CSCE 658: Randomized Algorithms

Lecture 13

Samson Zhou

Class Logistics

 March 5: Lecture canceled, i.e., do NOT show up to HRBB 126 (unless you want to see an empty classroom)

Information Theory

• Suppose X is a random variable taking on values $[n] \coloneqq \{1,2,\ldots,n\}$ and let $p_i \coloneqq \Pr[X=i]$ for all $i \in [n]$

Concepts generalize to continuous domains

• Suppose X is a random variable taking on values $[n] \coloneqq \{1,2,\ldots,n\}$ and let $p_i \coloneqq \Pr[X=i]$ for all $i \in [n]$

- The entropy $H(X) = \sum_{i} p_{i} \log_{2} \frac{1}{p_{i}}$ of X measures its uncertainty
- We have $H(X) \leq \log_2 n$ with equality at $p_i = \frac{1}{n}$ for all $i \in [n]$

• Suppose X is the outcome of a fair coin flip. What is H(X)?

• Suppose X is the outcome of a flip of a coin that is HEADS with probability $\frac{1}{2}$. What is H(X)?

• Suppose X is the outcome of a flip of a coin that is HEADS with probability $\frac{1}{4}$. What is H(X)?

• Suppose X is the outcome of a fair coin flip. What is H(X)?

• Suppose X is the outcome of a flip of a coin that is HEADS with probability $\frac{1}{2}$. What is H(X)? $\frac{1}{2}\log_2 2 + \frac{1}{2}\log_2 2 = 1$

• Suppose X is the outcome of a flip of a coin that is HEADS with probability $\frac{1}{4}$. What is H(X)? $\frac{1}{4}\log_2 4 + \frac{3}{4}\log_2 \frac{4}{3} \approx 0.811$

• Suppose X is the outcome of a fair coin flip. What is H(X)?

• Suppose X is the outcome of a flip of a coin that is HEADS with probability p. What is H(X)?

• Suppose X is the outcome of a flip of a coin that is HEADS with probability 1 - p. What is H(X)?

• Suppose X is the outcome of a fair coin flip. What is H(X)? 1

• Suppose X is the outcome of a flip of a coin that is HEADS with probability p. What is H(X)? $p \log_2 \frac{1}{p} + (1-p) \log_2 \frac{1}{1-p}$

• Suppose X is the outcome of a flip of a coin that is HEADS with probability 1-p. What is H(X)? $p \log_2 \frac{1}{p} + (1-p) \log_2 \frac{1}{1-p}$

Conditional and Joint Entropy

• Let X and Y be random variables

- Conditional entropy $H(X|Y) = \sum_{y} H(X|Y = y) \cdot \Pr[Y = y]$
- Conditioning can only decrease entropy: $H(X|Y) \le H(X)$

Proof is by concavity of the log function and Jensen's inequality

Joint Entropy

Joint entropy:

$$H(X,Y) = \sum_{x,y} \Pr[(X,Y) = (x,y)] \cdot \log_2 \frac{1}{\Pr[(X,Y) = (x,y)]}$$

Chain Rule for Entropy

$$\bullet H(X,Y) = H(X) + H(Y|X)$$

$$H(X,Y) = \sum_{x,y} \Pr[(X,Y) = (x,y)] \cdot \log_2 \frac{1}{\Pr[(X,Y) = (x,y)]}$$

$$= \sum_{x,y} \Pr[X = x] \cdot \Pr[Y = y | X = x] \cdot \log_2 \frac{1}{\Pr[(X,Y) = (x,y)]}$$

$$= \sum_{x,y} \Pr[X = x] \Pr[Y = y | X = x] \left(\log_2 \frac{1}{\Pr[X = x]} \cdot \frac{1}{\Pr[Y = y | X = x]} \right)$$

Mutual Information

• Mutual information between X and Y is I(X;Y) = H(X) - H(X|Y) = H(Y) - H(Y|X) = I(Y;X)

 "Amount of information" obtained about one random variable from observing the other random variable

• We have I(X; X) = H(X) - H(X|X) = H(X)

Trivia Question #9 (Conditional Mutual Information)

• For the conditional mutual information between X and Y given Z, I(X;Y|Z) = H(X|Z) - H(X|Y,Z), which of the following is always true?

- $I(X; Y|Z) \ge I(X; Y)$
- $\bullet I(X;Y|Z) = I(X;Y)$
- $I(X;Y|Z) \leq I(X;Y)$
- None of the above

Conditional Mutual Information

• Suppose X = Y = Z

- I(X;Y|Z) = H(X|Z) H(X|Y,Z) = H(X|Z) H(X|Z) = 0
- Y does not reveal anything about X that Z has not already revealed

- I(X;Y) = H(X) H(X|Y) = H(X) 0 = H(X)
- In this case, $I(X; Y|Z) \leq I(X; Y)$

Conditional Mutual Information

• Suppose $X, Y \in \{0,1\}$ uniformly at random and $X \equiv Y + Z \pmod{2}$

- I(X;Y|Z) = H(X|Z) H(X|Y,Z) = H(X) 0 = H(X)
- X is completely determined by Y once Z is fixed

- I(X;Y) = H(X) H(X|Y) = H(X) H(X) = 0
- In this case, $I(X; Y|Z) \ge I(X; Y)$

Chain Rule for Mutual Information

- I(X,Y;Z) = I(X;Z) + I(Y;Z|X)
- By induction, $I(X_1, ... X_n; Z) = \sum_i I(X_i; Z | X_1, ..., X_{i-1})$

•
$$I(X,Y;Z) = H(X,Y) - H(X,Y|Z)$$

(Chain Rule for Entropy)

$$= H(X) + H(Y|X) - H(X|Z) - H(Y|X,Z)$$

$$= I(X;Z) + I(Y;Z|X)$$

Markov Chain

• A Markov chain $X \to Y \to Z$ is a sequence of random variables where the outcome of each random variable only depends on the value of the previous random variable

• In other words, the distribution of Z depends solely on the realization of Y, regardless of the value of X

Data Processing Inequality

• Suppose $X \to Y \to Z$ is a Markov chain. Then

$$I(X;Z) \leq I(X;Y)$$

• In other words, any post-processing function applied to \underline{Y} to obtain \underline{Z} can only lose information about \underline{X}

Consequently, we also have

$$H(X|Y) \le H(X|Z)$$

Data Processing Inequality

• Suppose $X \to Y \to Z$ is a Markov chain. Then $I(X;Z) \leq I(X;Y)$

By the chain rule for mutual information,

$$I(X; Y, Z) = I(X; Z) + I(X; Y|Z) = I(X; Y) + I(X; Z|Y)$$

- By definition, we have I(X;Z|Y) = H(X|Y) H(X|Y,Z)
- Since Z is independent of X conditioned on Y, then H(X|Y,Z) = H(X|Y) so that I(X;Z|Y) = 0
- Then we have I(X; Z) + I(X; Y|Z) = I(X; Y)

Fano's Inequality

• Suppose $X \to Y \to Z$ is a Markov chain and $P_e = \Pr[X \neq Z]$. Suppose X is a random variable taking on values [n]. Then $H(X|Y) \leq H(P_e) + P_e \cdot \log_2(n-1)$

Average information lost in a noisy channel

Fano's Inequality

- Suppose $X \to Y \to Z$ is a Markov chain and $P_e = \Pr[X \neq Z]$. Suppose X is a random variable taking on values [n]. Then $H(X|Y) \leq H(P_e) + P_e \cdot \log_2(n-1)$
- By data processing inequality, $H(X|Y) \leq H(X|Z)$
- Let E = 1 if there is an error, i.e., $X \neq Z$ and E = 0 otherwise

• H(X|Z) = H(X|Z) + H(E|X,Z) = H(E,X|Z), by chain rule of entropy and because E is fixed conditioned on X,Z

Fano's Inequality

Putting these together, Fano's inequality will hold if

$$H(E, X|Z) \le H(P_e) + P_e \cdot \log_2(n-1)$$

- By chain rule of entropy, H(E,X|Z) = H(E|Z) + H(X|E,Z)
- By definition of P_e , we have $H(E|Z) \leq H(P_e)$
- By conditional entropy,

$$H(X|E,Z) = \Pr[E = 0] H(X|X',E = 0) + \Pr[E = 1] H(X|X',E = 1)$$

$$= (1 - P_e) \cdot 0 + P_e \cdot H(X|X',E = 1)$$

$$\leq P_e \cdot \log_2(n - 1)$$

Communication Complexity

 Multiple players each hold an input and are trying to solve a problem on the collection of their inputs

Multiple models: blackboard setting, number-on-forehead

Communication Complexity

- Two-player communication problem
- Alice holds some input A and Bob holds some input B
- One-way communication or total communication

3

- Alice holds some input $A \in \{0,1\}^n$ and Bob holds some input $B \coloneqq i \in [n]$
- Goal: Alice sends a message to Bob so that with probability at least $\frac{2}{3}$ (over the protocol's randomness), Bob can determine A_i

- Suppose $A \in \{0,1\}^n$ is drawn uniformly at random
- Alice sends M to Bob, so that for all $i \in [n]$, $\Pr[\widehat{A_i} = A_i] \ge \frac{2}{3}$
- By Fano's inequality, $H(A_i|M) \le H(\frac{2}{3}) + \frac{1}{3}(\log_2 2 1) = H(\frac{2}{3})$

• By the chain rule for mutual information,
$$I(A;M) = \sum_{i \in [n]} I(A_i;M,A_1,\dots,A_{i-1})$$

$$= \sum_{i \in [n]} H(A_i|A_1,\dots,A_{i-1}) - H(A|M,A_1,\dots,A_{i-1})$$

- Since the bits of A are independent, $H(A_i | A_1, ..., A_{i-1}) = 1$.
- Since conditioning can only decrease entropy,

$$H(A|M, A_1, ..., A_{i-1}) \le H(A|M) \le H(\frac{2}{3})$$

By the chain rule for mutual information,

$$\begin{split} I(A;M) &= \sum_{i \in [n]} I(A_i; M, A_1, \dots, A_{i-1}) \\ &= \sum_{i \in [n]} H(A_i | A_1, \dots, A_{i-1}) - H(A | M, A_1, \dots, A_{i-1}) \\ &= \sum_{i \in [n]} 1 - H\left(\frac{1}{3}\right) = \Omega(n) \end{split}$$

• Thus, we have that $|M| \ge H(M) \ge I(A; M) = \Omega(n)$

Streaming Lower Bounds

- Alice creates a stream A and runs streaming algorithm S on A
- Send the state S(A) of the algorithm to Bob
- Bob takes S(A) and updates the state of the algorithm on a second part of the stream B

• If Bob solves INDEX (or some other communication problem), then the space required by streaming algorithm *S* is at least the one-way communication complexity of INDEX (or the other communication problem)

• Given a stream of length m on a universe of size n, how many unique items appear in the stream?

- Alice takes A from INDEX and sends the coordinates of A
- Bob computes the number of unique items in A
- ullet Bob then adds the number $oldsymbol{i}$ to the stream and again computes the number of unique items in the new dataset
- If the numbers differ, then $A_i = 0$

• Given a stream of length m on a universe of size n, how many unique items appear in the stream?

• This algorithm solves INDEX with input $\{0,1\}^n$ and thus requires space $\Omega(n)$

• Given a stream of length m on a universe of size n inducing a frequency vector f, can we determine whether $f_i = f_j$ for a query pair i, j given after the stream?

- Alice takes A from INDEX with universe size n-1 and sends the coordinates of A
- Bob asks whether $f_i = f_n$ (observe n never appears in the stream)
- If $f_i = f_n$, then $A_i = 0$. Otherwise $A_i = 1$.

• Given a stream of length m on a universe of size n, how many unique items appear in the stream?

• This algorithm solves INDEX with input $\{0,1\}^{n-1}$ and thus requires space $\Omega(n-1)=\Omega(n)$