝑖 E 𝑓𝑖
4 + 6 σ𝑖≠𝑗 E 𝑓𝑖

2𝑓𝑗
2 ≤

6 𝑓 2
4



AMS Algorithm

• By Chebyshev’s inequality, 𝑊 will be a 9-approximation to 𝑓 2
2 with 

probability 
2

3



AMS Algorithm

• How to get (1 + 𝜀)-approximation?

• Repeat 𝑂
1

𝜀2  times and take the average



AMS Algorithm

• Space of algorithm: 𝑂
1

𝜀2  words of space or 𝑂
1

𝜀2 log 𝑚  bits of space
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