CSCE 658: Randomized Algorithms

Lecture 13

Samson Zhou

Class Logistics

- March 5: Lecture canceled, i.e., do NOT show up to HRBB 126 (unless you want to see an empty classroom)

Information Theory

- Suppose X is a random variable taking on values $[n]:=$ $\{1,2, \ldots, n\}$ and let $p_{i}:=\operatorname{Pr}[X=i]$ for all $i \in[n]$
- Concepts generalize to continuous domains

Entropy

- Suppose X is a random variable taking on values $[n]:=$ $\{1,2, \ldots, n\}$ and let $p_{i}:=\operatorname{Pr}[X=i]$ for all $i \in[n]$
- The entropy $H(X)=\sum_{i} p_{i} \log _{2} \frac{1}{p_{i}}$ of X measures its uncertainty
- We have $H(X) \leq \log _{2} n$ with equality at $p_{i}=\frac{1}{n}$ for all $i \in[n]$

Entropy

- Suppose X is the outcome of a fair coin flip. What is $H(X)$?
- Suppose X is the outcome of a flip of a coin that is HEADS with probability $\frac{1}{2}$. What is $H(X)$?
- Suppose X is the outcome of a flip of a coin that is HEADS with probability $\frac{1}{4}$. What is $H(X)$?

Entropy

- Suppose X is the outcome of a fair coin flip. What is $H(X)$?
- Suppose X is the outcome of a flip of a coin that is HEADS with probability $\frac{1}{2}$. What is $H(X) ? \frac{1}{2} \log _{2} 2+\frac{1}{2} \log _{2} 2=1$
- Suppose X is the outcome of a flip of a coin that is HEADS with probability $\frac{1}{4}$. What is $H(X) ? \frac{1}{4} \log _{2} 4+\frac{3}{4} \log _{2} \frac{4}{3} \approx 0.811$

Entropy

- Suppose X is the outcome of a fair coin flip. What is $H(X)$?
- Suppose X is the outcome of a flip of a coin that is HEADS with probability p. What is $H(X)$?
- Suppose X is the outcome of a flip of a coin that is HEADS with probability $1-p$. What is $H(X)$?

Entropy

- Suppose X is the outcome of a fair coin flip. What is $H(X)$? 1
- Suppose X is the outcome of a flip of a coin that is HEADS with probability p. What is $H(X)$? $p \log _{2} \frac{1}{p}+(1-p) \log _{2} \frac{1}{1-p}$
- Suppose X is the outcome of a flip of a coin that is HEADS with probability $1-p$. What is $H(X)$? $p \log _{2} \frac{1}{p}+(1-p) \log _{2} \frac{1}{1-p}$

Conditional and Joint Entropy

- Let X and Y be random variables
- Conditional entropy $H(X \mid Y)=\sum_{y} H(X \mid Y=y) \cdot \operatorname{Pr}[Y=y]$
- Conditioning can only decrease entropy: $H(X \mid Y) \leq H(X)$
- Proof is by concavity of the log function and Jensen's inequality

Joint Entropy

- Joint entropy:

$$
H(X, Y)=\sum_{x, y} \operatorname{Pr}[(X, Y)=(x, y)] \cdot \log _{2} \frac{1}{\operatorname{Pr}[(X, Y)=(x, y)]}
$$

Chain Rule for Entropy

- $H(X, Y)=H(X)+H(Y \mid X)$

$$
\begin{aligned}
& H(X, Y)=\sum_{x, y} \operatorname{Pr}[(X, Y)=(x, y)] \cdot \log _{2} \frac{1}{\operatorname{Pr}[(X, Y)=(x, y)]} \\
& =\sum_{x, y} \operatorname{Pr}[X=x] \cdot \operatorname{Pr}[Y=y \mid X=x] \cdot \log _{2} \frac{1}{\operatorname{Pr}[(X, Y)=(x, y)]} \\
& =\sum_{x, y} \operatorname{Pr}[X=x] \operatorname{Pr}[Y=y \mid X=x]\left(\log _{2} \frac{1}{\operatorname{Pr}[X=x]} \cdot \frac{1}{\operatorname{Pr}[Y=y \mid X=x]}\right)
\end{aligned}
$$

Mutual Information

- Mutual information between X and Y is $I(X ; Y)=H(X)-$ $H(X \mid Y)=H(Y)-H(Y \mid X)=I(Y ; X)$
- "Amount of information" obtained about one random variable from observing the other random variable
- We have $I(X ; X)=H(X)-H(X \mid X)=H(X)$

Trivia Question \#9 (Conditional Mutual Information)

- For the conditional mutual information between X and Y given $Z, I(X ; Y \mid Z)=H(X \mid Z)-H(X \mid Y, Z)$, which of the following is always true?
- $I(X ; Y \mid Z) \geq I(X ; Y)$
- $I(X ; Y \mid Z)=I(X ; Y)$
- $I(X ; Y \mid Z) \leq I(X ; Y)$
- None of the above

Conditional Mutual Information

- Suppose $X=Y=Z$
- $I(X ; Y \mid Z)=H(X \mid Z)-H(X \mid Y, Z)=H(X \mid Z)-H(X \mid Z)=0$
- Y does not reveal anything about X that Z has not already revealed
- $I(X ; Y)=H(X)-H(X \mid Y)=H(X)-0=H(X)$
- In this case, $I(X ; Y \mid Z) \leq I(X ; Y)$

Conditional Mutual Information

- Suppose $X, Y \in\{0,1\}$ uniformly at random and $X \equiv Y+$ $Z(\bmod 2)$
- $I(X ; Y \mid Z)=H(X \mid Z)-H(X \mid Y, Z)=H(X)-0=H(X)$
- X is completely determined by Y once Z is fixed
- $I(X ; Y)=H(X)-H(X \mid Y)=H(X)-H(X)=0$
- In this case, $I(X ; Y \mid Z) \geq I(X ; Y)$

Chain Rule for Mutual Information

- $I(X, Y ; Z)=I(X ; Z)+I(Y ; Z \mid X)$
- By induction, $I\left(X_{1}, \ldots X_{n} ; Z\right)=\sum_{i} I\left(X_{i} ; Z \mid X_{1}, \ldots, X_{i-1}\right)$
- $I(X, Y ; Z)=H(X, Y)-H(X, Y \mid Z)$
(Chain Rule for Entropy)

$$
\begin{aligned}
& =H(X)+H(Y \mid X)-H(X \mid Z)-H(Y \mid X, Z) \\
& =I(X ; Z)+I(Y ; Z \mid X)
\end{aligned}
$$

Markov Chain

- A Markov chain $X \rightarrow Y \rightarrow Z$ is a sequence of random variables where the outcome of each random variable only depends on the value of the previous random variable
- In other words, the distribution of Z depends solely on the realization of Y, regardless of the value of X

Data Processing Inequality

- Suppose $X \rightarrow Y \rightarrow Z$ is a Markov chain. Then

$$
I(X ; Z) \leq I(X ; Y)
$$

- In other words, any post-processing function applied to Y to obtain Z can only lose information about X
- Consequently, we also have

$$
H(X \mid Y) \leq H(X \mid Z)
$$

Data Processing Inequality

- Suppose $X \rightarrow Y \rightarrow Z$ is a Markov chain. Then

$$
I(X ; Z) \leq I(X ; Y)
$$

- By the chain rule for mutual information,

$$
I(X ; Y, Z)=I(X ; Z)+I(X ; Y \mid Z)=I(X ; Y)+I(X ; Z \mid Y)
$$

- By definition, we have $I(X ; Z \mid Y)=H(X \mid Y)-H(X \mid Y, Z)$
- Since Z is independent of X conditioned on Y, then $H(X \mid Y, Z)=H(X \mid Y)$ so that $I(X ; Z \mid Y)=0$
- Then we have $I(X ; Z)+I(X ; Y \mid Z)=I(X ; Y)$

Fano's Inequality

- Suppose $X \rightarrow Y \rightarrow Z$ is a Markov chain and $P_{e}=\operatorname{Pr}[X \neq Z]$. Suppose X is a random variable taking on values $[n]$. Then

$$
H(X \mid Y) \leq H\left(P_{e}\right)+P_{e} \cdot \log _{2}(n-1)
$$

- Average information lost in a noisy channel

Fano's Inequality

- Suppose $X \rightarrow Y \rightarrow Z$ is a Markov chain and $P_{e}=\operatorname{Pr}[X \neq Z]$. Suppose X is a random variable taking on values $[n]$. Then

$$
H(X \mid Y) \leq H\left(P_{e}\right)+P_{e} \cdot \log _{2}(n-1)
$$

- By data processing inequality, $H(X \mid Y) \leq H(X \mid Z)$
- Let $E=1$ if there is an error, i.e., $X \neq Z$ and $E=0$ otherwise
- $H(X \mid Z)=H(X \mid Z)+H(E \mid X, Z)=H(E, X \mid Z)$, by chain rule of entropy and because E is fixed conditioned on X, Z

Fano's Inequality

- Putting these together, Fano's inequality will hold if

$$
H(E, X \mid Z) \leq H\left(P_{e}\right)+P_{e} \cdot \log _{2}(n-1)
$$

- By chain rule of entropy, $H(E, X \mid Z)=H(E \mid Z)+H(X \mid E, Z)$
- By definition of P_{e}, we have $H(E \mid Z) \leq H\left(P_{e}\right)$
- By conditional entropy,

$$
\begin{aligned}
H(X \mid E, Z) & =\operatorname{Pr}[E=0] H\left(X \mid X^{\prime}, E=0\right)+\operatorname{Pr}[E=1] H\left(X \mid X^{\prime}, E=1\right) \\
& =\left(1-P_{e}\right) \cdot 0+P_{e} \cdot H\left(X \mid X^{\prime}, E=1\right) \\
& \leq P_{e} \cdot \log _{2}(n-1)
\end{aligned}
$$

Communication Complexity

- Multiple players each hold an input and are trying to solve a problem on the collection of their inputs
- Multiple models: blackboard setting, number-on-forehead

Communication Complexity

- Two-player communication problem
- Alice holds some input A and Bob holds some input B
- One-way communication or total communication

B

Index Problem

- Alice holds some input $A \in\{0,1\}^{n}$ and Bob holds some input $B:=i \in[n]$
- Goal: Alice sends a message to Bob so that with probability at least $\frac{2}{3}$ (over the protocol's randomness), Bob can determine A_{i}

Index Problem

- Suppose $A \in\{0,1\}^{n}$ is drawn uniformly at random
- Alice sends M to Bob, so that for all $i \in[n], \operatorname{Pr}\left[\widehat{A_{i}}=A_{i}\right] \geq \frac{2}{3}$
- By Fano's inequality, $H\left(A_{i} \mid M\right) \leq H\left(\frac{2}{3}\right)+\frac{1}{3}\left(\log _{2} 2-1\right)=H\left(\frac{2}{3}\right)$

Index Problem

- By the chain rule for mutual information,

$$
\begin{aligned}
I(A ; M) & =\sum_{i \in[n]} I\left(A_{i} ; M, A_{1}, \ldots, A_{i-1}\right) \\
& =\sum_{i \in[n]} H\left(A_{i} \mid A_{1}, \ldots, A_{i-1}\right)-H\left(A \mid M, A_{1}, \ldots, A_{i-1}\right)
\end{aligned}
$$

- Since the bits of A are independent, $H\left(A_{i} \mid A_{1}, \ldots, A_{i-1}\right)=1$.
- Since conditioning can only decrease entropy,
$H\left(A \mid M, A_{1}, \ldots, A_{i-1}\right) \leq H(A \mid M) \leq H\left(\frac{2}{3}\right)$

Index Problem

- By the chain rule for mutual information,

$$
\begin{aligned}
I(A ; M) & =\sum_{i \in[n]} I\left(A_{i} ; M, A_{1}, \ldots, A_{i-1}\right) \\
& =\sum_{i \in[n]} H\left(A_{i} \mid A_{1}, \ldots, A_{i-1}\right)-H\left(A \mid M, A_{1}, \ldots, A_{i-1}\right) \\
& =\sum_{i \in[n]} 1-H\left(\frac{1}{3}\right)=\Omega(n)
\end{aligned}
$$

- Thus, we have that $|M| \geq H(M) \geq I(A ; M)=\Omega(n)$

Streaming Lower Bounds

- Alice creates a stream A and runs streaming algorithm S on A
- Send the state $S(A)$ of the algorithm to Bob
- Bob takes $S(A)$ and updates the state of the algorithm on a second part of the stream B
- If Bob solves INDEX (or some other communication problem), then the space required by streaming algorithm S is at least the one-way communication complexity of INDEX (or the other communication problem)

Streaming Lower Bounds, Example 1

- Given a stream of length m on a universe of size n, how many unique items appear in the stream?
- Alice takes A from INDEX and sends the coordinates of A
- Bob computes the number of unique items in A
- Bob then adds the number i to the stream and again computes the number of unique items in the new dataset
- If the numbers differ, then $A_{i}=0$

Streaming Lower Bounds, Example 1

- Given a stream of length m on a universe of size n, how many unique items appear in the stream?
- This algorithm solves INDEX with input $\{0,1\}^{n}$ and thus requires space $\Omega(n)$

Streaming Lower Bounds, Example 2

- Given a stream of length m on a universe of size n inducing a frequency vector f, can we determine whether $f_{i}=f_{j}$ for a query pair i, j given after the stream?
- Alice takes A from INDEX with universe size $n-1$ and sends the coordinates of A
- Bob asks whether $f_{i}=f_{n}$ (observe n never appears in the stream)
- If $f_{i}=f_{n}$, then $A_{i}=0$. Otherwise $A_{i}=1$.

Streaming Lower Bounds, Example 2

- Given a stream of length m on a universe of size n, how many unique items appear in the stream?
- This algorithm solves INDEX with input $\{0,1\}^{n-1}$ and thus requires space $\Omega(n-1)=\Omega(n)$

