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Probabilistic Method

* Suppose we want to argue the existence of a certain
desirable object

* Existential argument, non-constructive

* If there is an algorithm that can find it, it must exist!



Ramsey Numbers

* What is the smallest number n = R(a, b) such that in any
set of n people, there must be either:

* a mutual acquaintances
* b mutual strangers

* R(a,b) are the Ramsey numbers



Ramsey Numbers

* We can model a set of n people with a complete graph by
coloring an edge (i,j) BLUE if i and j are acquaintances and
GREEN if [ and j are strangers

* What is the smallest number n = R(a, b) such there must be
either:

* BLUE induced complete subgraph K,
* GREEN induced complete subgraph K,



Ramsey Numbers

*R(2,n) =n

* If no edges are
green, then there
exists blue K,




Ramsey Numbers

*R(3,3) >5
* In fact, R(3,3) = 6




Ramsey Numbers

* Finding the precise value of R(a, b) is quite difficult
*R(3,3) = 6

*R(4,4) =18

+ 43 < R(5,5) < 48

+102 < R(6,6) < 161

+ 205 < R(7,7) < 497



Probabilistic Method for Ramsey Numbers
o |f (’,:) : 21_(12() < 1, then R(k, k) > n (Erdos)

* Consider a random coloring of K,,, so that each edge is
colored BLUE with probability % and GREEN with probability%

* For any fixed set S of k vertices, the Erobability S is
monochromatic is 1k | 1k =272
2(2) L)




Probabilistic Method for Ramsey Numbers

* By a union bound, the probability that there exists a set of k
k

vertices is monochromatic is (Z) : 21_(2) < 1.

* Then with nonzero probability, algorithm finds a coloring with
no monochromatic K,

* Thus, there exists a graph coloring with no monochromatic Kj,
*R(k, k) >n



Probabilistic Method

* Suppose we want to argue the existence of a certain
desirable object

* Existential argument, non-constructive

* If there is an algorithm that can find it, it must exist!



Probabilistic Method

* Suppose we want to argue the existence of a certain
desirable object

* Existential argument, non-constructive

* A random variable cannot always be less than its expected
value

* A random variable cannot always be more than its expected
value



Probabilistic Method for Graph Cuts

* Any undirected graph G with m edges has a cut of at least %

edges

* Consider a random cut of (¢ formed by putting each vertex

into A with probability % and into B with proba

* Let the edges be e, ..., e,,; and let X; denote w
crosses the cut

g 1
3|I|ty5

nether e;



Probabilistic Method for Graph Cuts

* The probability that e; crosses the cut (4, B) is %

*E[X;] =3

* Let |C(A4, B)| denote the size of the cut (4, B)
*E[|C(A,B)|] = E[Ziepm Xi] = E[X1] + -+ E[Xp] = =

* Thus, there exists a cut of size%



k-SAT

* In the k-SAT problem, we are given a conjunctive normal
form (CNF) formula, i.e., an AND of OR’s, f (x4, ..., X,,) with
m clauses Cy, ...., C,,, and k distinct variables per clause

* Example for k = 4

(X VaxaVxsVx;)A(xyV—axsVxgVxg)



Probabilistic Method for k-SAT

e Suppose m < 2%, we claim [ must be satisfiable!



Probabilistic Method for k-SAT

e Suppose m < 2%, we claim [ must be satisfiable!

* Suppose we assigh each variable x; a separate random
TRUE/FALSE value

* For each i € [m], we have Pr[C; is FALSE] < 1/2%
* By a union bound

* Prf(xy, ..., xn) = FALSE] < ¥;cp,,; Pr[C; is FALSE]

m
Sz—k<1



Probabilistic Method for k-SAT

* In the k-SAT problem, we are given a CNF formula
f (x4, ..., x,,) with m clauses Cy, ...., C,,, and k distinct
variables per clause

o If m < 2%, then f is satisfiable
* What about m > 2%?



Dependency Graph

*Let E4, ..., E,, be events and let (¢ be a graph on the vertices
In] == {1, ...,n}
* (7 is called a dependency graph for the events E4, ..., E,, if

and only if E; is mutually independent of all events E; for
which (i,j) isnotan edge in E

* G models the dependencies between the events £, ..., E,



Lovasz Local Lemma

* Theorem: Let £, ..., E,, be events and let G be their
dependency graph. Suppose for all i € [n],

Pr|E;] < p, deg(i) < d, 4dp < 1

* Then Pr|Ef N ES N ---N ES| > 0, where Ef denotes the
complement of E;



Lovasz Local Lemma

* To show Pr|E{ N ES N ---N ES| > 0, it suffices to show
Pr|E; | Ef NES n--nE- | <2pforalli€ [n].



Lovasz Local Lemma

» To show Pr|Ef N ES N -

N EE| > 0, it suffices to show

Pr|E; | Ef NES n--nE- | <2pforalli€ [n].

* Indeed:

PrlEf NES n-—-nES| =T

r L PrlEf |EfNES N NE[]

=



Lovasz Local Lemma

* To show Pr[El- |ESNES NN El-C_l] < 2pforalli € [n],
we instead show Pr[Ei | Nies E]-C] <2pforall |S| <s

e Use induction on s

* Our assumption is that for all i € [n]:
Pr|E;] < p, deg(i) < d, 4dp < 1
* Base case follows from assumption fors =1



Lovasz Local Lemma

* Assume true for s — 1, show Pr[El- | Njes E]-C] < 2p for all
S| <s

* Let A be the neighborsof i in G

* By joint probability,

Pr(E; 0 Njea B | Njes\akj ]
Pr[NjenE] | Njes\akf |

Pr|E; |NjesEf | =



Lovasz Local Lemma

* The numerator is ]?r[El- N

* We have Pr[El- N

qJ' eA EJ'C

jenEr 1 Njes\aEf ]

ﬂjES\AE]-C] < Pr[Ei | r]jES\AEjC]

* Since E; is independent of E; for j € § \ A, then
Pr|E; | Njes\aE} | = Pr[E;] <p



Lovasz Local Lemma

* The denominator is Pr[ﬂjEAEjC | quS\AEjC]

* Our assumption is that for all i € [n]:
Pr|E;] < p, deg(i) < d, 4dp < 1
* By a union bound,

PrNjenE; | Njes\aEf | =1 - z Pr|Ej| Njes\aE ]
jEA

1
21—22p21—2pd2§
JEA




Lovasz Local Lemma

* Assume true for s — 1, show Pr[El- | Njes E]-C] < 2p for all
S| <s

* Let A be the neighborsof i in G
* By conditional probability,

PriEi 0 Njea B} | Njes\aBy ] _ p

Pr|E; |NiecE"| = < — 9
[ l | JEST ] Pr[ﬂjEAEf | ﬂjES\AEjC] (1/2) P




Lovasz Local Lemma

* Theorem: Let £, ..., E,, be events and let G be their
dependency graph. Suppose for all i € [n],

Pr|E;] < p, deg(i) < d, 4dp < 1

* Then Pr|Ef N ES N ---N ES| > 0, where Ef denotes the
complement of E;



Probabilistic Method for k-SAT

* In the k-SAT problem, we are given a CNF formula
f (x4, ..., x,,) with m clauses Cy, ...., C,,, and k distinct
variables per clause

o If m < 2%, then f is satisfiable
* What about m > 2%?



Resampling Algorithm for k-SAT

* We say clauses C; and (; intersect if there exists a variable x;
(or its negation) that appears in both C; and (;

. . 2k
e Theorem: If each clause intersects with at most d < " other

clauses, then f is satisfiable



Resampling Algorithm for k-SAT

* Suppose we assign each variable x; a separate random
TRUE/FALSE value

* For each i € [m], we have Pr[C; is FALSE] < 1/2%

. . 2k
* If each clause intersects with at most d < s other clauses,

then by the Lovasz Local Lemma, the algorithm finds
satisfying assignment with nonzero probability

* Thus by the probabilistic method, the assighment must be
satisfiable



Resampling Algorithm for k-SAT

* Suppose we assign each variable x; a separate random
TRUE/FALSE value

* As long as there is a clause (; that is unsatisfied, we
resample all the variables in C; independently and uniformly
at random

* Algorithm may never terminate?

 Algorithmic version of the Lovasz Local Lemma (we will not
cover this)




Edge-Disjoint Paths

* Suppose there are n pairs of users who want to communicate
over a network. Find a routing such that no communication
paths for each pair share any edges

* Theorem: Let P; be the set of paths that pair i can use. Suppose:
* |P;| = mforalli € [n]
* Foralli # j and any path P € P;, there are at most k other

paths P’ € P; that conflict with P

8nk

. If7 < 1, then there exists a routing with no conflicting paths



Edge-Disjoint Paths

* Suppose |P;| = m and choose a random path from each P;,
independently for each i € |n]

* Let E; ; be the event that the paths chosen from P; and P;
conflict

* After fixing a path from P;, there are at most k conflicting
paths P; among m possible paths, so that Pr[Ei,j] < k/m

*Set p = k/m in the Lovasz Local Lemma



Edge-Disjoint Paths

* Since E; ; is independent of E, , for x, y & {i, j}, then each
vertex in the dependency graph has degree less than 2n

e Setd < 2n in the Lovasz Local Lemma
+Then 4pd < 4 (=) (2n) = 2= < 1

m
* By the Lovasz Local Lemma, the algorithm finds a disjoint
routing with nonzero probability

* Thus by the probabilistic method, there exists a disjoint
routing
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