CSCE 658: Randomized Algorithms

Lecture 11

Samson Zhou



Class Logistics

* March 5: Lecture canceled, i.e., do NOT show up to HRBB
126 (unless you want to see an empty classroom)



Previously in the Streaming Model

* Reservoir sampling

* Heavy-hitters
* Misra-Gries
* CountMin
* CountSketch

* Moment estimation
* AMS algorithm

* Sparse recovery
e Distinct elements estimation



Reservoir Sampling

* Suppose we see a stream of elements from [n]. How do we uniformly
sample one of the positions of the stream?
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Heavy-Hitters (Frequent [tems)

* Given a set S of m elements from [n], let f; be the frequency of
element i. (How often it appears)

* Let L, be the norm of the frequency vector:

Ly=(f"+f ++ fnp)l/p

* Goal: Given a set S of m elements from [n]| and a threshold ¢,
output the elements i such that f; > € L, ...and no elements j such

that f; <§ L, (we saw algorithms forp = 1 and p = 2)

* Vlotivation: DDoS prevention, iceberg queries



Frequency Moments (L, Norm)

* Given a set S of m elements from [n], let f; be the frequency of
element i. (How often it appears)

* Let F, be the frequency moment of the vector:

Fp =f1p +f2p + "'+fnp

* Goal: Given a set S of m elements from [n| and an accuracy
parameter ¢, output a (1 + £)-approximation to F,

* Motivation: Entropy estimation, linear regression



The Streaming Model

* So far, all questions have been statistical

* What other questions can be asked? (Think in general, outside of
the streaming model)



The Streaming Model

* So far, all questions have been statistical

* What other questions can be asked? (Think in general, outside of
the streaming model)

* Algebraic, geometric



The Streaming Model

* So far, all questions have been statistical

* What other questions can be asked? (Think in general, outside of
the streaming model)

. Algebraic@
TODAY




Graph Theory

e Suppose we have a graph G with vertex set I/ and edge set E

* Let V = |n] for simplicity, so each vertex is an integer from 1 ton

* Then each edge e € E can be writtenase = (u,v) foru,v € [n]
* In other words, each edge is a pair of integers from 1 ton



Graph Theory

* For today, we will assume a simple, undirected, unweighted graph

* Graph has no self-loops, no multi-edges
* Edges are undirected

* Each edge has weight 1



Semi-streaming Model

* Recall that we have a graph G = (V = [n], E)
* Suppose |E| =m

* The edges of the graph arrive sequentially, i.e., insertion-only model
* We are allowed to use n - polylog(n) space

* Enough to store things like a matching, a spanning tree, NOT
enough to store entire graph, since m can be as large as 0(n?)






Bipartiteness

 Bipartite graph: Graph can be partitioned into two disjoint sets L
and R so that every edge is between a vertex in L and a vertex in R

* Goal: Given a graph G, determine whether G is a bipartite graph















Applications for Bipartiteness Testing

* Graph coloring: You want to color a graph such that no neighboring
items share the same color




Applications for Bipartiteness Testing

* Circuit design: In electrical engineering and VLSI (Very Large Scale
Integration) design, you may want to know if a circuit can be
optimally partitioned into two complementary parts, which can be
achieved by testing the bipartiteness of the circuit's dependency

graph




Bipartiteness

* What is a necessary and sufficient condition for bipartiteness?



Bipartiteness

* What is a necessary and sufficient condition for bipartiteness?

* A graph is bipartite if and only if it can be colored using two colors
(a coloring of a graph is an assignment of colors to vertices such
that no two vertices share the same color)

* A graph is bipartite if and only if it has no odd cycles



Bipartiteness

* How to perform bipartiteness testing in the central setting?



Bipartiteness

* How to perform bipartiteness testing in the central setting?

 Start at arbitrary vertex, run BFS, and assign alternating levels to
different side until there is a contradiction
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Bipartiteness in the Streaming Model

* Bipartiteness is a monotone property, i.e., additional edges to a
graph that is not bipartite will result in a graph that is not bipartite



Bipartiteness in the Streaming Model

* Intuition: Greedily add edges to minimum spanning forest

* Algorithm:
1. Initialize F = Q.
2. Foreachedgee = (u,v):
1. If F U (u,v) does not contain a cycle, add (u,v) to F: F «
F U (uv)
2. If F U (u,v) contains an odd cycle, return GRAPH IS NOT
BIPARTITE

3. Return GRAPH IS BIPARTITE



Bipartiteness in the Streaming Model

* Algorithm maintains a tree (because it does not add any edges that
would create cycles)

* How many edges does the algorithm keep?



Bipartiteness in the Streaming Model

* Algorithm maintains a tree (because it does not add any edges that
would create cycles)

e Algorithm can keep at most n edges, so the total space usage is
O (n) words of space.






Clustering

* Goal: Given input dataset X, partition X so that “similar” points are in
the same cluster and “different” points are in different clusters




k-Clustering

* Goal: Given input dataset X, partition X so that “similar” points are in
the same cluster and “different” points are in different clusters

* There can be at most k different clusters




k-Clustering

* Question: How do we measure the “quality” of each clustering?




k-Clustering

* Question: How do we measure the “quality” of each clustering?
* Assign a “center” c¢; to each cluster

* Have a cost function induced by c; for all of the points P; assigned to
cluster i



k-Clustering

* Question: How do we measure the “quality” of each clustering?
* Assign a “center” c¢; to each cluster

* Have a cost function induced by c; for all of the points P; assigned to
cluster i

* Assume points are in metric space with distance function dist(:,-)
* Define Cost(P;, ¢;) to be a function of {dist(x, ¢;) }xep,



k-Clustering

* Question: How do we measure the “quality” of each clustering?

* Have a cost function induced by c¢; for all of the points P; assigned to
cluster i

* Define Cost(P;, ¢;) to be a function of {dist(x, ¢;) }xep,

* Suppose the set of centersis C = {cq, ..., Ci}

* Define clustering cost Cost(X, C) to be a function of
{dist(x, C) }xec



k-Clustering

* Define clustering cost Cost(X, C) to be a function of
{diSt(X, C)}xEX



k-Clustering

* Define clustering cost Cost(X, C) to be a function of
{diSt(x; C)}xEX

* k-center: Cost(X,C) = max dist(x, C)
X




k-Clustering

* Define clustering cost Cost(X, C) to be a function of
{diSt(x; C)}xEX 9

* k-center: Cost(X,C) = max dist(x, C)
X
* k-median: Cost(X, C) = ).,y dist(x, C)




k-Clustering

* Define clustering cost Cost(X, C) to be a function of

{diSt(x; C)}xEX 9
(1)?
(1)?

o k-center: Cost(X, C) = maxdist(x, C) ()2
XEX O—

* k-median: Cost(X, C) = ).,y dist(x, C) _

* k-means: Cost(X,C) = erx(dist(x, C))2 ()?




k-Clustering

* Define clustering cost Cost(X, C) to be a function of

tdist(x, C)}xex 9
ok

* k-center: Cost(X,C) = max dist(x, C)
X
* k-median: Cost(X, C) = ).,y dist(x, C) .
| 2
» k-means: Cost(X, C) = Xex(dist(x, €)) ()
* (k, z)-clustering: Cost(X, C) = Xex(dist(x, C))Z |




Euclidean k-Clustering

* For Euclidean k-clustering, input points X = x4, ..., x,, are in
R? (for us, they will be in [A]%:= {1,2, ..., A}?)

o dist(x,y) = \/(xl —v.1)? + -+ (xz — y4)? is the Euclidean
distance

* (k, z)-clustering problem:

. . . ] Z
S, Cost(X,C) = C:rlréllrslkilxex(dlst(x, C))
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k-center: Cost(X,C) = max dist(x,C) =5
X

7
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k-median: Cost(X,C) = ), exdist(x,C) =4+5+5+3+4+5=26
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k-means: Cost(X, C) = Yrex(distCx, €))° =16 + 25 + 25 + 9 + 16 + 25
(—8,4) =116
?

4 (—4,3) (4,3)




Coreset

e Subset X' of representative
points of X for a specific
clustering objective

* Cost(X,C) = Cost(X', ()
for all sets C with [C| = k
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Coreset

e Subset X' of representative
points of X for a specific
clustering objective

* Cost(X,C) = Cost(X', ()
for all sets C with [C| = k



Coreset (Formal Definition)

* Given a set X and an accuracy parameter € > 0, we say a set
X' with weight function wis an (1 + &)-multiplicative
coreset for a cost function Cost, if for all queries C with
IC| < k, we have

(1 —¢)Cost(X,C) < Cost(X',C,w) < (1 + ¢)Cost(X, C)

|

(k, z)-clustering: Cost(X',C,w) = Y ex, Ww(x) (dist(x, C))Z



(k, z)-Clustering in the Streaming Model

* Merge-and-reduce framework

* Suppose there exists a (1 4+ ¢)-coreset construction for

(k, z)-clustering that uses [ (k, l) weighted input points

&E

(S

* Partition the stream into blocks containing f (k,

logn

) points

E



(k, z)-Clustering in the Streaming Model

logn

* Partition the stream into blocks containing f (k, ) points

E
E

* Create a (1 -+ )-coreset for each block

logn
€

* Create a (1 + oz n)-coreset for the set of points formed by
/the union of two coresets for each block

Reduce [
Merge



(k, z)-Clustering in the Streaming Model

logn

* Partition the stream into blocks containing f (k, ) points

E
E

* Create a (1 -+ )-coreset for each block

logn
€

* Create a (1 + oz n)-coreset for the set of points formed by

the union of two coresets for each block

Cs1 C's 2 Cs3.3 C3 4




(k, z)-Clustering in the Streaming Model

* There are O(log n) levels

E

* Each coreset is a (1 | log n)-coreset of two coresets

c \logn
* Total approximation is (1 + ) = (1+ 0(¢))

logn

C3 .1 (:3,2 (_-.:'3_13 L’:3;4




(k, z)-Clustering in the Streaming Model

* Suppose there exists a (1 + ¢)-coreset construction for
(k, z)-clustering that uses [ (k, 1) weighted input points

€
logn

* Partition the stream into blocks containing f (k, ) points

€
logn

) - 0(logn) points

T

. .. = (k* :
For k-means clustering, this is O (8—2 - log? n) points

* Total spaceis f (k,

E
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