CSCE 658: Randomized Algorithms

Lecture 12

Samson Zhou

Class Logistics

 March 5: Lecture canceled, i.e., do NOT show up to HRBB 126 (unless you want to see an empty classroom)

Last Time: k-Clustering

- Goal: Given input dataset X, partition X so that "similar" points are in the same cluster and "different" points are in different clusters
- There can be at most k different clusters

Last Time: k-Clustering

• Define clustering cost Cost(X, C) to be a function of $\{\operatorname{dist}(x,C)\}_{x\in C}$

- k-center: $Cost(X, C) = \max_{x \in X} dist(x, C)$ k-median: $Cost(X, C) = \sum_{x \in X} dist(x, C)$
- k-means: $Cost(X, C) = \sum_{x \in X} (dist(x, C))^2$
- (k, z)-clustering: $Cost(X, C) = \sum_{x \in X} (dist(x, C))^z$

Merge-and-reduce framework

• Suppose there exists a $(1 + \varepsilon)$ -coreset construction for (k, z)-clustering that uses $f\left(k, \frac{1}{\varepsilon}\right)$ weighted input points $\tilde{O}\left(\frac{k^2}{\varepsilon}\right)$

- Partition the stream into blocks containing $f\left(k, \frac{\log n}{\varepsilon}\right)$ points
- Create a $\left(1 + \frac{\varepsilon}{\log n}\right)$ -coreset for each block
- Create a $\left(1 + \frac{\varepsilon}{\log n}\right)$ -coreset for the set of points formed by the union of two coresets for each block

Reduce

Merge

- Partition the stream into blocks containing $f\left(k, \frac{\log n}{\varepsilon}\right)$ points
- Create a $\left(1 + \frac{\varepsilon}{\log n}\right)$ -coreset for each block
- Create a $\left(1 + \frac{\varepsilon}{\log n}\right)$ -coreset for the set of points formed by the union of two coresets for each block

- There are $O(\log n)$ levels
- Each coreset is a $\left(1 + \frac{\varepsilon}{\log n}\right)$ -coreset of two coresets
- Total approximation is $\left(1 + \frac{\varepsilon}{\log n}\right)^{\log n} = (1 + O(\varepsilon))$

Previously: Bernstein's Inequality

• Bernstein's inequality: Let $X_1, ..., X_n \in [-M, M]$ be independent random variables and let $X = X_1 + \cdots + X_n$ have mean μ and variance σ^2 . Then for any $t \ge 0$:

$$\Pr[|X - \mu| \ge t] \le 2e^{-\frac{t^2}{2\sigma^2 + \frac{4}{3}Mt}}$$

• Example: Suppose M=1 and let $t=k\sigma$. Then

$$\Pr[|X - \mu| \ge k\sigma] \le 2\exp\left(-\frac{k^2}{4}\right)$$

• Consider a fixed set $X = \{x_1, ..., x_n\}$ of n numbers

• Suppose we sample each point x_i with some probability p_i and rescale by $\frac{1}{p_i}$

What is the expected sum?

• Let y_i be the contribution of the sample corresponding to x_i

- $y_i = 0$ with probability $1 p_i$
- $y_i = \frac{1}{p_i} \cdot x_i$ with probability p_i
- $E[y_i] = x_i$
- $E[y_1 + \dots + y_n] = x_1 + \dots + x_n$

• Consider a fixed set $X = \{x_1, ..., x_n\}$ of n numbers

• Suppose we sample each point x_i with some probability p_i and rescale by $\frac{1}{p_i}$

• What is the expected sum? $E[y_1 + \cdots + y_n] = x_1 + \cdots + x_n$

• Consider a fixed set $X = \{x_1, ..., x_n\}$ of n numbers

• Suppose we sample each point x_i with some probability p_i and rescale by $\frac{1}{p_i}$

- What is the expected sum? $E[y_1 + \cdots + y_n] = x_1 + \cdots + x_n$
- What can we say about concentration?

• Consider a fixed set $X = \{x_1, ..., x_n\}$ of n numbers

- Suppose we sample each point x_i with some probability p_i and rescale by $\frac{1}{p_i}$
- Suppose $p_i = p$ for all $i \in [n]$

What can we say about concentration?

- Suppose $x_1 = \cdots = x_n = 1$
- Suppose $p_i = p$ for all $i \in [n]$

- What can we say about concentration?
- Can we get a 2-approximation with high probability?

• Bernstein's inequality: Let $y_1, ..., y_n \in [-M, M]$ be independent random variables and let $y = y_1 + \cdots + y_n$ have mean μ and variance σ^2 . Then for any $t \ge 0$:

$$\Pr[|y - \mu| \ge t] \le 2e^{-\frac{c}{2\sigma^2 + \frac{4}{3}Mt}}$$

• Bernstein's inequality: Let $y_1, ..., y_n \in [-M, M]$ be independent random variables and let $y = y_1 + \cdots + y_n$ have mean μ and variance σ^2 . Then for any $t \ge 0$:

$$\Pr[|y - \mu| \ge t] \le 2e^{-2\sigma^2 + \frac{4}{3}Mt}$$

• Set $M=\frac{1}{p}$, $t=\frac{n}{2}$, and $\sigma^2=\frac{n}{p}$. Then

$$\Pr\left[|y - \mu| \ge \frac{n}{2}\right] \le 2\exp\left(-\frac{(n/2)^2}{2(n/p) + (4/3)(n/2p)}\right)$$

- Suppose $x_1 = \cdots = x_n = 1$
- Suppose $p_i = p$ for all $i \in [n]$

- What can we say about concentration?
- Can get a 2-approximation even for $p = \Theta\left(\frac{1}{n}\right)$

- Suppose $x_1 = \cdots = x_n = 1$
- Suppose $p_i = p$ for all $i \in [n]$

- What can we say about concentration?
- Can get a 2-approximation even for $p = \Theta\left(\frac{1}{n}\right)$
- How many samples do we expect?

- Suppose $x_1 = \cdots = x_n = 1$
- Suppose $p_i = p$ for all $i \in [n]$

- What can we say about concentration?
- Can get a 2-approximation even for $p = \Theta\left(\frac{1}{n}\right)$
- How many samples do we expect? $np = \Theta(1)$

- Suppose $x_1, \dots, x_n \in [1,2]$
- Suppose $p_i = p$ for all $i \in [n]$

• Can we get a 2-approximation with high probability?

• Bernstein's inequality: Let $y_1, ..., y_n \in [-M, M]$ be independent random variables and let $y = y_1 + \cdots + y_n$ have mean μ and variance σ^2 . Then for any $t \ge 0$:

$$\Pr[|y - \mu| \ge t] \le 2e^{-2\sigma^2 + \frac{4}{3}Mt}$$

• Set $M=\frac{2}{p}$, $t=\frac{x}{2}$, and $\sigma^2\approx\frac{4n}{p}$. Then

$$\Pr\left[|y - \mu| \ge \frac{x}{2}\right] \le 2\exp\left(-\frac{(x/2)^2}{2(4n/p) + (4/3)(x/p)}\right)$$

- Suppose $x_1, ..., x_n \in [1,2]$
- Suppose $p_i = p$ for all $i \in [n]$

• For
$$\Pr\left[|y-\mu| \ge \frac{x}{2}\right] \le 2\exp\left(-\frac{(x/2)^2}{2(4n/p)+(4/3)(x/p)}\right)$$
, we require $\frac{8n}{p} \approx \left(\frac{x}{2}\right)^2$ and x can be as small as n , so $p \approx \frac{2}{n}$

- Suppose $x_1, ..., x_n \in [1,2]$
- Suppose $p_i = p$ for all $i \in [n]$

- What can we say about concentration?
- Can get a 2-approximation for $p \approx \frac{2}{n}$
- How many samples do we expect? np is now slightly larger

- Suppose $x_1, ..., x_n \in [1,100]$
- Suppose $p_i = p$ for all $i \in [n]$

• Can we get a 2-approximation with high probability?

• Bernstein's inequality: Let $y_1, ..., y_n \in [-M, M]$ be independent random variables and let $y = y_1 + \cdots + y_n$ have mean μ and variance σ^2 . Then for any $t \ge 0$:

$$\Pr[|y - \mu| \ge t] \le 2e^{-2\sigma^2 + \frac{4}{3}Mt}$$

• Set
$$M=\frac{100}{p}$$
, $t=\frac{x}{2}$, and $\sigma^2\approx\frac{10000n}{p}$. Then

$$\Pr\left[|y - \mu| \ge \frac{x}{2}\right] \le 2\exp\left(-\frac{(x/2)^2}{2(10000n/p) + (4/3)(100x/p)}\right)$$

- Suppose $x_1, ..., x_n \in [1,100]$
- Suppose $p_i = p$ for all $i \in [n]$

• For
$$\Pr\left[|y-\mu| \ge \frac{x}{2}\right] \le 2\exp\left(-\frac{(x/2)^2}{2(10000n/p)+(4/3)(100x/p)}\right)$$
, we require $\frac{20000n}{p} \approx \left(\frac{x}{2}\right)^2$ and x can be as small as n , so we need $p \approx \frac{80000}{n}$

- Suppose $x_1, ..., x_n \in [1,100]$
- Suppose $p_i = p$ for all $i \in [n]$

- What can we say about concentration?
- Can get a 2-approximation even for $p \approx \frac{80000}{n}$
- How many samples do we expect? np is now WAY larger

- Suppose $x_1, \dots, x_n \in [1, n]$
- Suppose $p_i = p$ for all $i \in [n]$

Can we get a 2-approximation with high probability?

• Bernstein's inequality: Let $y_1, ..., y_n \in [-M, M]$ be independent random variables and let $y = y_1 + \cdots + y_n$ have mean μ and variance σ^2 . Then for any $t \ge 0$:

$$\Pr[|y - \mu| \ge t] \le 2e^{-2\sigma^2 + \frac{4}{3}Mt}$$

• Set $M = \frac{n}{p}$, $t = \frac{x}{2}$, and $\sigma^2 \approx \frac{n^2}{p}$. Then

$$\Pr\left[|y - \mu| \ge \frac{x}{2}\right] \le 2\exp\left(-\frac{(x/2)^2}{2(n^2/p) + (4/3)(nx/2p)}\right)$$

- Suppose $x_1, \dots, x_n \in [1, n]$
- Suppose $p_i = p$ for all $i \in [n]$

• For
$$\Pr\left[|y-\mu| \ge \frac{x}{2}\right] \le 2\exp\left(-\frac{(x/2)^2}{2(n^2/p)+(4/3)(nx/2p)}\right)$$
, we require $\frac{2n^2}{p} \approx \left(\frac{x}{2}\right)^2$ and x can be as small as n , so we need $p \approx 1$

- Suppose $x_1, \dots, x_n \in [1, n]$
- Suppose $p_i = p$ for all $i \in [n]$

- What can we say about concentration?
- Can get a 2-approximation for $p \approx 1$
- How many samples do we expect? np is now n

- Suppose $x_1, \dots, x_n \in [1, n]$
- Suppose $p_i = p$ for all $i \in [n]$

Do we really need p to be a constant?

- Suppose $x_1, \dots, x_n \in [1, n]$
- Suppose $p_i = p$ for all $i \in [n]$

Do we really need p to be a constant? YES!

• Consider a fixed set $X = \{x_1, ..., x_n\}$ of n numbers

• Suppose we sample each point x_i with some probability p_i and rescale by $\frac{1}{p_i}$

- What is the expected sum? $E[y_1 + \cdots + y_n] = x_1 + \cdots + x_n$
- What can we say about concentration?

Sampling for Sum Estimation

• Consider a fixed set $X = \{x_1, ..., x_n\}$ of n numbers

• What if we choose the probability p_i different for each x_i ?

Sampling for Sum Estimation

• Consider a fixed set $X = \{x_1, ..., x_n\}$ of n numbers

• What if we choose the probability p_i different for each x_i ?

• Choose p_i proportional to x_i

• Consider a fixed set $X = \{x_1, ..., x_n\}$ of n numbers

• What if we choose the probability p_i different for each x_i ?

• Choose p_i proportional to x_i

• Let
$$x = x_1 + \dots + x_n$$
, set $p_i = \frac{x_i}{x}$

• Bernstein's inequality: Let $y_1, ..., y_n \in [-M, M]$ be independent random variables and let $y = y_1 + \cdots + y_n$ have mean μ and variance σ^2 . Then for any $t \ge 0$:

$$\Pr[|y - \mu| \ge t] \le 2e^{-\frac{t}{2\sigma^2 + \frac{4}{3}Mt}}$$

• Set $t = \frac{x}{2}$. What about M and σ^2 ?

•
$$y_i \le \frac{1}{p} \cdot x_i = \frac{x}{x_i} \cdot x_i = x$$

• Can set M = x in Bernstein's inequality

• What is the variance for each y_i ?

- $Var[y_i] \le \frac{1}{p_i} \cdot x_i^2 \le x_i \cdot x$
- $Var[y] = Var[y_1] + \dots + Var[y_n] \le x \cdot (x_1 + \dots + x_n) = x^2$
- What is the variance for y under uniform sampling? $\frac{nx_i^2}{p}$
- What is the variance for each y_i under uniform sampling? $\frac{x_i^2}{p}$

• Bernstein's inequality: Let $y_1, ..., y_n \in [-M, M]$ be independent random variables and let $y = y_1 + \cdots + y_n$ have mean μ and variance σ^2 . Then for any $t \ge 0$:

$$\Pr[|y - \mu| \ge t] \le 2e^{-\frac{t}{2\sigma^2 + \frac{4}{3}Mt}}$$

• Set M=x, $t=\frac{x}{2}$, and $\sigma^2\approx x^2$. Then

$$\Pr\left[|y - \mu| \ge \frac{x}{2}\right] \le 2\exp\left(-\frac{(x/2)^2}{2x^2 + (4/3)(x^2/2)}\right)$$

- Suppose $x_1, \dots, x_n \in [1, n]$
- Suppose $p_i = \frac{x_i}{x}$ for all $i \in [n]$

- Can get a 2-approximation for importance sampling
- How many samples do we expect?

- How many samples do we expect?
- Let S_i be the indicator random variable for whether we sampled x_i (which we do with probability p_i)

- $S = S_1 + \cdots + S_n$ is the total number of samples
- $E[S] = E[S_1] + \cdots + E[S_n]$ by linearity of expectation
- $E[S_i] = p_i = \frac{x_i}{x}$

- Suppose $x_1, \dots, x_n \in [1, n]$
- Suppose $p_i = \frac{x_i}{x}$ for all $i \in [n]$

- Can get a 2-approximation for importance sampling
- How many samples do we expect? $E[S] = \frac{x_1}{x} + \cdots + \frac{x_n}{x} = 1$, so just a constant number of samples!

• Consider a fixed set X and a fixed set C of K centers, which induces a fixed cost Cost(X,C)

- Consider a fixed set X and a fixed set C of K centers, which induces a fixed cost Cost(X,C)
- A simple way to obtain X' with $Cost(X', C) \approx Cost(X, C)$ is to uniformly sample points of X into X'

• Consider a fixed set X and a fixed set C of K centers, which induces a fixed cost Cost(X,C)

• Suppose all points have the same cost, $Cost(x, C) = \frac{Cost(X, C)}{n}$

• How many points do I need to sample to approximate Cost(X, C) within a 2-factor?

Bernstein's Inequality

• Bernstein's inequality: Let $y_1, ..., y_n \in [-M, M]$ be independent random variables and let $y = y_1 + \cdots + y_n$ have mean μ and variance σ^2 . Then for any $t \ge 0$:

$$\Pr[|y - \mu| \ge t] \le 2e^{-\frac{2\sigma^2 + \frac{4}{3}Mt}{3}}$$

Bernstein's Inequality

• Bernstein's inequality: Let $y_1, ..., y_n \in [-M, M]$ be independent random variables and let $y = y_1 + \cdots + y_n$ have mean μ and variance σ^2 . Then for any $t \ge 0$:

$$\Pr[|y - \mu| \ge t] \le 2e^{-2\sigma^2 + \frac{4}{3}Mt}$$

• Set $M = \frac{1}{p}$, $t = \frac{1}{2} \cdot \text{Cost}(X, C)$, and $\sigma^2 \approx \frac{n}{p}$. Then for x = Cost(X, C),

$$\Pr\left[|y - \mu| \ge \frac{x}{2}\right] \le 2\exp\left(-\frac{(x/2)^2}{2(4n/p) + (4/3)(x/p)}\right)$$

• Consider a fixed set X and a fixed set C of K centers, which induces a fixed cost Cost(X,C)

- Suppose all points have the same cost, $Cost(x, C) = \frac{Cost(X,C)}{n}$
- Can get a 2-approximation to Cost(X, C) even for $p = \Theta\left(\frac{1}{n}\right)$
- How many samples do we expect? $np = \Theta(1)$

- Consider a fixed set X and a fixed set C of K centers, which induces a fixed cost Cost(X,C)
- Suppose all points have cost between 1 and 100
- Suppose $p_i = p$ for all $i \in [n]$

Bernstein's Inequality

• Bernstein's inequality: Let $y_1, ..., y_n \in [-M, M]$ be independent random variables and let $y = y_1 + \cdots + y_n$ have mean μ and variance σ^2 . Then for any $t \ge 0$:

$$\Pr[|y - \mu| \ge t] \le 2e^{-\frac{2\sigma^2 + \frac{4}{3}Mt}{3}}$$

Bernstein's Inequality

• Bernstein's inequality: Let $y_1, ..., y_n \in [-M, M]$ be independent random variables and let $y = y_1 + \cdots + y_n$ have mean μ and variance σ^2 . Then for any $t \ge 0$:

$$\Pr[|y - \mu| \ge t] \le 2e^{-2\sigma^2 + \frac{4}{3}Mt}$$

• Set $M = \frac{100}{p}$, $t = \frac{1}{2} \cdot \text{Cost}(X, C)$, and $\sigma^2 \approx \frac{10000n}{p}$. Then for x = Cost(X, C),

$$\Pr\left[|y - \mu| \ge \frac{x}{2}\right] \le 2\exp\left(-\frac{(x/2)^2}{2(100n/p) + (4/3)(50x/p)}\right)$$

- Suppose $x_1, ..., x_n \in [1,100]$
- Suppose $p_i = p$ for all $i \in [n]$

• For
$$\Pr\left[|y-\mu| \ge \frac{x}{2}\right] \le 2\exp\left(-\frac{(x/2)^2}{2(10000n/p)+(4/3)(100x/p)}\right)$$
, we require $\frac{20000n}{p} \approx \left(\frac{x}{2}\right)^2$ and x can be as small as n , so we need $p \approx \frac{80000}{n}$

• Consider a fixed set X and a fixed set C of K centers, which induces a fixed cost Cost(X,C)

- Suppose all points have cost between 1 and 100
- Can get a 2-approximation even for $p \approx \frac{80000}{n}$
- How many samples do we expect? np is now WAY larger

• Bernstein's inequality: Let $y_1, ..., y_n \in [-M, M]$ be independent random variables and let $y = y_1 + \cdots + y_n$ have mean μ and variance σ^2 . Then for any $t \ge 0$:

$$\Pr[|y - \mu| \ge t] \le 2e^{-2\sigma^2 + \frac{4}{3}Mt}$$

• Set $M = \frac{n}{p}$, $t = \frac{1}{2} \cdot \text{Cost}(X, C)$, and $\sigma^2 \approx \frac{n^3}{p}$. Then for x = Cost(X, C),

$$\Pr\left[|y - \mu| \ge \frac{x}{2}\right] \le 2\exp\left(-\frac{(x/2)^2}{2(n^2/p) + (4/3)(nx/2p)}\right)$$

- Consider a fixed set X and a fixed set C of K centers, which induces a fixed cost Cost(X,C)
- Suppose all points have cost between 1 and 100
- Suppose $p_i = p$ for all $i \in [n]$

• For
$$\Pr\left[|y-\mu| \ge \frac{x}{2}\right] \le 2\exp\left(-\frac{(x/2)^2}{2(10000n/p)+(4/3)(100x/p)}\right)$$
, we require $\frac{20000n}{p} \approx \left(\frac{x}{2}\right)^2$ and x can be as small as n , so $p \approx \frac{80000}{n}$

• Suppose $p_i = p$ for all $i \in [n]$

- What can we say about concentration?
- Can get a 2-approximation even for $p \approx \frac{80000}{n}$
- How many samples do we expect? np is now WAY larger

• Consider a fixed set X and a fixed set C of K centers, which induces a fixed cost Cost(X,C)

• Suppose all points have cost between 1 and n

• How many points do I need to sample to approximate Cost(X, C) within a $(1 + \varepsilon)$ -factor?

• Bernstein's inequality: Let $y_1, ..., y_n \in [-M, M]$ be independent random variables and let $y = y_1 + \cdots + y_n$ have mean μ and variance σ^2 . Then for any $t \ge 0$:

$$\Pr[|y - \mu| \ge t] \le 2e^{-2\sigma^2 + \frac{4}{3}Mt}$$

• Set $M = \frac{n}{p}$, $t = \frac{x}{2}$, and $\sigma^2 \approx \frac{n^2}{p}$. Then

$$\Pr\left[|y - \mu| \ge \frac{x}{2}\right] \le 2\exp\left(-\frac{(x/2)^2}{2(n^2/p) + (4/3)(nx/2p)}\right)$$

Uniform Sampling for Sum Estimation

- Consider a fixed set X and a fixed set C of K centers, which induces a fixed cost Cost(X,C)
- Suppose all points have cost between 1 and n
- Suppose $p_i = p$ for all $i \in [n]$

• For
$$\Pr\left[|y-\mu| \geq \frac{x}{2}\right] \leq 2\exp\left(-\frac{(x/2)^2}{2(n^2/p)+(4/3)(nx/2p)}\right)$$
, we require $\frac{2n^2}{p} \approx \left(\frac{x}{2}\right)^2$ and x can be as small as n , so we need $p \approx 1$

- Consider a fixed set X and a fixed set C of K centers, which induces a fixed cost Cost(X,C)
- Uniform sampling needs a lot of samples if there is a single point that greatly contributes to Cost(X, C)

• Fix: Importance sampling, sample each point $x \in X$ into X' with probability proportional Cost(x, C), i.e., Cost(x, C)/ Cost(X, C)

• Fix: Importance sampling, sample each point $x \in X$ into X' with probability proportional Cost(x, C), i.e., Cost(x, C)/ Cost(X, C)

Importance Sampling for Coreset Construction

• What is the variance for each y_i ?

•
$$Var[y_i] \le \frac{1}{p_i} \cdot \left(Cost(x_i, C)\right)^2 \le Cost(x_i, C) \cdot Cost(X, C)$$

•
$$Var[y] = Var[y_1] + \dots + Var[y_n] \le (Cost(X, C))^2$$

• Fix: Importance sampling, sample each point $x \in X$ into X' with probability proportional Cost(x, C), i.e., Cost(x, C)/ Cost(X, C)

• Importance sampling only needs X' to have size $O\left(\frac{1}{\varepsilon^2}\right)$ to achieve $(1 + \varepsilon)$ -approximation to Cost(X, C)

- Importance sampling only needs X' to have size $O\left(\frac{1}{\varepsilon^2}\right)$ to achieve $(1 + \varepsilon)$ -approximation to Cost(X, C)
- What about a different choice C of k centers?

- Importance sampling only needs X' to have size $O\left(\frac{1}{\varepsilon^2}\right)$ to achieve $(1 + \varepsilon)$ -approximation to Cost(X, C)
- To handle all possible sets of k centers:
 - Need to sample each point x with probability $\max_{C} \frac{\text{Cost}(x,C)}{\text{Cost}(X,C)} \text{ instead of } \frac{\text{Cost}(x,C)}{\text{Cost}(X,C)}$
 - Need to union bound over a net of all possible sets of k
 centers

Nets

 A net N is a set of sets C of k centers such that accuracy on N implies accuracy everywhere

- Importance sampling only needs X' to have size $O\left(\frac{1}{\varepsilon^2}\right)$ to achieve $(1 + \varepsilon)$ -approximation to Cost(X, C)
- To handle all possible sets of k centers:
 - Need to sample each point x with probability $\max_{C} \frac{\text{Cost}(x,C)}{\text{Cost}(X,C)} \text{ instead of } \frac{\text{Cost}(x,C)}{\text{Cost}(X,C)}$
 - Need to union bound over a net of all possible sets of k centers

Net with size
$$\left(\frac{n\Delta}{\varepsilon}\right)^{O(kd)}$$

Sensitivity Sampling

• The quantity $s(x) = \max_{C} \frac{\text{Cost}(x,C)}{\text{Cost}(x,C)}$ is called the *sensitivity* of x and intuitively measures how "important" the point x is

• The total sensitivity of X is $\sum_{x \in X} s(x)$ and quantifies how many points will be sampled into X' through importance/sensitivity sampling (before the union bound)