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Class Logistics

• March 5: Lecture canceled, i.e., do NOT show up to HRBB 
126 (unless you want to see an empty classroom)



Information Theory

• Suppose 𝑋 is a random variable taking on values 𝑛 ≔
{1,2, … , 𝑛} and let 𝑝𝑖 ≔ Pr[𝑋 = 𝑖] for all 𝑖 ∈ [𝑛]

• Concepts generalize to continuous domains



Entropy

• Suppose 𝑋 is a random variable taking on values 𝑛 ≔
{1,2, … , 𝑛} and let 𝑝𝑖 ≔ Pr[𝑋 = 𝑖] for all 𝑖 ∈ [𝑛]

• The entropy 𝐻 𝑋 = σ𝑖 𝑝𝑖 log2
1

𝑝𝑖
of 𝑋 measures its uncertainty

• We have 𝐻 𝑋 ≤ log2 𝑛 with equality at 𝑝𝑖 =
1

𝑛
for all 𝑖 ∈ [𝑛]



Entropy

• Suppose 𝑋 is the outcome of a fair coin flip. What is 𝐻 𝑋 ? 

• Suppose 𝑋 is the outcome of a flip of a coin that is HEADS with 

probability 
1

2
. What is 𝐻 𝑋 ?

• Suppose 𝑋 is the outcome of a flip of a coin that is HEADS with 

probability 
1

4
. What is 𝐻 𝑋 ?



Entropy

• Suppose 𝑋 is the outcome of a fair coin flip. What is 𝐻 𝑋 ? 

• Suppose 𝑋 is the outcome of a flip of a coin that is HEADS with 

probability 
1

2
. What is 𝐻 𝑋 ? 

1

2
log2 2 +

1

2
log2 2 = 1

• Suppose 𝑋 is the outcome of a flip of a coin that is HEADS with 

probability 
1

4
. What is 𝐻 𝑋 ? 

1

4
log2 4 +

3

4
log2

4

3
≈ 0.811



Entropy

• Suppose 𝑋 is the outcome of a fair coin flip. What is 𝐻 𝑋 ? 

• Suppose 𝑋 is the outcome of a flip of a coin that is HEADS with 
probability 𝑝. What is 𝐻 𝑋 ?

• Suppose 𝑋 is the outcome of a flip of a coin that is HEADS with 
probability 1 − 𝑝. What is 𝐻 𝑋 ?



Entropy

• Suppose 𝑋 is the outcome of a fair coin flip. What is 𝐻 𝑋 ? 1

• Suppose 𝑋 is the outcome of a flip of a coin that is HEADS with 

probability 𝑝. What is 𝐻 𝑋 ? 𝑝 log2
1

𝑝
+ 1 − 𝑝 log2

1

1−𝑝

• Suppose 𝑋 is the outcome of a flip of a coin that is HEADS with 

probability 1 − 𝑝. What is 𝐻 𝑋 ? 𝑝 log2
1

𝑝
+ 1 − 𝑝 log2

1

1−𝑝



Conditional and Joint Entropy

• Let 𝑋 and 𝑌 be random variables

• Conditional entropy 𝐻 𝑋 𝑌 = σ𝑦 𝐻 𝑋 𝑌 = 𝑦 ⋅ Pr 𝑌 = 𝑦

• Conditioning can only decrease entropy: 𝐻 𝑋 𝑌 ≤ 𝐻(𝑋)

• Proof is by concavity of the log function and Jensen’s inequality



Joint Entropy

• Joint entropy:

𝐻(𝑋, 𝑌) = σ𝑥,𝑦 Pr 𝑋, 𝑌 = 𝑥, 𝑦 ⋅ log2
1

Pr 𝑋,𝑌 = 𝑥,𝑦
 



Chain Rule for Entropy

• 𝐻 𝑋, 𝑌 = 𝐻 𝑋 + 𝐻(𝑌|𝑋)

= ෍

𝑥,𝑦

Pr 𝑋 = 𝑥 ⋅ Pr 𝑌 = 𝑦|𝑋 = 𝑥 ⋅ log2

1

Pr 𝑋, 𝑌 = 𝑥, 𝑦

𝐻 𝑋, 𝑌 = ෍

𝑥,𝑦

Pr 𝑋, 𝑌 = 𝑥, 𝑦 ⋅ log2

1

Pr 𝑋, 𝑌 = 𝑥, 𝑦

= ෍

𝑥,𝑦

Pr 𝑋 = 𝑥 Pr 𝑌 = 𝑦|𝑋 = 𝑥 log2

1

Pr[𝑋 = 𝑥]
⋅

1

Pr 𝑌 = 𝑦 𝑋 = 𝑥
 



Mutual Information

• Mutual information between 𝑋 and 𝑌 is 𝐼 𝑋; 𝑌 = 𝐻 𝑋 −
𝐻 𝑋 𝑌 = 𝐻 𝑌 − 𝐻 𝑌 𝑋 = 𝐼(𝑌; 𝑋)

• “Amount of information” obtained about one random variable 
from observing the other random variable

• We have 𝐼 𝑋; 𝑋 = 𝐻 𝑋 − 𝐻 𝑋 𝑋 = 𝐻(𝑋)



Trivia Question #9 (Conditional Mutual 
Information)

• For the conditional mutual information between 𝑋 and 𝑌 
given 𝑍, 𝐼 𝑋; 𝑌|𝑍 = 𝐻 𝑋|𝑍 − 𝐻 𝑋 𝑌, 𝑍 , which of the 
following is always true?

• 𝐼 𝑋; 𝑌 𝑍 ≥ 𝐼(𝑋; 𝑌)

• 𝐼 𝑋; 𝑌 𝑍 = 𝐼(𝑋; 𝑌)

• 𝐼 𝑋; 𝑌 𝑍 ≤ 𝐼(𝑋; 𝑌)

• None of the above



Conditional Mutual Information

• Suppose 𝑋 = 𝑌 = 𝑍

• 𝐼 𝑋; 𝑌 𝑍 = 𝐻 𝑋|𝑍 − 𝐻 𝑋 𝑌, 𝑍 = 𝐻 𝑋 𝑍 − 𝐻 𝑋 𝑍 = 0

• 𝑌 does not reveal anything about 𝑋 that 𝑍 has not already 
revealed

• 𝐼 𝑋; 𝑌 = 𝐻 𝑋 − 𝐻 𝑋 𝑌 = 𝐻 𝑋 − 0 = 𝐻(𝑋)

• In this case, 𝐼 𝑋; 𝑌 𝑍 ≤ 𝐼(𝑋; 𝑌)



Conditional Mutual Information

• Suppose 𝑋, 𝑌 ∈ {0,1} uniformly at random and  𝑋 ≡ 𝑌 +
𝑍 (𝑚𝑜𝑑 2) 

• 𝐼 𝑋; 𝑌 𝑍 = 𝐻 𝑋|𝑍 − 𝐻 𝑋 𝑌, 𝑍 = 𝐻 𝑋 − 0 = 𝐻 𝑋

• 𝑋 is completely determined by 𝑌 once 𝑍 is fixed

• 𝐼 𝑋; 𝑌 = 𝐻 𝑋 − 𝐻 𝑋 𝑌 = 𝐻 𝑋 − 𝐻(𝑋) = 0

• In this case, 𝐼 𝑋; 𝑌 𝑍 ≥ 𝐼(𝑋; 𝑌)



Chain Rule for Mutual Information

• 𝐼 𝑋, 𝑌; 𝑍 = 𝐼 𝑋; 𝑍 + 𝐼(𝑌; 𝑍|𝑋)

• By induction, 𝐼 𝑋1, … 𝑋𝑛; 𝑍 = σ𝑖 𝐼(𝑋𝑖; 𝑍|𝑋1, … , 𝑋𝑖−1)

• 𝐼 𝑋, 𝑌; 𝑍 = 𝐻 𝑋, 𝑌  − 𝐻 𝑋, 𝑌 𝑍

= 𝐻 𝑋 + 𝐻 𝑌 𝑋 − 𝐻 𝑋 𝑍 − 𝐻(𝑌|𝑋, 𝑍)

(Chain Rule for Entropy)

= 𝐼 𝑋; 𝑍 + 𝐼(𝑌; 𝑍|𝑋)



Markov Chain

• A Markov chain 𝑋 → 𝑌 → 𝑍 is a sequence of random 
variables where the outcome of each random variable only 
depends on the value of the previous random variable

• In other words, the distribution of 𝑍 depends solely on the 
realization of 𝑌, regardless of the value of 𝑋



Data Processing Inequality

• Suppose 𝑋 → 𝑌 → 𝑍 is a Markov chain. Then

• In other words, any post-processing function applied to 𝑌 to 
obtain 𝑍 can only lose information about 𝑋

• Consequently, we also have

𝐼 𝑋; 𝑍 ≤ 𝐼(𝑋; 𝑌)

𝐻 𝑋 𝑌 ≤ 𝐻(𝑋|𝑍)



Data Processing Inequality

• Suppose 𝑋 → 𝑌 → 𝑍 is a Markov chain. Then

• By the chain rule for mutual information, 

• By definition, we have 𝐼 𝑋; 𝑍 𝑌 = 𝐻 𝑋 𝑌 − 𝐻(𝑋|𝑌, 𝑍)

• Since 𝑍 is independent of 𝑋 conditioned on 𝑌, then 
𝐻 𝑋 𝑌, 𝑍 = 𝐻(𝑋|𝑌) so that 𝐼 𝑋; 𝑍 𝑌 = 0

• Then we have 𝐼 𝑋; 𝑍 + 𝐼 𝑋; 𝑌 𝑍 = 𝐼 𝑋; 𝑌

𝐼 𝑋; 𝑍 ≤ 𝐼(𝑋; 𝑌)

𝐼 𝑋; 𝑌, 𝑍 = 𝐼 𝑋; 𝑍 + 𝐼 𝑋; 𝑌 𝑍 = 𝐼 𝑋; 𝑌 + 𝐼 𝑋; 𝑍 𝑌



Fano’s Inequality

• Suppose 𝑋 → 𝑌 → 𝑍 is a Markov chain and 𝑃𝑒 = Pr[𝑋 ≠ 𝑍]. 
Suppose 𝑋 is a random variable taking on values 𝑛 . Then

• Average information lost in a noisy channel

𝐻 𝑋 𝑌 ≤ 𝐻 𝑃𝑒 + 𝑃𝑒 ⋅ log2(𝑛 − 1)



Fano’s Inequality

• Suppose 𝑋 → 𝑌 → 𝑍 is a Markov chain and 𝑃𝑒 = Pr[𝑋 ≠ 𝑍]. 
Suppose 𝑋 is a random variable taking on values 𝑛 . Then

• By data processing inequality, 𝐻 𝑋 𝑌 ≤ 𝐻(𝑋|𝑍)

• Let 𝐸 = 1 if there is an error, i.e., 𝑋 ≠ 𝑍 and 𝐸 = 0 otherwise

• 𝐻 𝑋 𝑍 = 𝐻 𝑋 𝑍 + 𝐻 𝐸 𝑋, 𝑍 = 𝐻(𝐸, 𝑋|𝑍), by chain rule 
of entropy and because 𝐸 is fixed conditioned on 𝑋, 𝑍

𝐻 𝑋 𝑌 ≤ 𝐻 𝑃𝑒 + 𝑃𝑒 ⋅ log2(𝑛 − 1)



Fano’s Inequality

• Putting these together, Fano’s inequality will hold if 

• By chain rule of entropy, 𝐻 𝐸, 𝑋 𝑍 = 𝐻 𝐸 𝑍 + 𝐻 𝑋 𝐸, 𝑍

• By definition of 𝑃𝑒, we have 𝐻 𝐸 𝑍 ≤ 𝐻 𝑃𝑒

• By conditional entropy, 

𝐻(𝐸, 𝑋|𝑍) ≤ 𝐻 𝑃𝑒 + 𝑃𝑒 ⋅ log2(𝑛 − 1)

𝐻 𝑋 𝐸, 𝑍 = Pr 𝐸 = 0 𝐻 𝑋 𝑋′, 𝐸 = 0 + Pr 𝐸 = 1 𝐻(𝑋|𝑋′, 𝐸 = 1)

= 1 − 𝑃𝑒 ⋅ 0 + 𝑃𝑒 ⋅ 𝐻(𝑋|𝑋′, 𝐸 = 1)

≤ 𝑃𝑒 ⋅ log2(𝑛 − 1)



Communication Complexity

• Multiple players each hold an input and are trying to solve a 
problem on the collection of their inputs

• Multiple models: blackboard setting, number-on-forehead



Communication Complexity

• Two-player communication problem

• Alice holds some input 𝐴 and Bob holds some input 𝐵

• One-way communication or total communication

𝐴 𝐵



Index Problem

• Alice holds some input 𝐴 ∈ 0,1 𝑛 and Bob holds some input 
𝐵 ≔ 𝑖 ∈ [𝑛]

• Goal: Alice sends a message to Bob so that with probability at 

least 
2

3
 (over the protocol’s randomness), Bob can determine 𝐴𝑖

𝐴 ∈ 0,1 𝑛 𝑖 ∈ [𝑛]

𝑀



Index Problem

• Suppose 𝐴 ∈ 0,1 𝑛 is drawn uniformly at random

• Alice sends 𝑀 to Bob, so that for all 𝑖 ∈ [𝑛], Pr ෢𝐴𝑖 = 𝐴𝑖 ≥
2

3

• By Fano’s inequality, 𝐻 𝐴𝑖 𝑀 ≤ 𝐻
2

3
+

1

3
log2 2 − 1 = 𝐻

2

3

𝐴 ∈ 0,1 𝑛

Π

𝑖 ∈ [𝑛]



Index Problem

• By the chain rule for mutual information, 

• Since the bits of 𝐴 are independent, 𝐻 𝐴𝑖| 𝐴1, … , 𝐴𝑖−1 = 1.

• Since conditioning can only decrease entropy, 

𝐻 𝐴 𝑀, 𝐴1, … , 𝐴𝑖−1 ≤ 𝐻 𝐴 𝑀 ≤ 𝐻
2

3

𝐼 𝐴; 𝑀 = ෍

𝑖∈[𝑛]

𝐼(𝐴𝑖; 𝑀, 𝐴1, … , 𝐴𝑖−1)

= ෍

𝑖∈[𝑛]

𝐻 𝐴𝑖| 𝐴1, … , 𝐴𝑖−1 − 𝐻(𝐴|𝑀, 𝐴1, … , 𝐴𝑖−1)



Index Problem

• By the chain rule for mutual information,

• Thus, we have that 𝑀 ≥ 𝐻 𝑀 ≥ 𝐼 𝐴; 𝑀 = Ω(𝑛) 

𝐼 𝐴; 𝑀 = ෍

𝑖∈[𝑛]

𝐼(𝐴𝑖; 𝑀, 𝐴1, … , 𝐴𝑖−1)

= ෍

𝑖∈[𝑛]

𝐻 𝐴𝑖| 𝐴1, … , 𝐴𝑖−1 − 𝐻(𝐴|𝑀, 𝐴1, … , 𝐴𝑖−1)

= ෍

𝑖∈[𝑛]

1 − 𝐻
1

3
= Ω(𝑛)



Streaming Lower Bounds

• Alice creates a stream 𝐴 and runs streaming algorithm 𝑆 on 𝐴

• Send the state 𝑆(𝐴) of the algorithm to Bob

• Bob takes 𝑆(𝐴) and updates the state of the algorithm on a 
second part of the stream 𝐵

• If Bob solves INDEX (or some other communication problem), 
then the space required by streaming algorithm 𝑆 is at least the 
one-way communication complexity of INDEX (or the other 
communication problem)



Streaming Lower Bounds, Example 1

• Given a stream of length 𝑚 on a universe of size 𝑛, how many 
unique items appear in the stream?

• Alice takes 𝐴 from INDEX and sends the coordinates of 𝐴

• Bob computes the number of unique items in 𝐴

• Bob then adds the number 𝑖 to the stream and again computes 
the number of unique items in the new dataset

• If the numbers differ, then 𝐴𝑖 = 0



Streaming Lower Bounds, Example 1

• Given a stream of length 𝑚 on a universe of size 𝑛, how many 
unique items appear in the stream?

• This algorithm solves INDEX with input 0,1 𝑛 and thus requires 
space Ω(𝑛)



Streaming Lower Bounds, Example 2

• Given a stream of length 𝑚 on a universe of size 𝑛 inducing a 
frequency vector 𝑓, can we determine whether 𝑓𝑖 = 𝑓𝑗 for a 
query pair 𝑖, 𝑗 given after the stream?

• Alice takes 𝐴 from INDEX with universe size 𝑛 − 1 and sends the 
coordinates of 𝐴

• Bob asks whether 𝑓𝑖 = 𝑓𝑛 (observe 𝑛 never appears in the 
stream)

• If 𝑓𝑖 = 𝑓𝑛, then 𝐴𝑖 = 0. Otherwise 𝐴𝑖 = 1.



Streaming Lower Bounds, Example 2

• Given a stream of length 𝑚 on a universe of size 𝑛, how many 
unique items appear in the stream?

• This algorithm solves INDEX with input 0,1 𝑛−1 and thus 
requires space Ω 𝑛 − 1 = Ω(𝑛)


	Slide 1: CSCE 658: Randomized Algorithms
	Slide 2: Class Logistics
	Slide 3: Information Theory
	Slide 4: Entropy
	Slide 5: Entropy
	Slide 6: Entropy
	Slide 7: Entropy
	Slide 8: Entropy
	Slide 9: Conditional and Joint Entropy
	Slide 10: Joint Entropy
	Slide 11: Chain Rule for Entropy
	Slide 12: Mutual Information
	Slide 13: Trivia Question #9 (Conditional Mutual Information)
	Slide 14: Conditional Mutual Information
	Slide 15: Conditional Mutual Information
	Slide 16: Chain Rule for Mutual Information
	Slide 17: Markov Chain
	Slide 18: Data Processing Inequality
	Slide 19: Data Processing Inequality
	Slide 20: Fano’s Inequality
	Slide 21: Fano’s Inequality
	Slide 22: Fano’s Inequality
	Slide 23: Communication Complexity
	Slide 24: Communication Complexity
	Slide 25: Index Problem
	Slide 26: Index Problem
	Slide 27: Index Problem
	Slide 28: Index Problem
	Slide 29: Streaming Lower Bounds
	Slide 30: Streaming Lower Bounds, Example 1
	Slide 31: Streaming Lower Bounds, Example 1
	Slide 32: Streaming Lower Bounds, Example 2
	Slide 33: Streaming Lower Bounds, Example 2

