
CSCE 658: Randomized Algorithms

Lecture 12

Samson Zhou



Class Logistics

• March 5: Lecture canceled, i.e., do NOT show up to HRBB 
126 (unless you want to see an empty classroom)





Last Time: 𝑘-Clustering

• Goal: Given input dataset 𝑋, partition 𝑋 so that “similar” points are in 
the same cluster and “different” points are in different clusters

• There can be at most 𝑘 different clusters

𝑘 = 3



Last Time: 𝑘-Clustering

• Define clustering cost Cost 𝑋, 𝐶 to be a function of 
dist 𝑥, 𝐶 𝑥∈𝐶

• 𝑘-center: Cost 𝑋, 𝐶 = max
𝑥∈𝑋

dist(𝑥, 𝐶)

• 𝑘-median: Cost 𝑋, 𝐶 = σ𝑥∈𝑋 dist 𝑥, 𝐶

• 𝑘-means: Cost 𝑋, 𝐶 = σ𝑥∈𝑋 dist 𝑥, 𝐶
2

• (𝑘, 𝑧)-clustering: Cost 𝑋, 𝐶 = σ𝑥∈𝑋 dist 𝑥, 𝐶
𝑧

⋅ 𝑧

⋅ 𝑧

⋅ 𝑧

⋅ 𝑧

⋅ 𝑧

⋅ 𝑧

⋅ 𝑧



Last Time: (𝑘, 𝑧)-Clustering in the Streaming 
Model

• Merge-and-reduce framework

• Suppose there exists a (1 + 𝜀)-coreset construction for 

(𝑘, 𝑧)-clustering that uses 𝑓 𝑘,
1

𝜀
weighted input points 

• Partition the stream into blocks containing 𝑓 𝑘,
log 𝑛

𝜀
points

෨𝑂
𝑘2

𝜀2



Last Time: (𝑘, 𝑧)-Clustering in the Streaming 
Model

• Partition the stream into blocks containing 𝑓 𝑘,
log 𝑛

𝜀
points

• Create a 1 +
𝜀

log 𝑛
-coreset for each block

• Create a 1 +
𝜀

log 𝑛
-coreset for the set of points formed by 

the union of two coresets for each block

Merge

Reduce



Last Time: (𝑘, 𝑧)-Clustering in the Streaming 
Model

• Partition the stream into blocks containing 𝑓 𝑘,
log 𝑛

𝜀
points

• Create a 1 +
𝜀

log 𝑛
-coreset for each block

• Create a 1 +
𝜀

log 𝑛
-coreset for the set of points formed by 

the union of two coresets for each block



Last Time: (𝑘, 𝑧)-Clustering in the Streaming 
Model

• There are 𝑂 log 𝑛 levels

• Each coreset is a 1 +
𝜀

log 𝑛
-coreset of two coresets

• Total approximation is 1 +
𝜀

log 𝑛

log 𝑛
= (1 + 𝑂 𝜀 )



Previously: Bernstein’s Inequality

• Bernstein’s inequality: Let 𝑋1, … , 𝑋𝑛 ∈ [−𝑀,𝑀] be independent 
random variables and let 𝑋 = 𝑋1 +⋯+ 𝑋𝑛 have mean 𝜇 and 
variance 𝜎2. Then for any 𝑡 ≥ 0:

• Example: Suppose 𝑀 = 1 and let 𝑡 = 𝑘𝜎. Then

Pr 𝑋 − 𝜇 ≥ 𝑘𝜎 ≤ 2exp −
𝑘2

4

Pr 𝑋 − 𝜇 ≥ 𝑡 ≤ 2𝑒
−

𝑡2

2𝜎2+
4
3
𝑀𝑡



Sampling for Sum Estimation

• Consider a fixed set 𝑋 = {𝑥1, … , 𝑥𝑛} of 𝑛 numbers

• Suppose we sample each point 𝑥𝑖 with some probability 𝑝𝑖
and rescale by 

1

𝑝𝑖

• What is the expected sum?



Sampling for Sum Estimation

• Let 𝑦𝑖 be the contribution of the sample corresponding to 𝑥𝑖

• 𝑦𝑖 = 0 with probability 1 − 𝑝𝑖

• 𝑦𝑖 =
1

𝑝𝑖
⋅ 𝑥𝑖 with probability 𝑝𝑖

• E 𝑦𝑖 = 𝑥𝑖
• E 𝑦1 +⋯+ 𝑦𝑛 = 𝑥1 + …+ 𝑥𝑛



Sampling for Sum Estimation

• Consider a fixed set 𝑋 = {𝑥1, … , 𝑥𝑛} of 𝑛 numbers

• Suppose we sample each point 𝑥𝑖 with some probability 𝑝𝑖
and rescale by 

1

𝑝𝑖

• What is the expected sum? E 𝑦1 +⋯+ 𝑦𝑛 = 𝑥1 + …+ 𝑥𝑛



Sampling for Sum Estimation

• Consider a fixed set 𝑋 = {𝑥1, … , 𝑥𝑛} of 𝑛 numbers

• Suppose we sample each point 𝑥𝑖 with some probability 𝑝𝑖
and rescale by 

1

𝑝𝑖

• What is the expected sum? E 𝑦1 +⋯+ 𝑦𝑛 = 𝑥1 + …+ 𝑥𝑛
• What can we say about concentration?



Uniform Sampling for Sum Estimation

• Consider a fixed set 𝑋 = {𝑥1, … , 𝑥𝑛} of 𝑛 numbers

• Suppose we sample each point 𝑥𝑖 with some probability 𝑝𝑖
and rescale by 

1

𝑝𝑖

• Suppose 𝑝𝑖 = 𝑝 for all 𝑖 ∈ [𝑛]

• What can we say about concentration?



Uniform Sampling for Sum Estimation

• Suppose 𝑥1 = ⋯ = 𝑥𝑛 = 1

• Suppose 𝑝𝑖 = 𝑝 for all 𝑖 ∈ [𝑛]

• What can we say about concentration?

• Can we get a 2-approximation with high probability?



Uniform Sampling for Sum Estimation

• Bernstein’s inequality: Let 𝑦1, … , 𝑦𝑛 ∈ [−𝑀,𝑀] be independent 
random variables and let 𝑦 = 𝑦1 +⋯+ 𝑦𝑛 have mean 𝜇 and variance 
𝜎2. Then for any 𝑡 ≥ 0:

Pr 𝑦 − 𝜇 ≥ 𝑡 ≤ 2𝑒
−

𝑡2

2𝜎2+
4
3
𝑀𝑡



Uniform Sampling for Sum Estimation

• Bernstein’s inequality: Let 𝑦1, … , 𝑦𝑛 ∈ [−𝑀,𝑀] be independent 
random variables and let 𝑦 = 𝑦1 +⋯+ 𝑦𝑛 have mean 𝜇 and variance 
𝜎2. Then for any 𝑡 ≥ 0:

• Set 𝑀 =
1

𝑝
, 𝑡 =

𝑛

2
, and 𝜎2 =

𝑛

𝑝
. Then

Pr 𝑦 − 𝜇 ≥
𝑛

2
≤ 2exp −

𝑛/2 2

2 𝑛/𝑝 + (4/3)(𝑛/2𝑝)

Pr 𝑦 − 𝜇 ≥ 𝑡 ≤ 2𝑒
−

𝑡2

2𝜎2+
4
3
𝑀𝑡



Uniform Sampling for Sum Estimation

• Suppose 𝑥1 = ⋯ = 𝑥𝑛 = 1

• Suppose 𝑝𝑖 = 𝑝 for all 𝑖 ∈ [𝑛]

• What can we say about concentration?

• Can get a 2-approximation even for 𝑝 = Θ
1

𝑛



Uniform Sampling for Sum Estimation

• Suppose 𝑥1 = ⋯ = 𝑥𝑛 = 1

• Suppose 𝑝𝑖 = 𝑝 for all 𝑖 ∈ [𝑛]

• What can we say about concentration?

• Can get a 2-approximation even for 𝑝 = Θ
1

𝑛

• How many samples do we expect?



Uniform Sampling for Sum Estimation

• Suppose 𝑥1 = ⋯ = 𝑥𝑛 = 1

• Suppose 𝑝𝑖 = 𝑝 for all 𝑖 ∈ [𝑛]

• What can we say about concentration?

• Can get a 2-approximation even for 𝑝 = Θ
1

𝑛

• How many samples do we expect? 𝑛𝑝 = Θ 1



Uniform Sampling for Sum Estimation

• Suppose 𝑥1, … , 𝑥𝑛 ∈ [1,2]

• Suppose 𝑝𝑖 = 𝑝 for all 𝑖 ∈ [𝑛]

• Can we get a 2-approximation with high probability?



Uniform Sampling for Sum Estimation

• Bernstein’s inequality: Let 𝑦1, … , 𝑦𝑛 ∈ [−𝑀,𝑀] be independent 
random variables and let 𝑦 = 𝑦1 +⋯+ 𝑦𝑛 have mean 𝜇 and variance 
𝜎2. Then for any 𝑡 ≥ 0:

• Set 𝑀 =
2

𝑝
, 𝑡 =

𝑥

2
, and 𝜎2 ≈

4𝑛

𝑝
. Then

Pr 𝑦 − 𝜇 ≥
𝑥

2
≤ 2exp −

𝑥/2 2

2 4𝑛/𝑝 + (4/3)(𝑥/𝑝)

Pr 𝑦 − 𝜇 ≥ 𝑡 ≤ 2𝑒
−

𝑡2

2𝜎2+
4
3
𝑀𝑡



Uniform Sampling for Sum Estimation

• Suppose 𝑥1, … , 𝑥𝑛 ∈ [1,2]

• Suppose 𝑝𝑖 = 𝑝 for all 𝑖 ∈ [𝑛]

• For Pr 𝑦 − 𝜇 ≥
𝑥

2
≤ 2exp −

𝑥/2 2

2 4𝑛/𝑝 +(4/3)(𝑥/𝑝)
, we 

require 
8𝑛

𝑝
≈

𝑥

2

2
and 𝑥 can be as small as 𝑛, so 𝑝 ≈

2

𝑛



Uniform Sampling for Sum Estimation

• Suppose 𝑥1, … , 𝑥𝑛 ∈ [1,2]

• Suppose 𝑝𝑖 = 𝑝 for all 𝑖 ∈ [𝑛]

• What can we say about concentration?

• Can get a 2-approximation for 𝑝 ≈
2

𝑛

• How many samples do we expect? 𝑛𝑝 is now slightly larger



Uniform Sampling for Sum Estimation

• Suppose 𝑥1, … , 𝑥𝑛 ∈ [1,100]

• Suppose 𝑝𝑖 = 𝑝 for all 𝑖 ∈ [𝑛]

• Can we get a 2-approximation with high probability?



Uniform Sampling for Sum Estimation

• Bernstein’s inequality: Let 𝑦1, … , 𝑦𝑛 ∈ [−𝑀,𝑀] be independent 
random variables and let 𝑦 = 𝑦1 +⋯+ 𝑦𝑛 have mean 𝜇 and variance 
𝜎2. Then for any 𝑡 ≥ 0:

• Set 𝑀 =
100

𝑝
, 𝑡 =

𝑥

2
, and 𝜎2 ≈

10000𝑛

𝑝
. Then

Pr 𝑦 − 𝜇 ≥
𝑥

2
≤ 2exp −

𝑥/2 2

2 10000𝑛/𝑝 + (4/3)(100𝑥/𝑝)

Pr 𝑦 − 𝜇 ≥ 𝑡 ≤ 2𝑒
−

𝑡2

2𝜎2+
4
3
𝑀𝑡



Uniform Sampling for Sum Estimation

• Suppose 𝑥1, … , 𝑥𝑛 ∈ [1,100]

• Suppose 𝑝𝑖 = 𝑝 for all 𝑖 ∈ [𝑛]

• For Pr 𝑦 − 𝜇 ≥
𝑥

2
≤ 2exp −

𝑥/2 2

2 10000𝑛/𝑝 +(4/3)(100𝑥/𝑝)
, 

we require 
20000𝑛

𝑝
≈

𝑥

2

2
and 𝑥 can be as small as 𝑛, so we 

need 𝑝 ≈
80000

𝑛



Uniform Sampling for Sum Estimation

• Suppose 𝑥1, … , 𝑥𝑛 ∈ [1,100]

• Suppose 𝑝𝑖 = 𝑝 for all 𝑖 ∈ [𝑛]

• What can we say about concentration?

• Can get a 2-approximation even for 𝑝 ≈
80000

𝑛

• How many samples do we expect? 𝑛𝑝 is now WAY larger



Uniform Sampling for Sum Estimation

• Suppose 𝑥1, … , 𝑥𝑛 ∈ [1, 𝑛]

• Suppose 𝑝𝑖 = 𝑝 for all 𝑖 ∈ [𝑛]

• Can we get a 2-approximation with high probability?



Uniform Sampling for Sum Estimation

• Bernstein’s inequality: Let 𝑦1, … , 𝑦𝑛 ∈ [−𝑀,𝑀] be independent 
random variables and let 𝑦 = 𝑦1 +⋯+ 𝑦𝑛 have mean 𝜇 and variance 
𝜎2. Then for any 𝑡 ≥ 0:

• Set 𝑀 =
𝑛

𝑝
, 𝑡 =

𝑥

2
, and 𝜎2 ≈

𝑛2

𝑝
. Then

Pr 𝑦 − 𝜇 ≥
𝑥

2
≤ 2exp −

𝑥/2 2

2 𝑛2/𝑝 + (4/3)(𝑛𝑥/2𝑝)

Pr 𝑦 − 𝜇 ≥ 𝑡 ≤ 2𝑒
−

𝑡2

2𝜎2+
4
3
𝑀𝑡



Uniform Sampling for Sum Estimation

• Suppose 𝑥1, … , 𝑥𝑛 ∈ [1, 𝑛]

• Suppose 𝑝𝑖 = 𝑝 for all 𝑖 ∈ [𝑛]

• For Pr 𝑦 − 𝜇 ≥
𝑥

2
≤ 2exp −

𝑥/2 2

2 𝑛2/𝑝 +(4/3)(𝑛𝑥/2𝑝)
, we 

require 
2𝑛2

𝑝
≈

𝑥

2

2
and 𝑥 can be as small as 𝑛, so we need 

𝑝 ≈ 1



Uniform Sampling for Sum Estimation

• Suppose 𝑥1, … , 𝑥𝑛 ∈ [1, 𝑛]

• Suppose 𝑝𝑖 = 𝑝 for all 𝑖 ∈ [𝑛]

• What can we say about concentration?

• Can get a 2-approximation for 𝑝 ≈ 1

• How many samples do we expect? 𝑛𝑝 is now 𝑛



Uniform Sampling for Sum Estimation

• Suppose 𝑥1, … , 𝑥𝑛 ∈ [1, 𝑛]

• Suppose 𝑝𝑖 = 𝑝 for all 𝑖 ∈ [𝑛]

• Do we really need 𝑝 to be a constant?



Uniform Sampling for Sum Estimation

• Suppose 𝑥1, … , 𝑥𝑛 ∈ [1, 𝑛]

• Suppose 𝑝𝑖 = 𝑝 for all 𝑖 ∈ [𝑛]

• Do we really need 𝑝 to be a constant? YES!

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 𝑛 𝑛



Sampling for Sum Estimation

• Consider a fixed set 𝑋 = {𝑥1, … , 𝑥𝑛} of 𝑛 numbers

• Suppose we sample each point 𝑥𝑖 with some probability 𝑝𝑖
and rescale by 

1

𝑝𝑖

• What is the expected sum? E 𝑦1 +⋯+ 𝑦𝑛 = 𝑥1 + …+ 𝑥𝑛
• What can we say about concentration?



Sampling for Sum Estimation

• Consider a fixed set 𝑋 = {𝑥1, … , 𝑥𝑛} of 𝑛 numbers

• What if we choose the probability 𝑝𝑖 different for each 𝑥𝑖?



Sampling for Sum Estimation

• Consider a fixed set 𝑋 = {𝑥1, … , 𝑥𝑛} of 𝑛 numbers

• What if we choose the probability 𝑝𝑖 different for each 𝑥𝑖?

• Choose 𝑝𝑖 proportional to 𝑥𝑖



Importance Sampling for Sum Estimation

• Consider a fixed set 𝑋 = {𝑥1, … , 𝑥𝑛} of 𝑛 numbers

• What if we choose the probability 𝑝𝑖 different for each 𝑥𝑖?

• Choose 𝑝𝑖 proportional to 𝑥𝑖

• Let 𝑥 = 𝑥1 +⋯+ 𝑥𝑛, set 𝑝𝑖 =
𝑥𝑖

𝑥



Importance Sampling for Sum Estimation

• Bernstein’s inequality: Let 𝑦1, … , 𝑦𝑛 ∈ [−𝑀,𝑀] be independent 
random variables and let 𝑦 = 𝑦1 +⋯+ 𝑦𝑛 have mean 𝜇 and variance 
𝜎2. Then for any 𝑡 ≥ 0:

• Set 𝑡 =
𝑥

2
. What about 𝑀 and 𝜎2?

Pr 𝑦 − 𝜇 ≥ 𝑡 ≤ 2𝑒
−

𝑡2

2𝜎2+
4
3
𝑀𝑡



Importance Sampling for Sum Estimation

• 𝑦𝑖 ≤
1

𝑝
⋅ 𝑥𝑖 =

𝑥

𝑥𝑖
⋅ 𝑥𝑖 = 𝑥

• Can set 𝑀 = 𝑥 in Bernstein’s inequality



Importance Sampling for Sum Estimation

• What is the variance for each 𝑦𝑖?

• Var 𝑦𝑖 ≤
1

𝑝𝑖
⋅ 𝑥𝑖

2 ≤ 𝑥𝑖 ⋅ 𝑥

• Var 𝑦 = Var 𝑦1 +⋯+ Var 𝑦𝑛 ≤ 𝑥 ⋅ 𝑥1 +⋯+ 𝑥𝑛 = 𝑥2

• What is the variance for 𝑦 under uniform sampling? 
𝑛𝑥𝑖

2

𝑝

• What is the variance for each 𝑦𝑖 under uniform sampling? 
𝑥𝑖
2

𝑝



Importance Sampling for Sum Estimation

• Bernstein’s inequality: Let 𝑦1, … , 𝑦𝑛 ∈ [−𝑀,𝑀] be independent 
random variables and let 𝑦 = 𝑦1 +⋯+ 𝑦𝑛 have mean 𝜇 and variance 
𝜎2. Then for any 𝑡 ≥ 0:

• Set 𝑀 = 𝑥, 𝑡 =
𝑥

2
, and 𝜎2 ≈ 𝑥2. Then

Pr 𝑦 − 𝜇 ≥
𝑥

2
≤ 2exp −

𝑥/2 2

2𝑥2 + (4/3)(𝑥2/2)

Pr 𝑦 − 𝜇 ≥ 𝑡 ≤ 2𝑒
−

𝑡2

2𝜎2+
4
3
𝑀𝑡



Importance Sampling for Sum Estimation

• Suppose 𝑥1, … , 𝑥𝑛 ∈ [1, 𝑛]

• Suppose 𝑝𝑖 =
𝑥𝑖

𝑥
for all 𝑖 ∈ [𝑛]

• Can get a 2-approximation for importance sampling

• How many samples do we expect?



Importance Sampling for Sum Estimation

• How many samples do we expect?

• Let 𝑆𝑖 be the indicator random variable for whether we 
sampled 𝑥𝑖 (which we do with probability 𝑝𝑖)

• 𝑆 = 𝑆1 +⋯+ 𝑆𝑛 is the total number of samples

• E 𝑆 = E 𝑆1 +⋯+ E[𝑆𝑛] by linearity of expectation

• E 𝑆𝑖 = 𝑝𝑖 =
𝑥𝑖

𝑥



Importance Sampling for Sum Estimation

• Suppose 𝑥1, … , 𝑥𝑛 ∈ [1, 𝑛]

• Suppose 𝑝𝑖 =
𝑥𝑖

𝑥
for all 𝑖 ∈ [𝑛]

• Can get a 2-approximation for importance sampling

• How many samples do we expect? E 𝑆 =
𝑥1

𝑥
+⋯+

𝑥𝑛

𝑥
= 1, 

so just a constant number of samples!



Coreset Construction and Sampling

• Consider a fixed set 𝑋 and a fixed set 𝐶 of 𝑘 centers, which 
induces a fixed cost Cost(𝑋, 𝐶)



Coreset Construction and Sampling

• Consider a fixed set 𝑋 and a fixed set 𝐶 of 𝑘 centers, which 
induces a fixed cost Cost(𝑋, 𝐶)

• A simple way to obtain 𝑋′ with Cost 𝑋′, 𝐶 ≈ Cost(𝑋, 𝐶) is 
to uniformly sample points of 𝑋 into 𝑋′



Coreset Construction and Uniform Sampling

• Consider a fixed set 𝑋 and a fixed set 𝐶 of 𝑘 centers, which 
induces a fixed cost Cost 𝑋, 𝐶

• Suppose all points have the same cost, Cost 𝑥, 𝐶 =
Cost 𝑋,𝐶

𝑛

• How many points do I need to sample to approximate 
Cost 𝑋, 𝐶 within a 2-factor?



Bernstein’s Inequality

• Bernstein’s inequality: Let 𝑦1, … , 𝑦𝑛 ∈ [−𝑀,𝑀] be independent 
random variables and let 𝑦 = 𝑦1 +⋯+ 𝑦𝑛 have mean 𝜇 and variance 
𝜎2. Then for any 𝑡 ≥ 0:

Pr 𝑦 − 𝜇 ≥ 𝑡 ≤ 2𝑒
−

𝑡2

2𝜎2+
4
3
𝑀𝑡



Bernstein’s Inequality

• Bernstein’s inequality: Let 𝑦1, … , 𝑦𝑛 ∈ [−𝑀,𝑀] be independent 
random variables and let 𝑦 = 𝑦1 +⋯+ 𝑦𝑛 have mean 𝜇 and variance 
𝜎2. Then for any 𝑡 ≥ 0:

• Set 𝑀 =
1

𝑝
, 𝑡 =

1

2
⋅ Cost 𝑋, 𝐶 , and 𝜎2 ≈

𝑛

𝑝
. Then for 𝑥 = Cost 𝑋, 𝐶 ,

Pr 𝑦 − 𝜇 ≥
𝑥

2
≤ 2exp −

𝑥/2 2

2 4𝑛/𝑝 + (4/3)(𝑥/𝑝)

Pr 𝑦 − 𝜇 ≥ 𝑡 ≤ 2𝑒
−

𝑡2

2𝜎2+
4
3
𝑀𝑡



Coreset Construction and Uniform Sampling

• Consider a fixed set 𝑋 and a fixed set 𝐶 of 𝑘 centers, which 
induces a fixed cost Cost 𝑋, 𝐶

• Suppose all points have the same cost, Cost 𝑥, 𝐶 =
Cost 𝑋,𝐶

𝑛

• Can get a 2-approximation to Cost 𝑋, 𝐶 even for 𝑝 = Θ
1

𝑛

• How many samples do we expect? 𝑛𝑝 = Θ 1



Coreset Construction and Uniform Sampling

• Consider a fixed set 𝑋 and a fixed set 𝐶 of 𝑘 centers, which 
induces a fixed cost Cost 𝑋, 𝐶

• Suppose all points have cost between 1 and 100

• Suppose 𝑝𝑖 = 𝑝 for all 𝑖 ∈ [𝑛]



Bernstein’s Inequality

• Bernstein’s inequality: Let 𝑦1, … , 𝑦𝑛 ∈ [−𝑀,𝑀] be independent 
random variables and let 𝑦 = 𝑦1 +⋯+ 𝑦𝑛 have mean 𝜇 and variance 
𝜎2. Then for any 𝑡 ≥ 0:

Pr 𝑦 − 𝜇 ≥ 𝑡 ≤ 2𝑒
−

𝑡2

2𝜎2+
4
3
𝑀𝑡



Bernstein’s Inequality

• Bernstein’s inequality: Let 𝑦1, … , 𝑦𝑛 ∈ [−𝑀,𝑀] be independent 
random variables and let 𝑦 = 𝑦1 +⋯+ 𝑦𝑛 have mean 𝜇 and variance 
𝜎2. Then for any 𝑡 ≥ 0:

• Set 𝑀 =
100

𝑝
, 𝑡 =

1

2
⋅ Cost 𝑋, 𝐶 , and 𝜎2 ≈

10000𝑛

𝑝
. Then for 𝑥 =

Cost 𝑋, 𝐶 ,

Pr 𝑦 − 𝜇 ≥
𝑥

2
≤ 2exp −

𝑥/2 2

2 100𝑛/𝑝 + (4/3)(50𝑥/𝑝)

Pr 𝑦 − 𝜇 ≥ 𝑡 ≤ 2𝑒
−

𝑡2

2𝜎2+
4
3
𝑀𝑡



Coreset Construction and Uniform Sampling

• Suppose 𝑥1, … , 𝑥𝑛 ∈ [1,100]

• Suppose 𝑝𝑖 = 𝑝 for all 𝑖 ∈ [𝑛]

• For Pr 𝑦 − 𝜇 ≥
𝑥

2
≤ 2exp −

𝑥/2 2

2 10000𝑛/𝑝 +(4/3)(100𝑥/𝑝)
, 

we require 
20000𝑛

𝑝
≈

𝑥

2

2
and 𝑥 can be as small as 𝑛, so we 

need 𝑝 ≈
80000

𝑛



Coreset Construction and Uniform Sampling

• Consider a fixed set 𝑋 and a fixed set 𝐶 of 𝑘 centers, which 
induces a fixed cost Cost 𝑋, 𝐶

• Suppose all points have cost between 1 and 100

• Can get a 2-approximation even for 𝑝 ≈
80000

𝑛

• How many samples do we expect? 𝑛𝑝 is now WAY larger



Coreset Construction and Uniform Sampling

• Bernstein’s inequality: Let 𝑦1, … , 𝑦𝑛 ∈ [−𝑀,𝑀] be independent 
random variables and let 𝑦 = 𝑦1 +⋯+ 𝑦𝑛 have mean 𝜇 and variance 
𝜎2. Then for any 𝑡 ≥ 0:

• Set 𝑀 =
𝑛

𝑝
, 𝑡 =

1

2
⋅ Cost 𝑋, 𝐶 , and 𝜎2 ≈

𝑛3

𝑝
. Then for 𝑥 = Cost 𝑋, 𝐶 ,

Pr 𝑦 − 𝜇 ≥
𝑥

2
≤ 2exp −

𝑥/2 2

2 𝑛2/𝑝 + (4/3)(𝑛𝑥/2𝑝)

Pr 𝑦 − 𝜇 ≥ 𝑡 ≤ 2𝑒
−

𝑡2

2𝜎2+
4
3
𝑀𝑡



Coreset Construction and Uniform Sampling

• Consider a fixed set 𝑋 and a fixed set 𝐶 of 𝑘 centers, which 
induces a fixed cost Cost 𝑋, 𝐶

• Suppose all points have cost between 1 and 100

• Suppose 𝑝𝑖 = 𝑝 for all 𝑖 ∈ [𝑛]

• For Pr 𝑦 − 𝜇 ≥
𝑥

2
≤ 2exp −

𝑥/2 2

2 10000𝑛/𝑝 +(4/3)(100𝑥/𝑝)
, 

we require 
20000𝑛

𝑝
≈

𝑥

2

2
and 𝑥 can be as small as 𝑛, so 𝑝 ≈

80000

𝑛



Coreset Construction and Uniform Sampling

• Suppose 𝑝𝑖 = 𝑝 for all 𝑖 ∈ [𝑛]

• What can we say about concentration?

• Can get a 2-approximation even for 𝑝 ≈
80000

𝑛

• How many samples do we expect? 𝑛𝑝 is now WAY larger



Coreset Construction and Uniform Sampling

• Consider a fixed set 𝑋 and a fixed set 𝐶 of 𝑘 centers, which 
induces a fixed cost Cost 𝑋, 𝐶

• Suppose all points have cost between 1 and 𝑛

• How many points do I need to sample to approximate 
Cost 𝑋, 𝐶 within a 1 + 𝜀 -factor?



Coreset Construction and Uniform Sampling

• Bernstein’s inequality: Let 𝑦1, … , 𝑦𝑛 ∈ [−𝑀,𝑀] be independent 
random variables and let 𝑦 = 𝑦1 +⋯+ 𝑦𝑛 have mean 𝜇 and variance 
𝜎2. Then for any 𝑡 ≥ 0:

• Set 𝑀 =
𝑛

𝑝
, 𝑡 =

𝑥

2
, and 𝜎2 ≈

𝑛2

𝑝
. Then

Pr 𝑦 − 𝜇 ≥
𝑥

2
≤ 2exp −

𝑥/2 2

2 𝑛2/𝑝 + (4/3)(𝑛𝑥/2𝑝)

Pr 𝑦 − 𝜇 ≥ 𝑡 ≤ 2𝑒
−

𝑡2

2𝜎2+
4
3
𝑀𝑡



Uniform Sampling for Sum Estimation

• Consider a fixed set 𝑋 and a fixed set 𝐶 of 𝑘 centers, which 
induces a fixed cost Cost 𝑋, 𝐶

• Suppose all points have cost between 1 and 𝑛

• Suppose 𝑝𝑖 = 𝑝 for all 𝑖 ∈ [𝑛]

• For Pr 𝑦 − 𝜇 ≥
𝑥

2
≤ 2exp −

𝑥/2 2

2 𝑛2/𝑝 +(4/3)(𝑛𝑥/2𝑝)
, we 

require 
2𝑛2

𝑝
≈

𝑥

2

2
and 𝑥 can be as small as 𝑛, so we need 

𝑝 ≈ 1



Coreset Construction and Sampling

• Consider a fixed set 𝑋 and a fixed set 𝐶 of 𝑘 centers, which 
induces a fixed cost Cost(𝑋, 𝐶)

• Uniform sampling needs a lot of samples if there is a single 
point that greatly contributes to Cost(𝑋, 𝐶)



Coreset Construction and Sampling

• Fix: Importance sampling, sample each point 𝑥 ∈ 𝑋 into 𝑋′
with probability proportional Cost(𝑥, 𝐶), i.e., Cost(𝑥, 𝐶)/
Cost(𝑋, 𝐶)



Coreset Construction and Sampling

• Fix: Importance sampling, sample each point 𝑥 ∈ 𝑋 into 𝑋′
with probability proportional Cost(𝑥, 𝐶), i.e., Cost(𝑥, 𝐶)/
Cost(𝑋, 𝐶)



Importance Sampling for Coreset 
Construction

• What is the variance for each 𝑦𝑖?

• Var 𝑦𝑖 ≤
1

𝑝𝑖
⋅ Cost 𝑥𝑖 , 𝐶

2
≤ Cost 𝑥𝑖 , 𝐶 ⋅ Cost 𝑋, 𝐶

• Var 𝑦 = Var 𝑦1 +⋯+ Var 𝑦𝑛 ≤ Cost 𝑋, 𝐶
2



Coreset Construction and Sampling

• Fix: Importance sampling, sample each point 𝑥 ∈ 𝑋 into 𝑋′
with probability proportional Cost(𝑥, 𝐶), i.e., Cost(𝑥, 𝐶)/
Cost(𝑋, 𝐶)

• Importance sampling only needs 𝑋′ to have size 𝑂
1

𝜀2
to 

achieve 1 + 𝜀 -approximation to Cost(𝑋, 𝐶)



Coreset Construction and Sampling

• Importance sampling only needs 𝑋′ to have size 𝑂
1

𝜀2
to 

achieve 1 + 𝜀 -approximation to Cost(𝑋, 𝐶)

• What about a different choice 𝐶 of 𝑘 centers?



Coreset Construction and Sampling

• Importance sampling only needs 𝑋′ to have size 𝑂
1

𝜀2
to 

achieve 1 + 𝜀 -approximation to Cost(𝑋, 𝐶)

• To handle all possible sets of 𝑘 centers:
• Need to sample each point 𝑥 with probability 

max
𝐶

Cost 𝑥,𝐶

Cost 𝑋,𝐶
instead of 

Cost 𝑥,𝐶

Cost 𝑋,𝐶

• Need to union bound over a net of all possible sets of 𝑘
centers



Nets

• A net 𝑁 is a set of sets 𝐶 of 𝑘 centers such that accuracy on 
𝑁 implies accuracy everywhere



Coreset Construction and Sampling

• Importance sampling only needs 𝑋′ to have size 𝑂
1

𝜀2
to 

achieve 1 + 𝜀 -approximation to Cost(𝑋, 𝐶)

• To handle all possible sets of 𝑘 centers:
• Need to sample each point 𝑥 with probability 

max
𝐶

Cost 𝑥,𝐶

Cost 𝑋,𝐶
instead of 

Cost 𝑥,𝐶

Cost 𝑋,𝐶

• Need to union bound over a net of all possible sets of 𝑘
centers

Net with size
𝑛Δ

𝜀

𝑂(𝑘𝑑)



Sensitivity Sampling

• The quantity 𝑠 𝑥 = max
𝐶

Cost 𝑥,𝐶

Cost 𝑋,𝐶
is called the sensitivity of 

𝑥 and intuitively measures how “important” the point 𝑥 is

• The total sensitivity of 𝑋 is σ𝑥∈𝑋 𝑠(𝑥) and quantifies how 
many points will be sampled into 𝑋′ through 
importance/sensitivity sampling (before the union bound)
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