CSCE 658: Randomized Algorithms

Lecture 12

Samson Zhou

Class Logistics

- March 5: Lecture canceled, i.e., do NOT show up to HRBB 126 (unless you want to see an empty classroom)

$$
\begin{aligned}
& \mathrm{O}_{0}^{\mathrm{O}} \mathrm{O}_{0}^{\mathrm{O}} \\
& \begin{array}{c}
000 \\
00
\end{array} \\
& \begin{array}{lll}
0 & 0 \\
0 & 0
\end{array}
\end{aligned}
$$

Last Time: k-Clustering

- Goal: Given input dataset X, partition X so that "similar" points are in the same cluster and "different" points are in different clusters
- There can be at most k different clusters

Last Time: k-Clustering

- Define clustering cost $\operatorname{Cost}(X, C)$ to be a function of $\{\operatorname{dist}(x, C)\}_{x \in C}$
- k-center: $\operatorname{Cost}(X, C)=\max _{x \in X} \operatorname{dist}(x, C)$
- k-median: $\operatorname{Cost}(X, C)=\sum_{x \in X} \operatorname{dist}(x, C)$

- k-means: $\operatorname{Cost}(X, C)=\sum_{x \in X}(\operatorname{dist}(x, C))^{2}$
- (k, z)-clustering: $\operatorname{Cost}(X, C)=\sum_{x \in X}(\operatorname{dist}(x, C))^{z}$

Last Time: (k, z)-Clustering in the Streaming Model

- Merge-and-reduce framework
- Suppose there exists a $(1+\varepsilon)$-coreset construction for (k, z)-clustering that uses $f\left(k, \frac{1}{\varepsilon}\right)$ weighted input points $\uparrow \tilde{o}\left(\frac{k^{2}}{\varepsilon^{2}}\right)$
- Partition the stream into blocks containing $f\left(k, \frac{\log n}{\varepsilon}\right)$ points

Last Time: (k, z)-Clustering in the Streaming Model

- Partition the stream into blocks containing $f\left(k, \frac{\log n}{\varepsilon}\right)$ points
- Create a $\left(1+\frac{\varepsilon}{\log n}\right)$-coreset for each block
- Create a $\left(1+\frac{\varepsilon}{\log n}\right)$-coreset for the set of points formed by the union of two coresets for each block

Last Time: (k, z)-Clustering in the Streaming Model

- Partition the stream into blocks containing $f\left(k, \frac{\log n}{\varepsilon}\right)$ points
- Create a $\left(1+\frac{\varepsilon}{\log n}\right)$-coreset for each block
- Create a $\left(1+\frac{\varepsilon}{\log n}\right)$-coreset for the set of points formed by the union of two coresets for each block

Last Time: (k, z)-Clustering in the Streaming Model

- There are $O(\log n)$ levels
- Each coreset is a $\left(1+\frac{\varepsilon}{\log n}\right)$-coreset of two coresets
- Total approximation is $\left(1+\frac{\varepsilon}{\log n}\right)^{\log n}=(1+O(\varepsilon))$

Previously: Bernstein's Inequality

- Bernstein's inequality: Let $X_{1}, \ldots, X_{n} \in[-M, M]$ be independent random variables and let $X=X_{1}+\cdots+X_{n}$ have mean μ and variance σ^{2}. Then for any $t \geq 0$:

$$
\operatorname{Pr}[|X-\mu| \geq t] \leq 2 e^{-\frac{t^{2}}{2 \sigma^{2}+\frac{4}{3} M t}}
$$

- Example: Suppose $M=1$ and let $t=k \sigma$. Then

$$
\operatorname{Pr}[|X-\mu| \geq k \sigma] \leq 2 \exp \left(-\frac{k^{2}}{4}\right)
$$

Sampling for Sum Estimation

- Consider a fixed set $X=\left\{x_{1}, \ldots, x_{n}\right\}$ of n numbers
- Suppose we sample each point x_{i} with some probability p_{i} and rescale by $\frac{1}{p_{i}}$
-What is the expected sum?

Sampling for Sum Estimation

- Let y_{i} be the contribution of the sample corresponding to x_{i}
- $y_{i}=0$ with probability $1-p_{i}$
- $y_{i}=\frac{1}{p_{i}} \cdot x_{i}$ with probability p_{i}
- $\mathrm{E}\left[y_{i}\right]=x_{i}$
$\cdot \mathrm{E}\left[y_{1}+\cdots+y_{n}\right]=x_{1}+\ldots+x_{n}$

Sampling for Sum Estimation

- Consider a fixed set $X=\left\{x_{1}, \ldots, x_{n}\right\}$ of n numbers
- Suppose we sample each point x_{i} with some probability p_{i} and rescale by $\frac{1}{p_{i}}$
- What is the expected sum? $\mathrm{E}\left[y_{1}+\cdots+y_{n}\right]=x_{1}+\ldots+x_{n}$

Sampling for Sum Estimation

- Consider a fixed set $X=\left\{x_{1}, \ldots, x_{n}\right\}$ of n numbers
- Suppose we sample each point x_{i} with some probability p_{i} and rescale by $\frac{1}{p_{i}}$
- What is the expected sum? $\mathrm{E}\left[y_{1}+\cdots+y_{n}\right]=x_{1}+\ldots+x_{n}$
- What can we say about concentration?

Uniform Sampling for Sum Estimation

- Consider a fixed set $X=\left\{x_{1}, \ldots, x_{n}\right\}$ of n numbers
- Suppose we sample each point x_{i} with some probability p_{i} and rescale by $\frac{1}{p_{i}}$
- Suppose $p_{i}=p$ for all $i \in[n]$
- What can we say about concentration?

Uniform Sampling for Sum Estimation

- Suppose $x_{1}=\cdots=x_{n}=1$
- Suppose $p_{i}=p$ for all $i \in[n]$
-What can we say about concentration?
- Can we get a 2 -approximation with high probability?

Uniform Sampling for Sum Estimation

- Bernstein's inequality: Let $y_{1}, \ldots, y_{n} \in[-M, M]$ be independent random variables and let $y=y_{1}+\cdots+y_{n}$ have mean μ and variance σ^{2}. Then for any $t \geq 0$:

$$
\operatorname{Pr}[|y-\mu| \geq t] \leq 2 e^{2 \sigma^{2}+\frac{4}{3} M t}
$$

Uniform Sampling for Sum Estimation

- Bernstein's inequality: Let $y_{1}, \ldots, y_{n} \in[-M, M]$ be independent random variables and let $y=y_{1}+\cdots+y_{n}$ have mean μ and variance σ^{2}. Then for any $t \geq 0$:

$$
\operatorname{Pr}[|y-\mu| \geq t] \leq 2 e^{2 \sigma^{2}+\frac{4}{3} M t}
$$

- Set $M=\frac{1}{p}, t=\frac{n}{2}$, and $\sigma^{2}=\frac{n}{p}$. Then

$$
\operatorname{Pr}\left[|y-\mu| \geq \frac{n}{2}\right] \leq 2 \exp \left(-\frac{(n / 2)^{2}}{2(n / p)+(4 / 3)(n / 2 p)}\right)
$$

Uniform Sampling for Sum Estimation

- Suppose $x_{1}=\cdots=x_{n}=1$
- Suppose $p_{i}=p$ for all $i \in[n]$
-What can we say about concentration?
- Can get a 2-approximation even for $p=\Theta\left(\frac{1}{n}\right)$

Uniform Sampling for Sum Estimation

- Suppose $x_{1}=\cdots=x_{n}=1$
- Suppose $p_{i}=p$ for all $i \in[n]$
-What can we say about concentration?
- Can get a 2-approximation even for $p=\Theta\left(\frac{1}{n}\right)$
- How many samples do we expect?

Uniform Sampling for Sum Estimation

- Suppose $x_{1}=\cdots=x_{n}=1$
- Suppose $p_{i}=p$ for all $i \in[n]$
-What can we say about concentration?
- Can get a 2-approximation even for $p=\Theta\left(\frac{1}{n}\right)$
- How many samples do we expect? $n p=\Theta(1)$

Uniform Sampling for Sum Estimation

- Suppose $x_{1}, \ldots, x_{n} \in[1,2]$
- Suppose $p_{i}=p$ for all $i \in[n]$
- Can we get a 2 -approximation with high probability?

Uniform Sampling for Sum Estimation

- Bernstein's inequality: Let $y_{1}, \ldots, y_{n} \in[-M, M]$ be independent random variables and let $y=y_{1}+\cdots+y_{n}$ have mean μ and variance σ^{2}. Then for any $t \geq 0$:

$$
\operatorname{Pr}[|y-\mu| \geq t] \leq 2 e^{-\frac{t}{2 \sigma^{2}+\frac{4}{3} M t}}
$$

- Set $M=\frac{2}{p}, t=\frac{x}{2}$, and $\sigma^{2} \approx \frac{4 n}{p}$. Then

$$
\operatorname{Pr}\left[|y-\mu| \geq \frac{x}{2}\right] \leq 2 \exp \left(-\frac{(x / 2)^{2}}{2(4 n / p)+(4 / 3)(x / p)}\right)
$$

Uniform Sampling for Sum Estimation

- Suppose $x_{1}, \ldots, x_{n} \in[1,2]$
- Suppose $p_{i}=p$ for all $i \in[n]$
- For $\operatorname{Pr}\left[|y-\mu| \geq \frac{x}{2}\right] \leq 2 \exp \left(-\frac{(x / 2)^{2}}{2(4 n / p)+(4 / 3)(x / p)}\right)$, we require $\frac{8 n}{p} \approx\left(\frac{x}{2}\right)^{2}$ and x can be as small as n, so $p \approx \frac{2}{n}$

Uniform Sampling for Sum Estimation

- Suppose $x_{1}, \ldots, x_{n} \in[1,2]$
- Suppose $p_{i}=p$ for all $i \in[n]$
-What can we say about concentration?
- Can get a 2 -approximation for $p \approx \frac{2}{n}$
- How many samples do we expect? $n p$ is now slightly larger

Uniform Sampling for Sum Estimation

- Suppose $x_{1}, \ldots, x_{n} \in[1,100]$
- Suppose $p_{i}=p$ for all $i \in[n]$
- Can we get a 2 -approximation with high probability?

Uniform Sampling for Sum Estimation

- Bernstein's inequality: Let $y_{1}, \ldots, y_{n} \in[-M, M]$ be independent random variables and let $y=y_{1}+\cdots+y_{n}$ have mean μ and variance σ^{2}. Then for any $t \geq 0$:

$$
\operatorname{Pr}[|y-\mu| \geq t] \leq 2 e^{-\frac{t}{2 \sigma^{2}+\frac{4}{3} M t}}
$$

- Set $M=\frac{100}{p}, t=\frac{x}{2}$, and $\sigma^{2} \approx \frac{10000 n}{p}$. Then

$$
\operatorname{Pr}\left[|y-\mu| \geq \frac{x}{2}\right] \leq 2 \exp \left(-\frac{(x / 2)^{2}}{2(10000 n / p)+(4 / 3)(100 x / p)}\right)
$$

Uniform Sampling for Sum Estimation

- Suppose $x_{1}, \ldots, x_{n} \in[1,100]$
- Suppose $p_{i}=p$ for all $i \in[n]$
- For $\operatorname{Pr}\left[|y-\mu| \geq \frac{x}{2}\right] \leq 2 \exp \left(-\frac{(x / 2)^{2}}{2(10000 n / p)+(4 / 3)(100 x / p)}\right)$,
we require $\frac{20000 n}{p} \approx\left(\frac{x}{2}\right)^{2}$ and x can be as small as n, so we need $p \approx \frac{80000}{n}$

Uniform Sampling for Sum Estimation

- Suppose $x_{1}, \ldots, x_{n} \in[1,100]$
- Suppose $p_{i}=p$ for all $i \in[n]$
-What can we say about concentration?
- Can get a 2-approximation even for $p \approx \frac{80000}{n}$
- How many samples do we expect? $n p$ is now WAY larger

Uniform Sampling for Sum Estimation

- Suppose $x_{1}, \ldots, x_{n} \in[1, n]$
- Suppose $p_{i}=p$ for all $i \in[n]$
- Can we get a 2 -approximation with high probability?

Uniform Sampling for Sum Estimation

- Bernstein's inequality: Let $y_{1}, \ldots, y_{n} \in[-M, M]$ be independent random variables and let $y=y_{1}+\cdots+y_{n}$ have mean μ and variance σ^{2}. Then for any $t \geq 0$:

$$
\operatorname{Pr}[|y-\mu| \geq t] \leq 2 e^{-\frac{t}{2 \sigma^{2}+\frac{4}{3} M t}}
$$

- Set $M=\frac{n}{p}, t=\frac{x}{2}$, and $\sigma^{2} \approx \frac{n^{2}}{p}$. Then

$$
\operatorname{Pr}\left[|y-\mu| \geq \frac{x}{2}\right] \leq 2 \exp \left(-\frac{(x / 2)^{2}}{2\left(n^{2} / p\right)+(4 / 3)(n x / 2 p)}\right)
$$

Uniform Sampling for Sum Estimation

- Suppose $x_{1}, \ldots, x_{n} \in[1, n]$
- Suppose $p_{i}=p$ for all $i \in[n]$
- For $\operatorname{Pr}\left[|y-\mu| \geq \frac{x}{2}\right] \leq 2 \exp \left(-\frac{(x / 2)^{2}}{2\left(n^{2} / p\right)+(4 / 3)(n x / 2 p)}\right)$, we require $\frac{2 n^{2}}{p} \approx\left(\frac{x}{2}\right)^{2}$ and x can be as small as n, so we need $p \approx 1$

Uniform Sampling for Sum Estimation

- Suppose $x_{1}, \ldots, x_{n} \in[1, n]$
- Suppose $p_{i}=p$ for all $i \in[n]$
-What can we say about concentration?
- Can get a 2 -approximation for $p \approx 1$
- How many samples do we expect? $n p$ is now n

Uniform Sampling for Sum Estimation

- Suppose $x_{1}, \ldots, x_{n} \in[1, n]$
- Suppose $p_{i}=p$ for all $i \in[n]$
- Do we really need p to be a constant?

Uniform Sampling for Sum Estimation

- Suppose $x_{1}, \ldots, x_{n} \in[1, n]$
- Suppose $p_{i}=p$ for all $i \in[n]$
- Do we really need p to be a constant? YES!

11111111111111111111 nn

Sampling for Sum Estimation

- Consider a fixed set $X=\left\{x_{1}, \ldots, x_{n}\right\}$ of n numbers
- Suppose we sample each point x_{i} with some probability p_{i} and rescale by $\frac{1}{p_{i}}$
- What is the expected sum? $\mathrm{E}\left[y_{1}+\cdots+y_{n}\right]=x_{1}+\ldots+x_{n}$
- What can we say about concentration?

Sampling for Sum Estimation

- Consider a fixed set $X=\left\{x_{1}, \ldots, x_{n}\right\}$ of n numbers
- What if we choose the probability p_{i} different for each x_{i} ?

Sampling for Sum Estimation

- Consider a fixed set $X=\left\{x_{1}, \ldots, x_{n}\right\}$ of n numbers
- What if we choose the probability p_{i} different for each x_{i} ?
- Choose p_{i} proportional to x_{i}

Importance Sampling for Sum Estimation

- Consider a fixed set $X=\left\{x_{1}, \ldots, x_{n}\right\}$ of n numbers
- What if we choose the probability p_{i} different for each x_{i} ?
- Choose p_{i} proportional to x_{i}
- Let $x=x_{1}+\cdots+x_{n}$, set $p_{i}=\frac{x_{i}}{x}$

Importance Sampling for Sum Estimation

- Bernstein's inequality: Let $y_{1}, \ldots, y_{n} \in[-M, M]$ be independent random variables and let $y=y_{1}+\cdots+y_{n}$ have mean μ and variance σ^{2}. Then for any $t \geq 0$:

$$
\operatorname{Pr}[|y-\mu| \geq t] \leq 2 e^{2 \sigma^{2}+\frac{4}{3} M t}
$$

- Set $t=\frac{x}{2}$. What about M and σ^{2} ?

Importance Sampling for Sum Estimation

- $y_{i} \leq \frac{1}{p} \cdot x_{i}=\frac{x}{x_{i}} \cdot x_{i}=x$
- Can set $M=x$ in Bernstein's inequality

Importance Sampling for Sum Estimation

-What is the variance for each y_{i} ?

- $\operatorname{Var}\left[y_{i}\right] \leq \frac{1}{p_{i}} \cdot x_{i}^{2} \leq x_{i} \cdot x$
$\cdot \operatorname{Var}[y]=\operatorname{Var}\left[y_{1}\right]+\cdots+\operatorname{Var}\left[y_{n}\right] \leq x \cdot\left(x_{1}+\cdots+x_{n}\right)=x^{2}$
- What is the variance for y under uniform sampling? $\frac{n x_{i}^{2}}{p}$
- What is the variance for each y_{i} under uniform sampling? $\frac{x_{i}^{2}}{p}$

Importance Sampling for Sum Estimation

- Bernstein's inequality: Let $y_{1}, \ldots, y_{n} \in[-M, M]$ be independent random variables and let $y=y_{1}+\cdots+y_{n}$ have mean μ and variance σ^{2}. Then for any $t \geq 0$:

$$
\operatorname{Pr}[|y-\mu| \geq t] \leq 2 e^{2 \sigma^{2}+\frac{4}{3} M t}
$$

- Set $M=x, t=\frac{x}{2}$, and $\sigma^{2} \approx x^{2}$. Then

$$
\operatorname{Pr}\left[|y-\mu| \geq \frac{x}{2}\right] \leq 2 \exp \left(-\frac{(x / 2)^{2}}{2 x^{2}+(4 / 3)\left(x^{2} / 2\right)}\right)
$$

Importance Sampling for Sum Estimation

- Suppose $x_{1}, \ldots, x_{n} \in[1, n]$
- Suppose $p_{i}=\frac{x_{i}}{x}$ for all $i \in[n]$
- Can get a 2-approximation for importance sampling
- How many samples do we expect?

Importance Sampling for Sum Estimation

- How many samples do we expect?
- Let S_{i} be the indicator random variable for whether we sampled x_{i} (which we do with probability p_{i})
- $S=S_{1}+\cdots+S_{n}$ is the total number of samples
- $\mathrm{E}[S]=\mathrm{E}\left[S_{1}\right]+\cdots+\mathrm{E}\left[S_{n}\right]$ by linearity of expectation
- $\mathrm{E}\left[S_{i}\right]=p_{i}=\frac{x_{i}}{x}$

Importance Sampling for Sum Estimation

- Suppose $x_{1}, \ldots, x_{n} \in[1, n]$
- Suppose $p_{i}=\frac{x_{i}}{x}$ for all $i \in[n]$
- Can get a 2-approximation for importance sampling
- How many samples do we expect? $\mathrm{E}[S]=\frac{x_{1}}{x}+\cdots+\frac{x_{n}}{x}=1$, so just a constant number of samples!

Coreset Construction and Sampling

- Consider a fixed set X and a fixed set C of k centers, which induces a fixed cost $\operatorname{Cost}(X, C)$

$$
\stackrel{\circ}{\circ}{ }_{0}^{\circ}{ }_{0}^{\circ} \Delta
$$

Coreset Construction and Sampling

- Consider a fixed set X and a fixed set C of k centers, which induces a fixed cost $\operatorname{Cost}(X, C)$
- A simple way to obtain X^{\prime} with $\operatorname{Cost}\left(X^{\prime}, C\right) \approx \operatorname{Cost}(X, C)$ is to uniformly sample points of X into X^{\prime}

$$
\stackrel{\circ}{\circ}{ }_{0}^{\circ}{ }_{0}^{\circ} \Delta
$$

Coreset Construction and Uniform Sampling

- Consider a fixed set X and a fixed set C of k centers, which induces a fixed cost $\operatorname{Cost}(X, C)$
- Suppose all points have the same cost, $\operatorname{Cost}(x, C)=\frac{\operatorname{Cost}(X, C)}{n}$
- How many points do I need to sample to approximate $\operatorname{Cost}(X, C)$ within a 2 -factor?

Bernstein's Inequality

- Bernstein's inequality: Let $y_{1}, \ldots, y_{n} \in[-M, M]$ be independent random variables and let $y=y_{1}+\cdots+y_{n}$ have mean μ and variance σ^{2}. Then for any $t \geq 0$:

$$
\operatorname{Pr}[|y-\mu| \geq t] \leq 2 e^{2 \sigma^{2}+\frac{4}{3} M t}
$$

Bernstein's Inequality

- Bernstein's inequality: Let $y_{1}, \ldots, y_{n} \in[-M, M]$ be independent random variables and let $y=y_{1}+\cdots+y_{n}$ have mean μ and variance σ^{2}. Then for any $t \geq 0$:

$$
\operatorname{Pr}[|y-\mu| \geq t] \leq 2 e^{2 \sigma^{2}+\frac{4}{3} M t}
$$

- Set $M=\frac{1}{p}, t=\frac{1}{2} \cdot \operatorname{Cost}(X, C)$, and $\sigma^{2} \approx \frac{n}{p}$. Then for $x=\operatorname{Cost}(X, C)$,

$$
\operatorname{Pr}\left[|y-\mu| \geq \frac{x}{2}\right] \leq 2 \exp \left(-\frac{(x / 2)^{2}}{2(4 n / p)+(4 / 3)(x / p)}\right)
$$

Coreset Construction and Uniform Sampling

- Consider a fixed set X and a fixed set C of k centers, which induces a fixed cost $\operatorname{Cost}(X, C)$
- Suppose all points have the same cost, $\operatorname{Cost}(x, C)=\frac{\operatorname{Cost}(X, C)}{n}$
- Can get a 2-approximation to $\operatorname{Cost}(X, C)$ even for $p=\Theta\left(\frac{1}{n}\right)$
- How many samples do we expect? $n p=\Theta(1)$

Coreset Construction and Uniform Sampling

- Consider a fixed set X and a fixed set C of k centers, which induces a fixed cost $\operatorname{Cost}(X, C)$
- Suppose all points have cost between 1 and 100
- Suppose $p_{i}=p$ for all $i \in[n]$

Bernstein's Inequality

- Bernstein's inequality: Let $y_{1}, \ldots, y_{n} \in[-M, M]$ be independent random variables and let $y=y_{1}+\cdots+y_{n}$ have mean μ and variance σ^{2}. Then for any $t \geq 0$:

$$
\operatorname{Pr}[|y-\mu| \geq t] \leq 2 e^{2 \sigma^{2}+\frac{4}{3} M t}
$$

Bernstein's Inequality

- Bernstein's inequality: Let $y_{1}, \ldots, y_{n} \in[-M, M]$ be independent random variables and let $y=y_{1}+\cdots+y_{n}$ have mean μ and variance σ^{2}. Then for any $t \geq 0$:

$$
\operatorname{Pr}[|y-\mu| \geq t] \leq 2 e^{2 \sigma^{2}+\frac{4}{3} M t}
$$

- Set $M=\frac{100}{p}, t=\frac{1}{2} \cdot \operatorname{Cost}(X, C)$, and $\sigma^{2} \approx \frac{10000 n}{p}$. Then for $x=$ $\operatorname{Cost}(X, C)$,

$$
\operatorname{Pr}\left[|y-\mu| \geq \frac{x}{2}\right] \leq 2 \exp \left(-\frac{(x / 2)^{2}}{2(100 n / p)+(4 / 3)(50 x / p)}\right)
$$

Coreset Construction and Uniform Sampling

- Suppose $x_{1}, \ldots, x_{n} \in[1,100]$
- Suppose $p_{i}=p$ for all $i \in[n]$
- For $\operatorname{Pr}\left[|y-\mu| \geq \frac{x}{2}\right] \leq 2 \exp \left(-\frac{(x / 2)^{2}}{2(10000 n / p)+(4 / 3)(100 x / p)}\right)$,
we require $\frac{20000 n}{p} \approx\left(\frac{x}{2}\right)^{2}$ and x can be as small as n, so we need $p \approx \frac{80000}{n}$

Coreset Construction and Uniform Sampling

- Consider a fixed set X and a fixed set C of k centers, which induces a fixed cost $\operatorname{Cost}(X, C)$
- Suppose all points have cost between 1 and 100
- Can get a 2-approximation even for $p \approx \frac{80000}{n}$
- How many samples do we expect? $n p$ is now WAY larger

Coreset Construction and Uniform Sampling

- Bernstein's inequality: Let $y_{1}, \ldots, y_{n} \in[-M, M]$ be independent random variables and let $y=y_{1}+\cdots+y_{n}$ have mean μ and variance σ^{2}. Then for any $t \geq 0$:

$$
\operatorname{Pr}[|y-\mu| \geq t] \leq 2 e^{-\overline{2 \sigma^{2}+\frac{4}{3} M t}}
$$

- Set $M=\frac{n}{p}, t=\frac{1}{2} \cdot \operatorname{Cost}(X, C)$, and $\sigma^{2} \approx \frac{n^{3}}{p}$. Then for $x=\operatorname{Cost}(X, C)$,

$$
\operatorname{Pr}\left[|y-\mu| \geq \frac{x}{2}\right] \leq 2 \exp \left(-\frac{(x / 2)^{2}}{2\left(n^{2} / p\right)+(4 / 3)(n x / 2 p)}\right)
$$

Coreset Construction and Uniform Sampling

- Consider a fixed set X and a fixed set C of k centers, which induces a fixed cost $\operatorname{Cost}(X, C)$
- Suppose all points have cost between 1 and 100
- Suppose $p_{i}=p$ for all $i \in[n]$
- For $\operatorname{Pr}\left[|y-\mu| \geq \frac{x}{2}\right] \leq 2 \exp \left(-\frac{(x / 2)^{2}}{2(10000 n / p)+(4 / 3)(100 x / p)}\right)$,
we require $\frac{20000 n}{p} \approx\left(\frac{x}{2}\right)^{2}$ and x can be as small as n, so $p \approx$ $\frac{80000}{n}$

Coreset Construction and Uniform Sampling

- Suppose $p_{i}=p$ for all $i \in[n]$
-What can we say about concentration?
- Can get a 2 -approximation even for $p \approx \frac{80000}{n}$
- How many samples do we expect? $n p$ is now WAY larger

Coreset Construction and Uniform Sampling

- Consider a fixed set X and a fixed set C of k centers, which induces a fixed cost $\operatorname{Cost}(X, C)$
- Suppose all points have cost between 1 and n
- How many points do I need to sample to approximate $\operatorname{Cost}(X, C)$ within a $(1+\varepsilon)$-factor?

Coreset Construction and Uniform Sampling

- Bernstein's inequality: Let $y_{1}, \ldots, y_{n} \in[-M, M]$ be independent random variables and let $y=y_{1}+\cdots+y_{n}$ have mean μ and variance σ^{2}. Then for any $t \geq 0$:

$$
\operatorname{Pr}[|y-\mu| \geq t] \leq 2 e^{2 \sigma^{2}+\frac{4}{3} M t}
$$

- Set $M=\frac{n}{p}, t=\frac{x}{2}$, and $\sigma^{2} \approx \frac{n^{2}}{p}$. Then

$$
\operatorname{Pr}\left[|y-\mu| \geq \frac{x}{2}\right] \leq 2 \exp \left(-\frac{(x / 2)^{2}}{2\left(n^{2} / p\right)+(4 / 3)(n x / 2 p)}\right)
$$

Uniform Sampling for Sum Estimation

- Consider a fixed set X and a fixed set C of k centers, which induces a fixed cost $\operatorname{Cost}(X, C)$
- Suppose all points have cost between 1 and n
- Suppose $p_{i}=p$ for all $i \in[n]$
- For $\operatorname{Pr}\left[|y-\mu| \geq \frac{x}{2}\right] \leq 2 \exp \left(-\frac{(x / 2)^{2}}{2\left(n^{2} / p\right)+(4 / 3)(n x / 2 p)}\right)$, we require $\frac{2 n^{2}}{p} \approx\left(\frac{x}{2}\right)^{2}$ and x can be as small as n, so we need $p \approx 1$

Coreset Construction and Sampling

- Consider a fixed set X and a fixed set C of k centers, which induces a fixed cost $\operatorname{Cost}(X, C)$
- Uniform sampling needs a lot of samples if there is a single point that greatly contributes to $\operatorname{Cost}(X, C)$

Coreset Construction and Sampling

- Fix: Importance sampling, sample each point $x \in X$ into X^{\prime} with probability proportional $\operatorname{Cost}(x, C)$, i.e., $\operatorname{Cost}(x, C) /$ $\operatorname{Cost}(X, C)$

Coreset Construction and Sampling

- Fix: Importance sampling, sample each point $x \in X$ into X^{\prime} with probability proportional $\operatorname{Cost}(x, C)$, i.e., $\operatorname{Cost}(x, C) /$ $\operatorname{Cost}(X, C)$

Importance Sampling for Coreset Construction

- What is the variance for each y_{i} ?
- Var $\left[y_{i}\right] \leq \frac{1}{p_{i}} \cdot\left(\operatorname{Cost}\left(x_{i}, C\right)\right)^{2} \leq \operatorname{Cost}\left(x_{i}, C\right) \cdot \operatorname{Cost}(X, C)$
$\cdot \operatorname{Var}[y]=\operatorname{Var}\left[y_{1}\right]+\cdots+\operatorname{Var}\left[y_{n}\right] \leq(\operatorname{Cost}(X, C))^{2}$

Coreset Construction and Sampling

- Fix: Importance sampling, sample each point $x \in X$ into X^{\prime} with probability proportional $\operatorname{Cost}(x, C)$, i.e., $\operatorname{Cost}(x, C) /$ $\operatorname{Cost}(X, C)$
- Importance sampling only needs X^{\prime} to have size $O\left(\frac{1}{\varepsilon^{2}}\right)$ to achieve $(1+\varepsilon)$-approximation to $\operatorname{Cost}(X, C)$

Coreset Construction and Sampling

- Importance sampling only needs X^{\prime} to have size $O\left(\frac{1}{\varepsilon^{2}}\right)$ to achieve $(1+\varepsilon)$-approximation to $\operatorname{Cost}(X, C)$
- What about a different choice C of k centers?

Coreset Construction and Sampling

- Importance sampling only needs X^{\prime} to have size $O\left(\frac{1}{\varepsilon^{2}}\right)$ to achieve $(1+\varepsilon)$-approximation to $\operatorname{Cost}(X, C)$
- To handle all possible sets of k centers:
- Need to sample each point x with probability $\max _{C} \frac{\operatorname{Cost}(x, C)}{\operatorname{Cost}(X, C)}$ instead of $\frac{\operatorname{Cost}(x, C)}{\operatorname{Cost}(X, C)}$
- Need to union bound over a net of all possible sets of k centers

Nets

- A net N is a set of sets C of k centers such that accuracy on N implies accuracy everywhere

Coreset Construction and Sampling

- Importance sampling only needs X^{\prime} to have size $O\left(\frac{1}{\varepsilon^{2}}\right)$ to achieve $(1+\varepsilon)$-approximation to $\operatorname{Cost}(X, C)$
- To handle all possible sets of k centers:
- Need to sample each point x with probability $\max _{C} \frac{\operatorname{Cost}(x, C)}{\operatorname{Cost}(X, C)}$ instead of $\frac{\operatorname{Cost}(x, C)}{\operatorname{Cost}(X, C)}$
- Need to union bound over a net of all possible sets of k centers

$$
\text { Net with size }\left(\frac{n \Delta}{\varepsilon}\right)^{O(k d)}
$$

Sensitivity Sampling

- The quantity $s(x)=\max _{C} \frac{\operatorname{Cost}(x, C)}{\operatorname{Cost}(X, C)}$ is called the sensitivity of x and intuitively measures how "important" the point x is
- The total sensitivity of X is $\sum_{x \in X} S(x)$ and quantifies how many points will be sampled into X^{\prime} through importance/sensitivity sampling (before the union bound)

