CSCE 658: Randomized Algorithms

Lecture 13

Samson Zhou



Class Logistics

* March 5: Lecture canceled, i.e., do NOT show up to HRBB
126 (unless you want to see an empty classroom)



Information Theory

* Suppose X is a random variable taking on values [n] :=
{1,2,...,n}and letp; := Pr[X =i| foralli € [n]

* Concepts generalize to continuous domains



Entropy

* Suppose X is a random variable taking on values [n] :=
{1,2,...,n}and letp; := Pr[X =i| foralli € [n]

* The entropy H(X) = );; p; log, % of X measures its uncertainty

* We have H(X) < log, n with equality at p; = %for all i € [n]



Entropy

* Suppose X is the outcome of a fair coin flip. What is H(X)?

* Suppose X is the outcome of a flip of a coin that is HEADS with
probability % What is H(X)?

e Suppose X is the outcome of a flip of a coin that is HEADS with
probability i. What is H(X)?



Entropy

* Suppose X is the outcome of a fair coin flip. What is H(X)?

* Suppose X is the outcome of a flip of a coin that is HEADS with
probability % What is H(X)? %logz 2 + %logz 2=1

e Suppose X is the outcome of a flip of a coin that is HEADS with
probability i. What is H(X)? %logz 4 + zlogz g ~ (0.811



Entropy

* Suppose X is the outcome of a fair coin flip. What is H(X)?

* Suppose X is the outcome of a flip of a coin that is HEADS with
probability p. What is H(X)?

e Suppose X is the outcome of a flip of a coin that is HEADS with
probability 1 — p. What is H(X)?



Entropy

* Suppose X is the outcome of a fair coin flip. Whatis H(X)? 1

* Suppose X is the outcome of a flip of a coin that is HEADS with

probability p. What is H(X)? p log, % + (1 -p) log, ﬁ

e Suppose X is the outcome of a flip of a coin that is HEADS with

probability 1 — p. What is H(X)? p log, % + (1 —p) log, ﬁ



Conditional and Joint Entropy

e Let X and Y be random variables

* Conditional entropy H(X|Y) = >, H(X|Y =y) - Pr[Y = y]
* Conditioning can only decrease entropy: H(X|Y) < H(X)

* Proof is by concavity of the log function and Jensen’s inequality



Joint Entropy

* Joint entropy:

1
[(X,Y)=(x,y)]

HX,Y) = Zx,y Prl(X,Y) = (x,y)] - log, Pr



Chain Rule for Entropy

cH(X,Y) = H(X) + H(Y|X)

1

Pr[(X,Y) = (x,y)]
1

Pr[(X,Y) = (x,y)]

1 1

HX,Y) = ) Pr(X,Y) = (x,9)] - log,
X,y

—ZPr = x| - Pr[Y = y|X = x] - log,




Mutual Information

* Mutual information between X and Yis I(X;Y) = H(X) —
H(X|Y) = H(Y) — H(Y|X) = I(Y; X)

* “Amount of information” obtained about one random variable
from observing the other random variable

» We have I(X; X) = H(X) — H(X|X) = H(X)



Trivia Question #9 (Conditional Mutual
Information)

* For the conditional mutual information between X and Y
givenZ, [(X;Y|Z) = H(X|Z) — H(X|Y, Z), which of the
following is always true?

I(X;Y|Z) =2 I(X;Y)
I(X;Y|Z) =1(X;Y)
I(X;Y|Z) < I(X;Y)
* None of the above




Conditional Mutual Information

*Suppose X =Y =7

- 1(X;Y|Z) = H(X|Z) — HX|Y,Z) = H(X|Z) — H(X|Z) = 0

* Y does not reveal anything about X that Z has not already
revealed

< I(X;Y) = H(X) — H(X|Y) = H(X) — 0 = H(X)
*Inthiscase, I(X;Y|Z) < I(X;Y)



Conditional Mutual Information

* Suppose X, Y € {0,1} uniformly atrandomand X =Y +
Z (mod 2)

o [(X;Y|Z)=HX|Z)—HX|Y,Z) =H(X)—0=H(X)
* X is completely determined by Y once 7 is fixed

I(X;Y) = HX) — HX|Y) = H(X) — H(X) = 0
*Inthiscase, I(X;Y|Z) = I(X;Y)



Chain Rule for Mutual Information

I(X,Y;2) = 1(X;Z) + I(Y; Z|X)
« By induction, I(Xy, .. Xn; Z) = X 1(Xi3 Z| X1, o) Xi—1)

[(X,Y;Z)=HX,Y) —HX,Y|Z)
(Chain Rule for Entropy)
=HX)+HY|X)-HX|Z)—H{Y|X,Z)

=1(X;2) + [(Y; Z|X)



Markov Chain

* A Markov chain X = Y — Z is a sequence of random
variables where the outcome of each random variable only
depends on the value of the previous random variable

* In other words, the distribution of Z depends solely on the
realization of Y, regardless of the value of X



Data Processing Inequality

e Suppose X = Y — Z is a Markov chain. Then
I(X;Z) <I(X;Y)

* In other words, any post-processing function applied to Y to
obtain Z can only lose information about X

* Consequently, we also have
H(X|Y) < H(X|Z)



Data Processing Inequality

e Suppose X = Y — Z is a Markov chain. Then
I(X;Z) <I1(X;Y)
* By the chain rule for mutual information,
I(X;Y,2)=1X;2)+I1X;Y|Z)=1(X;Y)+ I(X;Z|Y)
* By definition, we have I(X; Z|Y) = H(X|Y) — H(X|Y, Z)

* Since Z is independent of X conditioned on Y, then
HX|Y,Z) = H(X|Y)sothatI(X;Z|Y) =0

*Thenwe have [(X;Z) + I(X;Y|Z) = 1(X;Y)



Fano’s Inequality

* Suppose X = Y — Zis a Markov chain and P, = Pr|X # Z].
Suppose X is a random variable taking on values [n]. Then

HX|Y) <H(P,)+ P, -log,(n—1)

* Average information lost in a noisy channel



Fano’s Inequality

* Suppose X = Y — Zis a Markov chain and P, = Pr|X # Z|.
Suppose X is a random variable taking on values [n]. Then

HX|Y) <H(P,)+ P, -log,(n—1)
* By data processing inequality, H(X|Y) < H(X|Z)
elet £ = 1ifthereisanerror,i.e., X # Z and E = 0 otherwise

*H(X|Z) =HX|Z) + H(E|X,Z) = H(E, X|Z), by chain rule
of entropy and because E is fixed conditioned on X, Z



Fano’s Inequality

* Putting these together, Fano’s inequality will hold if
H(E,X|Z) <H(P,)+ P, -log,(n—1)
* By chain rule of entropy, H(E,X|Z) = H(E|Z) + H(X|E, Z)
* By definition of P,, we have H(E'|Z) < H(P,)
* By conditional entropy,
HX|E,Z) =Pr|E=0]HX|X',E=0)+Pr|lE =1|HX|X',E =1)
=(1—-P)-0+P,-HX|X,E=1)
<P, -log,(n—1)



Communication Complexity

* Multiple players each hold an input and are trying to solve a
problem on the collection of their inputs

* Multiple models: blackboard setting, number-on-forehead



Communication Complexity

* Two-player communication problem
* Alice holds some input A and Bob holds some input B

* One-way communication or total communication
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Index Problem

* Alice holds some input 4 € {0,1}"* and Bob holds some input
B:=1i¢€|n]

* Goal: Alice sends a message to Bob so that with probability at
least % (over the protocol’s randomness), Bob can determine A4;
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Index Problem

* Suppose 4 € {0,1}" is drawn uniformly at random

* Alice sends M to Bob, so that foralli € | Pr[A = A. ] > -

* By Fano’s inequality, H(A4;|M) < H (5) + 5(1082 2—1) = (g




Index Problem

* By the chain rule for mutual information,

I(A; M) = 2 (A M, Ay, ..., Ai 1)

z H(A;| As, ... A;_) — H(AIM, Ay, ..., A;_2)

* Since the blts of A are independent, H(4;| A4, ..., A;_1) = 1.
* Since conditioning can only decrease entropy,
2
H(AlM) Al) ---)Ai—l) = H(AlM) =H (g)



Index Problem

* By the chain rule for mutual information,

I(A; M) = z (A M, Ay, ..., Ai 1)

z H(A;| As, ... A;_) — H(AIM, Ay, ..., A;_2)

= z 1—H(1> = O(n)
le[n] 3

* Thus, we have that |[M| > H(M) = I(A; M) = Q(n)



Streaming Lower Bounds

* Alice creates a stream A and runs streaming algorithm S on 4
* Send the state S(A) of the algorithm to Bob

* Bob takes S(A) and updates the state of the algorithm on a
second part of the stream B

* If Bob solves INDEX (or some other communication problem),
then the space required by streaming algorithm S is at least the
one-way communication complexity of INDEX (or the other
communication problem)



Streaming Lower Bounds, Example 1

* Given a stream of length m on a universe of size n, how many
unique items appear in the stream?

e Alice takes A from INDEX and sends the coordinates of 4
* Bob computes the number of unique items in A

* Bob then adds the number i to the stream and again computes
the number of unique items in the new dataset

* If the numbers differ, then 4; = 0



Streaming Lower Bounds, Example 1

* Given a stream of length m on a universe of size n, how many
unigue items appear in the stream?

* This algorithm solves INDEX with input {0,1}™ and thus requires
space )(n)



Streaming Lower Bounds, Example 2

* Given a stream of length m on a universe of size n inducing a
frequency vector f, can we determine whether f; = f; for a
query pair i, j given after the stream?

e Alice takes A from INDEX with universe size n — 1 and sends the
coordinates of A

* Bob asks whether f; = f,, (observe n never appears in the
stream)

*If f; = f,,, then A; = 0. Otherwise 4; = 1.



Streaming Lower Bounds, Example 2

* Given a stream of length m on a universe of size n, how many
unigue items appear in the stream?

* This algorithm solves INDEX with input {0,1}"~ 1 and thus
requires space Q(n — 1) = Q(n)
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