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Class Logistics

• March 5: Lecture canceled, i.e., do NOT show up to HRBB 
126 (unless you want to see an empty classroom)



Previously in the Streaming Model

• Reservoir sampling

• Heavy-hitters

• Misra-Gries

• CountMin

• CountSketch

• Moment estimation

• AMS algorithm

• Sparse recovery

• Distinct elements estimation



Reservoir Sampling

• Suppose we see a stream of elements from [𝑛]. How do we uniformly 
sample one of the positions of the stream?
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Heavy-Hitters (Frequent Items)

• Given a set 𝑆 of 𝑚 elements from [𝑛], let 𝑓𝑖 be the frequency of 
element 𝑖. (How often it appears)

• Let 𝐿𝑝 be the norm of the frequency vector:

• Goal: Given a set 𝑆 of 𝑚 elements from [𝑛] and a threshold 𝜀, 
output the elements 𝑖 such that 𝑓𝑖 > 𝜀 𝐿𝑝...and no elements 𝑗 such 

that 𝑓𝑗 <
𝜀

2
𝐿𝑝 (we saw algorithms for 𝑝 = 1 and 𝑝 = 2)

• Motivation: DDoS prevention, iceberg queries

𝐿𝑝 = 𝑓1
𝑝

+ 𝑓2
𝑝

+ ⋯ + 𝑓𝑛
𝑝 1/𝑝



Frequency Moments (𝐿𝑝 Norm)

• Given a set 𝑆 of 𝑚 elements from [𝑛], let 𝑓𝑖 be the frequency of 
element 𝑖. (How often it appears)

• Let 𝐹𝑝 be the frequency moment of the vector:

• Goal: Given a set 𝑆 of 𝑚 elements from [𝑛] and an accuracy 
parameter 𝜀, output a (1 + 𝜀)-approximation to 𝐹𝑝

• Motivation: Entropy estimation, linear regression

𝐹𝑝 = 𝑓1
𝑝

+ 𝑓2
𝑝

+ ⋯ + 𝑓𝑛
𝑝



The Streaming Model

• So far, all questions have been statistical

• What other questions can be asked? (Think in general, outside of 
the streaming model)



The Streaming Model

• So far, all questions have been statistical
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the streaming model)

• Algebraic, geometric



The Streaming Model

• So far, all questions have been statistical

• What other questions can be asked? (Think in general, outside of 
the streaming model)

• Algebraic, geometric

TODAY



Graph Theory

• Suppose we have a graph 𝐺 with vertex set 𝑉 and edge set 𝐸

• Let 𝑉 = [𝑛] for simplicity, so each vertex is an integer from 1 to 𝑛

• Then each edge 𝑒 ∈ 𝐸 can be written as 𝑒 = (𝑢, 𝑣) for 𝑢, 𝑣 ∈ [𝑛]

• In other words, each edge is a pair of integers from 1 to 𝑛



Graph Theory

• For today, we will assume a simple, undirected, unweighted graph

• Graph has no self-loops, no multi-edges

• Edges are undirected

• Each edge has weight 1



Semi-streaming Model

• Recall that we have a graph 𝐺 = (𝑉 = 𝑛 , 𝐸)

• Suppose 𝐸 = 𝑚

• The edges of the graph arrive sequentially, i.e., insertion-only model

• We are allowed to use 𝑛 ⋅ polylog 𝑛 space

• Enough to store things like a matching, a spanning tree, NOT
enough to store entire graph, since 𝑚 can be as large as 𝑂 𝑛2
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Bipartiteness

• Bipartite graph: Graph can be partitioned into two disjoint sets 𝐿
and 𝑅 so that every edge is between a vertex in 𝐿 and a vertex in 𝑅

• Goal: Given a graph 𝐺, determine whether 𝐺 is a bipartite graph
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Applications for Bipartiteness Testing

• Graph coloring: You want to color a graph such that no neighboring 
items share the same color



Applications for Bipartiteness Testing

• Circuit design: In electrical engineering and VLSI (Very Large Scale 
Integration) design, you may want to know if a circuit can be 
optimally partitioned into two complementary parts, which can be 
achieved by testing the bipartiteness of the circuit's dependency 
graph



Bipartiteness

• What is a necessary and sufficient condition for bipartiteness?



Bipartiteness

• What is a necessary and sufficient condition for bipartiteness?

• A graph is bipartite if and only if it can be colored using two colors 
(a coloring of a graph is an assignment of colors to vertices such 
that no two vertices share the same color)

• A graph is bipartite if and only if it has no odd cycles



Bipartiteness

• How to perform bipartiteness testing in the central setting?



Bipartiteness

• How to perform bipartiteness testing in the central setting?

• Start at arbitrary vertex, run BFS, and assign alternating levels to 
different side until there is a contradiction
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Bipartiteness in the Streaming Model

• Bipartiteness is a monotone property, i.e., additional edges to a 
graph that is not bipartite will result in a graph that is not bipartite



Bipartiteness in the Streaming Model

• Intuition: Greedily add edges to minimum spanning forest

• Algorithm: 

1. Initialize 𝐹 = ∅. 

2. For each edge 𝑒 = (𝑢, 𝑣):

1. If 𝐹 ∪ (𝑢, 𝑣) does not contain a cycle, add (𝑢, 𝑣) to 𝐹: 𝐹 ←
𝐹 ∪ 𝑢, 𝑣

2. If 𝐹 ∪ (𝑢, 𝑣) contains an odd cycle, return GRAPH IS NOT 
BIPARTITE

3. Return GRAPH IS BIPARTITE



Bipartiteness in the Streaming Model

• Algorithm maintains a tree (because it does not add any edges that 
would create cycles)

• How many edges does the algorithm keep?



Bipartiteness in the Streaming Model

• Algorithm maintains a tree (because it does not add any edges that 
would create cycles)

• Algorithm can keep at most 𝑛 edges, so the total space usage is 
𝑂(𝑛) words of space. 





Clustering

• Goal: Given input dataset 𝑋, partition 𝑋 so that “similar” points are in 
the same cluster and “different” points are in different clusters



𝑘-Clustering

• Goal: Given input dataset 𝑋, partition 𝑋 so that “similar” points are in 
the same cluster and “different” points are in different clusters

• There can be at most 𝑘 different clusters

𝑘 = 3



𝑘-Clustering

• Question: How do we measure the “quality” of each clustering?

𝑘 = 3



𝑘-Clustering

• Question: How do we measure the “quality” of each clustering?

• Assign a “center” 𝑐𝑖 to each cluster

• Have a cost function induced by 𝑐𝑖 for all of the points 𝑃𝑖 assigned to 
cluster 𝑖



𝑘-Clustering

• Question: How do we measure the “quality” of each clustering?

• Assign a “center” 𝑐𝑖 to each cluster

• Have a cost function induced by 𝑐𝑖 for all of the points 𝑃𝑖 assigned to 
cluster 𝑖

• Assume points are in metric space with distance function dist(⋅,⋅)

• Define Cost 𝑃𝑖 , 𝑐𝑖 to be a function of dist 𝑥, 𝑐𝑖 𝑥∈𝑃𝑖



𝑘-Clustering

• Question: How do we measure the “quality” of each clustering?

• Have a cost function induced by 𝑐𝑖 for all of the points 𝑃𝑖 assigned to 
cluster 𝑖

• Define Cost 𝑃𝑖 , 𝑐𝑖 to be a function of dist 𝑥, 𝑐𝑖 𝑥∈𝑃𝑖

• Suppose the set of centers is 𝐶 = 𝑐1, … , 𝑐𝑘

• Define clustering cost Cost 𝑋, 𝐶 to be a function of 
dist 𝑥, 𝐶 𝑥∈𝐶



𝑘-Clustering

• Define clustering cost Cost 𝑋, 𝐶 to be a function of 
dist 𝑥, 𝐶 𝑥∈𝑋



𝑘-Clustering

• Define clustering cost Cost 𝑋, 𝐶 to be a function of 
dist 𝑥, 𝐶 𝑥∈𝑋

• 𝑘-center: Cost 𝑋, 𝐶 = max
𝑥∈𝑋

dist(𝑥, 𝐶)



𝑘-Clustering

• Define clustering cost Cost 𝑋, 𝐶 to be a function of 
dist 𝑥, 𝐶 𝑥∈𝑋

• 𝑘-center: Cost 𝑋, 𝐶 = max
𝑥∈𝑋

dist(𝑥, 𝐶)

• 𝑘-median: Cost 𝑋, 𝐶 = σ𝑥∈𝑋 dist 𝑥, 𝐶



𝑘-Clustering

• Define clustering cost Cost 𝑋, 𝐶 to be a function of 
dist 𝑥, 𝐶 𝑥∈𝑋

• 𝑘-center: Cost 𝑋, 𝐶 = max
𝑥∈𝑋

dist(𝑥, 𝐶)

• 𝑘-median: Cost 𝑋, 𝐶 = σ𝑥∈𝑋 dist 𝑥, 𝐶

• 𝑘-means: Cost 𝑋, 𝐶 = σ𝑥∈𝑋 dist 𝑥, 𝐶
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𝑘-Clustering

• Define clustering cost Cost 𝑋, 𝐶 to be a function of 
dist 𝑥, 𝐶 𝑥∈𝑋

• 𝑘-center: Cost 𝑋, 𝐶 = max
𝑥∈𝑋

dist(𝑥, 𝐶)

• 𝑘-median: Cost 𝑋, 𝐶 = σ𝑥∈𝑋 dist 𝑥, 𝐶

• 𝑘-means: Cost 𝑋, 𝐶 = σ𝑥∈𝑋 dist 𝑥, 𝐶
2
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Euclidean 𝑘-Clustering

• For Euclidean 𝑘-clustering, input points 𝑋 = 𝑥1, … , 𝑥𝑛 are in 
ℝ𝑑 (for us, they will be in [Δ]𝑑≔ 1,2, … , Δ 𝑑)

• dist 𝑥, 𝑦 = 𝑥1 − 𝑦1
2 + ⋯ + 𝑥𝑑 − 𝑦𝑑

2 is the Euclidean 
distance

• (𝑘, 𝑧)-clustering problem:

min
𝐶: 𝐶 ≤𝑘

 Cost 𝑋, 𝐶 = min
𝐶: 𝐶 ≤𝑘

Σ𝑥∈𝑋 dist 𝑥, 𝐶
𝑧
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𝑘-center: Cost 𝑋, 𝐶 = max
𝑥∈𝑋

dist 𝑥, 𝐶 = 5
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𝑘-median: Cost 𝑋, 𝐶 = σ𝑥∈𝑋 dist 𝑥, 𝐶 = 4 + 5 + 5 + 3 + 4 + 5 = 26
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𝑘-means: Cost 𝑋, 𝐶 = σ𝑥∈𝑋 dist 𝑥, 𝐶
2

 = 16 + 25 + 25 + 9 + 16 + 25

= 116



• Subset 𝑋′ of representative 
points of 𝑋 for a specific 
clustering objective

• Cost 𝑋, 𝐶 ≈ Cost(𝑋′, 𝐶) 
for all sets 𝐶 with 𝐶 = 𝑘

Coreset
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• Subset 𝑋′ of representative 
points of 𝑋 for a specific 
clustering objective

• Cost 𝑋, 𝐶 ≈ Cost(𝑋′, 𝐶) 
for all sets 𝐶 with 𝐶 = 𝑘

Coreset



Coreset (Formal Definition)

• Given a set 𝑋 and an accuracy parameter ε > 0, we say a set 
𝑋′ with weight function 𝑤 is an (1 + 𝜀)-multiplicative 
coreset for a cost function Cost, if for all queries 𝐶 with 
𝐶 ≤ 𝑘, we have

1 − ε Cost(𝑋, 𝐶) ≤ Cost(𝑋′, 𝐶, 𝑤) ≤ 1 + ε Cost(𝑋, 𝐶)

(𝑘, 𝑧)-clustering: Cost 𝑋′, 𝐶, 𝑤 = σ𝑥∈𝑋′ 𝑤 𝑥 ⋅ dist 𝑥, 𝐶
𝑧



(𝑘, 𝑧)-Clustering in the Streaming Model

• Merge-and-reduce framework

• Suppose there exists a (1 + 𝜀)-coreset construction for 

(𝑘, 𝑧)-clustering that uses 𝑓 𝑘,
1

𝜀
weighted input points 

• Partition the stream into blocks containing 𝑓 𝑘,
log 𝑛

𝜀
points

෨𝑂
𝑘2

𝜀2



(𝑘, 𝑧)-Clustering in the Streaming Model

• Partition the stream into blocks containing 𝑓 𝑘,
log 𝑛

𝜀
points

• Create a 1 +
𝜀

log 𝑛
-coreset for each block

• Create a 1 +
𝜀

log 𝑛
-coreset for the set of points formed by 

the union of two coresets for each block

Merge

Reduce



(𝑘, 𝑧)-Clustering in the Streaming Model

• Partition the stream into blocks containing 𝑓 𝑘,
log 𝑛

𝜀
points

• Create a 1 +
𝜀

log 𝑛
-coreset for each block

• Create a 1 +
𝜀

log 𝑛
-coreset for the set of points formed by 

the union of two coresets for each block



(𝑘, 𝑧)-Clustering in the Streaming Model

• There are 𝑂 log 𝑛 levels

• Each coreset is a 1 +
𝜀

log 𝑛
-coreset of two coresets

• Total approximation is 1 +
𝜀

log 𝑛

log 𝑛
= (1 + 𝑂 𝜀 )



(𝑘, 𝑧)-Clustering in the Streaming Model

• Suppose there exists a (1 + 𝜀)-coreset construction for 

(𝑘, 𝑧)-clustering that uses 𝑓 𝑘,
1

𝜀
weighted input points 

• Partition the stream into blocks containing 𝑓 𝑘,
log 𝑛

𝜀
points

• Total space is 𝑓 𝑘,
log 𝑛

𝜀
⋅ 𝑂(log 𝑛) points

For 𝑘-means clustering, this is ෨𝑂
𝑘2

𝜀2 ⋅ log3 𝑛  points
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