CSCE 658: Randomized Algorithms

Lecture 14

Samson Zhou

Probabilistic Method

- Suppose we want to argue the existence of a certain desirable object
- Existential argument, non-constructive
- If there is an algorithm that can find it, it must exist!

Ramsey Numbers

- What is the smallest number $n=R(a, b)$ such that in any set of n people, there must be either:
- a mutual acquaintances
- b mutual strangers
- $R(a, b)$ are the Ramsey numbers

Ramsey Numbers

- We can model a set of n people with a complete graph by coloring an edge (i, j) BLUE if i and j are acquaintances and GREEN if i and j are strangers
- What is the smallest number $n=R(a, b)$ such there must be either:
- BLUE induced complete subgraph K_{a}
- GREEN induced complete subgraph K_{b}

Ramsey Numbers

- $R(2, n)=n$

Ramsey Numbers

- $R(3,3)>5$
- In fact, $R(3,3)=6$

Ramsey Numbers

- Finding the precise value of $R(a, b)$ is quite difficult
- $R(3,3)=6$
- $R(4,4)=18$
- $43 \leq R(5,5) \leq 48$
- $102 \leq R(6,6) \leq 161$
- $205 \leq R(7,7) \leq 497$

Probabilistic Method for Ramsey Numbers

- If $\binom{n}{k} \cdot 2^{1-\binom{k}{2}}<1$, then $R(k, k)>n$ (Erdös)
- Consider a random coloring of K_{n}, so that each edge is colored BLUE with probability $\frac{1}{2}$ and GREEN with probability $\frac{1}{2}$
- For any fixed set S of k vertices, the probability S is

Probabilistic Method for Ramsey Numbers

- By a union bound, the probability that there exists a set of k vertices is monochromatic is $\binom{n}{k} \cdot 2^{1-\binom{k}{2}}<1$.
- Then with nonzero probability, algorithm finds a coloring with no monochromatic K_{k}
- Thus, there exists a graph coloring with no monochromatic K_{k}
- $R(k, k)>n$

Probabilistic Method

- Suppose we want to argue the existence of a certain desirable object
- Existential argument, non-constructive
- If there is an algorithm that can find it, it must exist!

Probabilistic Method

- Suppose we want to argue the existence of a certain desirable object
- Existential argument, non-constructive
- A random variable cannot always be less than its expected value
- A random variable cannot always be more than its expected value

Probabilistic Method for Graph Cuts

- Any undirected graph G with m edges has a cut of at least $\frac{m}{2}$ edges
- Consider a random cut of G formed by putting each vertex into A with probability $\frac{1}{2}$ and into B with probability $\frac{1}{2}$
- Let the edges be e_{1}, \ldots, e_{m} and let X_{i} denote whether e_{i} crosses the cut

Probabilistic Method for Graph Cuts

- The probability that e_{i} crosses the cut (A, B) is $\frac{1}{2}$
- $E\left[X_{i}\right]=\frac{1}{2}$
- Let $|C(A, B)|$ denote the size of the cut (A, B)
$\cdot E[|C(A, B)|]=E\left[\sum_{i \in[m]} X_{i}\right]=E\left[X_{1}\right]+\cdots+E\left[X_{m}\right]=\frac{m}{2}$
- Thus, there exists a cut of size $\frac{m}{2}$

k-SAT

- In the k-SAT problem, we are given a conjunctive normal form (CNF) formula, i.e., an AND of OR's, $f\left(x_{1}, \ldots, x_{n}\right)$ with m clauses C_{1}, \ldots, C_{m} and k distinct variables per clause
- Example for $k=4$:

$$
\left(x_{2} \vee \neg x_{4} \vee x_{5} \vee x_{7}\right) \wedge\left(x_{1} \vee \neg x_{3} \vee x_{6} \vee x_{8}\right)
$$

Probabilistic Method for k-SAT

- Suppose $m<2^{k}$, we claim f must be satisfiable!

Probabilistic Method for k-SAT

- Suppose $m<2^{k}$, we claim f must be satisfiable!
- Suppose we assign each variable x_{i} a separate random TRUE/FALSE value
- For each $i \in[m]$, we have $\operatorname{Pr}\left[C_{i}\right.$ is FALSE $] \leq 1 / 2^{k}$
- By a union bound
- $\operatorname{Pr}\left[f\left(x_{1}, \ldots, x_{n}\right)=\right.$ FALSE $] \leq \sum_{i \in[m]} \operatorname{Pr}\left[C_{i}\right.$ is FALSE $]$

$$
\leq \frac{m}{2^{k}}<1
$$

Probabilistic Method for k-SAT

- In the k-SAT problem, we are given a CNF formula $f\left(x_{1}, \ldots, x_{n}\right)$ with m clauses C_{1}, \ldots, C_{m} and k distinct variables per clause
- If $m<2^{k}$, then f is satisfiable
- What about $m \geq 2^{k}$?

Dependency Graph

- Let E_{1}, \ldots, E_{n} be events and let G be a graph on the vertices $[n]:=\{1, \ldots, n\}$
- G is called a dependency graph for the events E_{1}, \ldots, E_{n} if and only if E_{i} is mutually independent of all events E_{j} for which (i, j) is not an edge in E
- G models the dependencies between the events E_{1}, \ldots, E_{n}

Lovász Local Lemma

- Theorem: Let E_{1}, \ldots, E_{n} be events and let G be their dependency graph. Suppose for all $i \in[n]$,

$$
\operatorname{Pr}\left[E_{i}\right] \leq p, \quad \operatorname{deg}(i) \leq d, \quad 4 d p \leq 1
$$

- Then $\operatorname{Pr}\left[E_{1}^{C} \cap E_{2}^{C} \cap \cdots \cap E_{n}^{C}\right]>0$, where E_{i}^{C} denotes the complement of E_{i}

Lovász Local Lemma

- To show $\operatorname{Pr}\left[E_{1}^{C} \cap E_{2}^{C} \cap \cdots \cap E_{n}^{C}\right]>0$, it suffices to show $\operatorname{Pr}\left[E_{i} \mid E_{1}^{C} \cap E_{2}^{C} \cap \cdots \cap E_{i-1}^{C}\right] \leq 2 p$ for all $i \in[n]$.

Lovász Local Lemma

- To show $\operatorname{Pr}\left[E_{1}^{C} \cap E_{2}^{C} \cap \cdots \cap E_{n}^{C}\right]>0$, it suffices to show $\operatorname{Pr}\left[E_{i} \mid E_{1}^{C} \cap E_{2}^{C} \cap \cdots \cap E_{i-1}^{C}\right] \leq 2 p$ for all $i \in[n]$.
- Indeed:

$$
\begin{aligned}
\operatorname{Pr}\left[E_{1}^{C} \cap E_{2}^{C} \cap \cdots \cap E_{n}^{C}\right] & =\prod_{i=1}^{n} \operatorname{Pr}\left[E_{i}^{C} \mid E_{1}^{C} \cap E_{2}^{C} \cap \cdots \cap E_{i-1}^{C}\right] \\
& \geq \prod_{i=1}^{n}(1-2 p)>0
\end{aligned}
$$

Lovász Local Lemma

- To show $\operatorname{Pr}\left[E_{i} \mid E_{1}^{C} \cap E_{2}^{C} \cap \cdots \cap E_{i-1}^{C}\right] \leq 2 p$ for all $i \in[n]$, we instead show $\operatorname{Pr}\left[E_{i} \mid \cap_{j \in S} E_{j}^{C}\right] \leq 2 p$ for all $|S| \leq s$
- Use induction on s
- Our assumption is that for all $i \in[n]$:

$$
\operatorname{Pr}\left[E_{i}\right] \leq p, \quad \operatorname{deg}(i) \leq d, \quad 4 d p \leq 1
$$

- Base case follows from assumption for $s=1$

Lovász Local Lemma

- Assume true for $s-1$, show $\operatorname{Pr}\left[E_{i} \mid \cap_{j \in S} E_{j}^{C}\right] \leq 2 p$ for all $|S| \leq s$
- Let Λ be the neighbors of i in G
- By joint probability,

$$
\operatorname{Pr}\left[E_{i} \mid \bigcap_{j \in S} E_{j}^{C}\right]=\frac{\operatorname{Pr}\left[E_{i} \cap \bigcap_{j \in \Lambda} E_{j}^{C} \mid \bigcap_{j \in S \backslash \Lambda} E_{j}^{C}\right]}{\operatorname{Pr}\left[\bigcap_{j \in \Lambda} E_{j}^{C} \mid \bigcap_{j \in S \backslash \Lambda} E_{j}^{C}\right]}
$$

Lovász Local Lemma

- The numerator is $\operatorname{Pr}\left[E_{i} \cap \cap_{j \in \Lambda} E_{j}^{C} \mid \cap_{j \in S \backslash \Lambda} E_{j}^{C}\right]$
- We have $\operatorname{Pr}\left[E_{i} \cap \cap_{j \in \Lambda} E_{j}^{C} \mid \cap_{j \in S \backslash \Lambda} E_{j}^{C}\right] \leq \operatorname{Pr}\left[E_{i} \mid \cap_{j \in S \backslash \Lambda} E_{j}^{C}\right]$
- Since E_{i} is independent of E_{j} for $j \in S \backslash \Lambda$, then $\operatorname{Pr}\left[E_{i} \mid \bigcap_{j \in S \backslash \Lambda} E_{j}^{C}\right]=\operatorname{Pr}\left[E_{i}\right] \leq p$

Lovász Local Lemma

- The denominator is $\operatorname{Pr}\left[\bigcap_{j \in \Lambda} E_{j}^{C} \mid \cap_{j \in S \backslash \Lambda} E_{j}^{C}\right]$
- Our assumption is that for all $i \in[n]$:

$$
\operatorname{Pr}\left[E_{i}\right] \leq p, \quad \operatorname{deg}(i) \leq d, \quad 4 d p \leq 1
$$

- By a union bound,

$$
\begin{aligned}
\operatorname{Pr}\left[\cap_{j \in \Lambda} E_{j}^{C} \mid \cap_{j \in S \backslash \Lambda} E_{j}^{C}\right] & \geq 1-\sum_{j \in \Lambda} \operatorname{Pr}\left[E_{j} \mid \cap_{j \in S \backslash \Lambda} E_{j}^{C}\right] \\
& \geq 1-\sum_{j \in \Lambda} 2 p \geq 1-2 p d \geq \frac{1}{2}
\end{aligned}
$$

Lovász Local Lemma

- Assume true for $s-1$, show $\operatorname{Pr}\left[E_{i} \mid \cap_{j \in S} E_{j}^{C}\right] \leq 2 p$ for all $|S| \leq s$
- Let Λ be the neighbors of i in G
- By conditional probability,

$$
\operatorname{Pr}\left[E_{i} \mid \bigcap_{j \in S} E_{j}^{C}\right]=\frac{\operatorname{Pr}\left[E_{i} \cap \bigcap_{j \in \Lambda} E_{j}^{C} \mid \cap_{j \in S \backslash \Lambda} E_{j}^{C}\right]}{\operatorname{Pr}\left[\bigcap_{j \in \Lambda} E_{j}^{C} \mid \bigcap_{j \in S \backslash \Lambda} E_{j}^{C}\right]} \leq \frac{p}{(1 / 2)}=2 p
$$

Lovász Local Lemma

- Theorem: Let E_{1}, \ldots, E_{n} be events and let G be their dependency graph. Suppose for all $i \in[n]$,

$$
\operatorname{Pr}\left[E_{i}\right] \leq p, \quad \operatorname{deg}(i) \leq d, \quad 4 d p \leq 1
$$

- Then $\operatorname{Pr}\left[E_{1}^{C} \cap E_{2}^{C} \cap \cdots \cap E_{n}^{C}\right]>0$, where E_{i}^{C} denotes the complement of E_{i}

Probabilistic Method for k-SAT

- In the k-SAT problem, we are given a CNF formula $f\left(x_{1}, \ldots, x_{n}\right)$ with m clauses C_{1}, \ldots, C_{m} and k distinct variables per clause
- If $m<2^{k}$, then f is satisfiable
- What about $m \geq 2^{k}$?

Resampling Algorithm for k-SAT

- We say clauses C_{i} and C_{j} intersect if there exists a variable x_{k} (or its negation) that appears in both C_{i} and C_{j}
- Theorem: If each clause intersects with at most $d \leq \frac{2^{k}}{4}$ other clauses, then f is satisfiable

Resampling Algorithm for k-SAT

- Suppose we assign each variable x_{i} a separate random TRUE/FALSE value
- For each $i \in[m]$, we have $\operatorname{Pr}\left[C_{i}\right.$ is FALSE $] \leq 1 / 2^{k}$
- If each clause intersects with at most $d \leq \frac{2^{k}}{4}$ other clauses, then by the Lovász Local Lemma, the algorithm finds satisfying assignment with nonzero probability
- Thus by the probabilistic method, the assignment must be satisfiable

Resampling Algorithm for k-SAT

- Suppose we assign each variable x_{i} a separate random TRUE/FALSE value
- As long as there is a clause C_{j} that is unsatisfied, we resample all the variables in C_{j} independently and uniformly at random
- Algorithm may never terminate?
- Algorithmic version of the Lovász Local Lemma (we will not cover this)

Edge-Disjoint Paths

- Suppose there are n pairs of users who want to communicate over a network. Find a routing such that no communication paths for each pair share any edges
- Theorem: Let P_{i} be the set of paths that pair i can use. Suppose:
- $\left|P_{i}\right| \geq m$ for all $i \in[n]$
- For all $i \neq j$ and any path $P \in P_{i}$, there are at most k other paths $P^{\prime} \in P_{j}$ that conflict with P
- If $\frac{8 n k}{m} \leq 1$, then there exists a routing with no conflicting paths

Edge-Disjoint Paths

- Suppose $\left|P_{i}\right|=m$ and choose a random path from each P_{i}, independently for each $i \in[n]$
- Let $E_{i, j}$ be the event that the paths chosen from P_{i} and P_{j} conflict
- After fixing a path from P_{i}, there are at most k conflicting paths P_{j} among m possible paths, so that $\operatorname{Pr}\left[E_{i, j}\right] \leq k / m$
- Set $p=k / m$ in the Lovász Local Lemma

Edge-Disjoint Paths

- Since $E_{i, j}$ is independent of $E_{x, y}$ for $x, y \notin\{i, j\}$, then each vertex in the dependency graph has degree less than $2 n$
- Set $d<2 n$ in the Lovász Local Lemma
- Then $4 p d<4\left(\frac{k}{m}\right)(2 n)=\frac{8 n k}{m} \leq 1$
- By the Lovász Local Lemma, the algorithm finds a disjoint routing with nonzero probability
- Thus by the probabilistic method, there exists a disjoint routing

