
CSCE 658: Randomized Algorithms

Lecture 11

Samson Zhou

Class Logistics

• March 5: Lecture canceled, i.e., do NOT show up to HRBB
126 (unless you want to see an empty classroom)

Previously in the Streaming Model

• Reservoir sampling

• Heavy-hitters

• Misra-Gries

• CountMin

• CountSketch

• Moment estimation

• AMS algorithm

• Sparse recovery

• Distinct elements estimation

Reservoir Sampling

• Suppose we see a stream of elements from [𝑛]. How do we uniformly
sample one of the positions of the stream?

47 72 81 10 14 33 51 29 54 9 36 46 10

Heavy-Hitters (Frequent Items)

• Given a set 𝑆 of 𝑚 elements from [𝑛], let 𝑓𝑖 be the frequency of
element 𝑖. (How often it appears)

• Let 𝐿𝑝 be the norm of the frequency vector:

• Goal: Given a set 𝑆 of 𝑚 elements from [𝑛] and a threshold 𝜀,
output the elements 𝑖 such that 𝑓𝑖 > 𝜀 𝐿𝑝...and no elements 𝑗 such

that 𝑓𝑗 <
𝜀

2
𝐿𝑝 (we saw algorithms for 𝑝 = 1 and 𝑝 = 2)

• Motivation: DDoS prevention, iceberg queries

𝐿𝑝 = 𝑓1
𝑝

+ 𝑓2
𝑝

+ ⋯ + 𝑓𝑛
𝑝 1/𝑝

Frequency Moments (𝐿𝑝 Norm)

• Given a set 𝑆 of 𝑚 elements from [𝑛], let 𝑓𝑖 be the frequency of
element 𝑖. (How often it appears)

• Let 𝐹𝑝 be the frequency moment of the vector:

• Goal: Given a set 𝑆 of 𝑚 elements from [𝑛] and an accuracy
parameter 𝜀, output a (1 + 𝜀)-approximation to 𝐹𝑝

• Motivation: Entropy estimation, linear regression

𝐹𝑝 = 𝑓1
𝑝

+ 𝑓2
𝑝

+ ⋯ + 𝑓𝑛
𝑝

The Streaming Model

• So far, all questions have been statistical

• What other questions can be asked? (Think in general, outside of
the streaming model)

The Streaming Model

• So far, all questions have been statistical

• What other questions can be asked? (Think in general, outside of
the streaming model)

• Algebraic, geometric

The Streaming Model

• So far, all questions have been statistical

• What other questions can be asked? (Think in general, outside of
the streaming model)

• Algebraic, geometric

TODAY

Graph Theory

• Suppose we have a graph 𝐺 with vertex set 𝑉 and edge set 𝐸

• Let 𝑉 = [𝑛] for simplicity, so each vertex is an integer from 1 to 𝑛

• Then each edge 𝑒 ∈ 𝐸 can be written as 𝑒 = (𝑢, 𝑣) for 𝑢, 𝑣 ∈ [𝑛]

• In other words, each edge is a pair of integers from 1 to 𝑛

Graph Theory

• For today, we will assume a simple, undirected, unweighted graph

• Graph has no self-loops, no multi-edges

• Edges are undirected

• Each edge has weight 1

Semi-streaming Model

• Recall that we have a graph 𝐺 = (𝑉 = 𝑛 , 𝐸)

• Suppose 𝐸 = 𝑚

• The edges of the graph arrive sequentially, i.e., insertion-only model

• We are allowed to use 𝑛 ⋅ polylog 𝑛 space

• Enough to store things like a matching, a spanning tree, NOT
enough to store entire graph, since 𝑚 can be as large as 𝑂 𝑛2

5

1 2

34

6

Bipartiteness

• Bipartite graph: Graph can be partitioned into two disjoint sets 𝐿
and 𝑅 so that every edge is between a vertex in 𝐿 and a vertex in 𝑅

• Goal: Given a graph 𝐺, determine whether 𝐺 is a bipartite graph

5

1 2

34

6

5

12

3

4

6

5

1 2

34

6

5

1 2

34

6

Applications for Bipartiteness Testing

• Graph coloring: You want to color a graph such that no neighboring
items share the same color

Applications for Bipartiteness Testing

• Circuit design: In electrical engineering and VLSI (Very Large Scale
Integration) design, you may want to know if a circuit can be
optimally partitioned into two complementary parts, which can be
achieved by testing the bipartiteness of the circuit's dependency
graph

Bipartiteness

• What is a necessary and sufficient condition for bipartiteness?

Bipartiteness

• What is a necessary and sufficient condition for bipartiteness?

• A graph is bipartite if and only if it can be colored using two colors
(a coloring of a graph is an assignment of colors to vertices such
that no two vertices share the same color)

• A graph is bipartite if and only if it has no odd cycles

Bipartiteness

• How to perform bipartiteness testing in the central setting?

Bipartiteness

• How to perform bipartiteness testing in the central setting?

• Start at arbitrary vertex, run BFS, and assign alternating levels to
different side until there is a contradiction

5

1 2

34

6

5

1 2

34

6

5

1

2

3

4

6

5

1

2

3

4

6

Bipartiteness in the Streaming Model

• Bipartiteness is a monotone property, i.e., additional edges to a
graph that is not bipartite will result in a graph that is not bipartite

Bipartiteness in the Streaming Model

• Intuition: Greedily add edges to minimum spanning forest

• Algorithm:

1. Initialize 𝐹 = ∅.

2. For each edge 𝑒 = (𝑢, 𝑣):

1. If 𝐹 ∪ (𝑢, 𝑣) does not contain a cycle, add (𝑢, 𝑣) to 𝐹: 𝐹 ←
𝐹 ∪ 𝑢, 𝑣

2. If 𝐹 ∪ (𝑢, 𝑣) contains an odd cycle, return GRAPH IS NOT
BIPARTITE

3. Return GRAPH IS BIPARTITE

Bipartiteness in the Streaming Model

• Algorithm maintains a tree (because it does not add any edges that
would create cycles)

• How many edges does the algorithm keep?

Bipartiteness in the Streaming Model

• Algorithm maintains a tree (because it does not add any edges that
would create cycles)

• Algorithm can keep at most 𝑛 edges, so the total space usage is
𝑂(𝑛) words of space.

Clustering

• Goal: Given input dataset 𝑋, partition 𝑋 so that “similar” points are in
the same cluster and “different” points are in different clusters

𝑘-Clustering

• Goal: Given input dataset 𝑋, partition 𝑋 so that “similar” points are in
the same cluster and “different” points are in different clusters

• There can be at most 𝑘 different clusters

𝑘 = 3

𝑘-Clustering

• Question: How do we measure the “quality” of each clustering?

𝑘 = 3

𝑘-Clustering

• Question: How do we measure the “quality” of each clustering?

• Assign a “center” 𝑐𝑖 to each cluster

• Have a cost function induced by 𝑐𝑖 for all of the points 𝑃𝑖 assigned to
cluster 𝑖

𝑘-Clustering

• Question: How do we measure the “quality” of each clustering?

• Assign a “center” 𝑐𝑖 to each cluster

• Have a cost function induced by 𝑐𝑖 for all of the points 𝑃𝑖 assigned to
cluster 𝑖

• Assume points are in metric space with distance function dist(⋅,⋅)

• Define Cost 𝑃𝑖 , 𝑐𝑖 to be a function of dist 𝑥, 𝑐𝑖 𝑥∈𝑃𝑖

𝑘-Clustering

• Question: How do we measure the “quality” of each clustering?

• Have a cost function induced by 𝑐𝑖 for all of the points 𝑃𝑖 assigned to
cluster 𝑖

• Define Cost 𝑃𝑖 , 𝑐𝑖 to be a function of dist 𝑥, 𝑐𝑖 𝑥∈𝑃𝑖

• Suppose the set of centers is 𝐶 = 𝑐1, … , 𝑐𝑘

• Define clustering cost Cost 𝑋, 𝐶 to be a function of
dist 𝑥, 𝐶 𝑥∈𝐶

𝑘-Clustering

• Define clustering cost Cost 𝑋, 𝐶 to be a function of
dist 𝑥, 𝐶 𝑥∈𝑋

𝑘-Clustering

• Define clustering cost Cost 𝑋, 𝐶 to be a function of
dist 𝑥, 𝐶 𝑥∈𝑋

• 𝑘-center: Cost 𝑋, 𝐶 = max
𝑥∈𝑋

dist(𝑥, 𝐶)

𝑘-Clustering

• Define clustering cost Cost 𝑋, 𝐶 to be a function of
dist 𝑥, 𝐶 𝑥∈𝑋

• 𝑘-center: Cost 𝑋, 𝐶 = max
𝑥∈𝑋

dist(𝑥, 𝐶)

• 𝑘-median: Cost 𝑋, 𝐶 = σ𝑥∈𝑋 dist 𝑥, 𝐶

𝑘-Clustering

• Define clustering cost Cost 𝑋, 𝐶 to be a function of
dist 𝑥, 𝐶 𝑥∈𝑋

• 𝑘-center: Cost 𝑋, 𝐶 = max
𝑥∈𝑋

dist(𝑥, 𝐶)

• 𝑘-median: Cost 𝑋, 𝐶 = σ𝑥∈𝑋 dist 𝑥, 𝐶

• 𝑘-means: Cost 𝑋, 𝐶 = σ𝑥∈𝑋 dist 𝑥, 𝐶
2

⋅ 2

⋅ 2

⋅ 2

⋅ 2

⋅ 2

⋅ 2

⋅ 2

𝑘-Clustering

• Define clustering cost Cost 𝑋, 𝐶 to be a function of
dist 𝑥, 𝐶 𝑥∈𝑋

• 𝑘-center: Cost 𝑋, 𝐶 = max
𝑥∈𝑋

dist(𝑥, 𝐶)

• 𝑘-median: Cost 𝑋, 𝐶 = σ𝑥∈𝑋 dist 𝑥, 𝐶

• 𝑘-means: Cost 𝑋, 𝐶 = σ𝑥∈𝑋 dist 𝑥, 𝐶
2

• (𝑘, 𝑧)-clustering: Cost 𝑋, 𝐶 = σ𝑥∈𝑋 dist 𝑥, 𝐶
𝑧

⋅ 𝑧

⋅ 𝑧

⋅ 𝑧

⋅ 𝑧

⋅ 𝑧

⋅ 𝑧

⋅ 𝑧

Euclidean 𝑘-Clustering

• For Euclidean 𝑘-clustering, input points 𝑋 = 𝑥1, … , 𝑥𝑛 are in
ℝ𝑑 (for us, they will be in [Δ]𝑑≔ 1,2, … , Δ 𝑑)

• dist 𝑥, 𝑦 = 𝑥1 − 𝑦1
2 + ⋯ + 𝑥𝑑 − 𝑦𝑑

2 is the Euclidean
distance

• (𝑘, 𝑧)-clustering problem:

min
𝐶: 𝐶 ≤𝑘

 Cost 𝑋, 𝐶 = min
𝐶: 𝐶 ≤𝑘

Σ𝑥∈𝑋 dist 𝑥, 𝐶
𝑧

(4, 3)

(0, −4)

(−3, 0)

(−8, 4)

(−11, −4)

(−4, 3)

(0, 0)

(4, 3)

(0, −4)

(−3, 0)(−8, 0)

(−8, 4)

(−11, −4)

(−4, 3)

(0, 0)

(4, 3)

(0, −4)

(−3, 0)(−8, 0)

(−8, 4)

(−11, −4)

(−4, 3)4
5

5

5

3

4

(0, 0)

(4, 3)

(0, −4)

(−3, 0)(−8, 0)

(−8, 4)

(−11, −4)

(−4, 3)4
5

5

5

3

4

𝑘-center: Cost 𝑋, 𝐶 = max
𝑥∈𝑋

dist 𝑥, 𝐶 = 5

(0, 0)

(4, 3)

(0, −4)

(−3, 0)(−8, 0)

(−8, 4)

(−11, −4)

(−4, 3)4
5

5

5

3

4

𝑘-median: Cost 𝑋, 𝐶 = σ𝑥∈𝑋 dist 𝑥, 𝐶 = 4 + 5 + 5 + 3 + 4 + 5 = 26

(0, 0)

(4, 3)

(0, −4)

(−3, 0)(−8, 0)

(−8, 4)

(−11, −4)

(−4, 3)4
5

5

5

3

4

𝑘-means: Cost 𝑋, 𝐶 = σ𝑥∈𝑋 dist 𝑥, 𝐶
2

 = 16 + 25 + 25 + 9 + 16 + 25

= 116

• Subset 𝑋′ of representative
points of 𝑋 for a specific
clustering objective

• Cost 𝑋, 𝐶 ≈ Cost(𝑋′, 𝐶)
for all sets 𝐶 with 𝐶 = 𝑘

Coreset

• Subset 𝑋′ of representative
points of 𝑋 for a specific
clustering objective

• Cost 𝑋, 𝐶 ≈ Cost(𝑋′, 𝐶)
for all sets 𝐶 with 𝐶 = 𝑘

Coreset

• Subset 𝑋′ of representative
points of 𝑋 for a specific
clustering objective

• Cost 𝑋, 𝐶 ≈ Cost(𝑋′, 𝐶)
for all sets 𝐶 with 𝐶 = 𝑘

Coreset

Coreset (Formal Definition)

• Given a set 𝑋 and an accuracy parameter ε > 0, we say a set
𝑋′ with weight function 𝑤 is an (1 + 𝜀)-multiplicative
coreset for a cost function Cost, if for all queries 𝐶 with
𝐶 ≤ 𝑘, we have

1 − ε Cost(𝑋, 𝐶) ≤ Cost(𝑋′, 𝐶, 𝑤) ≤ 1 + ε Cost(𝑋, 𝐶)

(𝑘, 𝑧)-clustering: Cost 𝑋′, 𝐶, 𝑤 = σ𝑥∈𝑋′ 𝑤 𝑥 ⋅ dist 𝑥, 𝐶
𝑧

(𝑘, 𝑧)-Clustering in the Streaming Model

• Merge-and-reduce framework

• Suppose there exists a (1 + 𝜀)-coreset construction for

(𝑘, 𝑧)-clustering that uses 𝑓 𝑘,
1

𝜀
weighted input points

• Partition the stream into blocks containing 𝑓 𝑘,
log 𝑛

𝜀
points

෨𝑂
𝑘2

𝜀2

(𝑘, 𝑧)-Clustering in the Streaming Model

• Partition the stream into blocks containing 𝑓 𝑘,
log 𝑛

𝜀
points

• Create a 1 +
𝜀

log 𝑛
-coreset for each block

• Create a 1 +
𝜀

log 𝑛
-coreset for the set of points formed by

the union of two coresets for each block

Merge

Reduce

(𝑘, 𝑧)-Clustering in the Streaming Model

• Partition the stream into blocks containing 𝑓 𝑘,
log 𝑛

𝜀
points

• Create a 1 +
𝜀

log 𝑛
-coreset for each block

• Create a 1 +
𝜀

log 𝑛
-coreset for the set of points formed by

the union of two coresets for each block

(𝑘, 𝑧)-Clustering in the Streaming Model

• There are 𝑂 log 𝑛 levels

• Each coreset is a 1 +
𝜀

log 𝑛
-coreset of two coresets

• Total approximation is 1 +
𝜀

log 𝑛

log 𝑛
= (1 + 𝑂 𝜀)

(𝑘, 𝑧)-Clustering in the Streaming Model

• Suppose there exists a (1 + 𝜀)-coreset construction for

(𝑘, 𝑧)-clustering that uses 𝑓 𝑘,
1

𝜀
weighted input points

• Partition the stream into blocks containing 𝑓 𝑘,
log 𝑛

𝜀
points

• Total space is 𝑓 𝑘,
log 𝑛

𝜀
⋅ 𝑂(log 𝑛) points

For 𝑘-means clustering, this is ෨𝑂
𝑘2

𝜀2 ⋅ log3 𝑛 points

	Slide 1: CSCE 658: Randomized Algorithms
	Slide 2: Class Logistics
	Slide 3: Previously in the Streaming Model
	Slide 4: Reservoir Sampling
	Slide 5: Heavy-Hitters (Frequent Items)
	Slide 6: Frequency Moments (cap L sub p Norm)
	Slide 7: The Streaming Model
	Slide 8: The Streaming Model
	Slide 9: The Streaming Model
	Slide 10: Graph Theory
	Slide 11: Graph Theory
	Slide 12: Semi-streaming Model
	Slide 13
	Slide 14: Bipartiteness
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19: Applications for Bipartiteness Testing
	Slide 20: Applications for Bipartiteness Testing
	Slide 21: Bipartiteness
	Slide 22: Bipartiteness
	Slide 23: Bipartiteness
	Slide 24: Bipartiteness
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29: Bipartiteness in the Streaming Model
	Slide 30: Bipartiteness in the Streaming Model
	Slide 31: Bipartiteness in the Streaming Model
	Slide 32: Bipartiteness in the Streaming Model
	Slide 33
	Slide 34: Clustering
	Slide 35: k-Clustering
	Slide 36: k-Clustering
	Slide 37: k-Clustering
	Slide 38: k-Clustering
	Slide 39: k-Clustering
	Slide 40: k-Clustering
	Slide 41: k-Clustering
	Slide 42: k-Clustering
	Slide 43: k-Clustering
	Slide 44: k-Clustering
	Slide 45: Euclidean k-Clustering
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52: Coreset
	Slide 53: Coreset
	Slide 54: Coreset
	Slide 55: Coreset (Formal Definition)
	Slide 56: open paren k ,z close paren -Clustering in the Streaming Model
	Slide 57: open paren k ,z close paren -Clustering in the Streaming Model
	Slide 58: open paren k ,z close paren -Clustering in the Streaming Model
	Slide 59: open paren k ,z close paren -Clustering in the Streaming Model
	Slide 60: open paren k ,z close paren -Clustering in the Streaming Model

