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Probabilistic Method

• Suppose we want to argue the existence of a certain 
desirable object

• Existential argument, non-constructive

• If there is an algorithm that can find it, it must exist!



Ramsey Numbers

• What is the smallest number 𝑛 = 𝑅(𝑎, 𝑏) such that in any 
set of 𝑛 people, there must be either:
• 𝑎 mutual acquaintances
• 𝑏 mutual strangers

•  𝑅(𝑎, 𝑏) are the Ramsey numbers



Ramsey Numbers

• We can model a set of 𝑛 people with a complete graph by 
coloring an edge (𝑖, 𝑗) BLUE if 𝑖 and 𝑗 are acquaintances and 
GREEN if 𝑖 and 𝑗 are strangers

• What is the smallest number 𝑛 = 𝑅(𝑎, 𝑏) such there must be 
either:
• BLUE induced complete subgraph 𝐾𝑎

• GREEN induced complete subgraph 𝐾𝑏



Ramsey Numbers

• 𝑅 2, 𝑛 = 𝑛

• If no edges are 
green, then there 
exists blue 𝐾𝑛
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Ramsey Numbers

• 𝑅 3,3 > 5

• In fact, 𝑅 3,3 = 6
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Ramsey Numbers

• Finding the precise value of 𝑅 𝑎, 𝑏  is quite difficult

• 𝑅 3,3 = 6

• 𝑅 4,4 = 18

• 43 ≤ 𝑅 5,5 ≤ 48

• 102 ≤ 𝑅 6,6 ≤ 161

• 205 ≤ 𝑅 7,7 ≤ 497



Probabilistic Method for Ramsey Numbers

• If 𝑛
𝑘

⋅ 2
1− 𝑘

2 < 1, then 𝑅 𝑘, 𝑘 > 𝑛 (Erdös)

• Consider a random coloring of 𝐾𝑛, so that each edge is 

colored BLUE with probability 
1

2
 and GREEN with probability 

1

2

• For any fixed set 𝑆 of 𝑘 vertices, the probability 𝑆 is 

monochromatic is 
1

2
𝑘
2

+
1

2
𝑘
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Probabilistic Method for Ramsey Numbers

• By a union bound, the probability that there exists a set of 𝑘 

vertices is monochromatic is 𝑛
𝑘

⋅ 2
1− 𝑘

2 < 1.

• Then with nonzero probability, algorithm finds a coloring with 
no monochromatic 𝐾𝑘

• Thus, there exists a graph coloring with no monochromatic 𝐾𝑘

• 𝑅 𝑘, 𝑘 > 𝑛



Probabilistic Method

• Suppose we want to argue the existence of a certain 
desirable object

• Existential argument, non-constructive

• If there is an algorithm that can find it, it must exist!



Probabilistic Method

• Suppose we want to argue the existence of a certain 
desirable object

• Existential argument, non-constructive

• A random variable cannot always be less than its expected 
value

• A random variable cannot always be more than its expected 
value



Probabilistic Method for Graph Cuts

• Any undirected graph 𝐺 with 𝑚 edges has a cut of at least 
𝑚

2
 

edges

• Consider a random cut of 𝐺 formed by putting each vertex 

into 𝐴 with probability 
1

2
 and into 𝐵 with probability 

1

2

• Let the edges be 𝑒1, … , 𝑒𝑚 and let 𝑋𝑖  denote whether 𝑒𝑖  
crosses the cut



Probabilistic Method for Graph Cuts

• The probability that 𝑒𝑖  crosses the cut (𝐴, 𝐵) is 
1

2
 

• 𝐸 𝑋𝑖 =
1

2

• Let 𝐶 𝐴, 𝐵  denote the size of the cut 𝐴, 𝐵

• 𝐸 |𝐶 𝐴, 𝐵 | = 𝐸 σ𝑖∈[𝑚] 𝑋𝑖 = 𝐸 𝑋1 + ⋯ + 𝐸 𝑋𝑚 =
𝑚

2

• Thus, there exists a cut of size 
𝑚

2



𝑘-SAT

• In the 𝑘-SAT problem, we are given a conjunctive normal 
form (CNF) formula, i.e., an AND of OR’s, 𝑓 𝑥1, … , 𝑥𝑛  with 
𝑚 clauses 𝐶1, … . , 𝐶𝑚 and 𝑘 distinct variables per clause

• Example for 𝑘 = 4: 

𝑥2 ∨ ¬𝑥4 ∨ 𝑥5 ∨ 𝑥7 ∧ (𝑥1 ∨ ¬𝑥3 ∨ 𝑥6 ∨ 𝑥8)



Probabilistic Method for 𝑘-SAT

• Suppose 𝑚 < 2𝑘, we claim 𝑓 must be satisfiable!



Probabilistic Method for 𝑘-SAT

• Suppose 𝑚 < 2𝑘, we claim 𝑓 must be satisfiable!

• Suppose we assign each variable 𝑥𝑖  a separate random 
TRUE/FALSE value

• For each 𝑖 ∈ [𝑚], we have Pr 𝐶𝑖  is FALSE ≤ 1/2𝑘

• By a union bound

• Pr 𝑓 𝑥1, … , 𝑥𝑛 = FALSE ≤ σ𝑖∈ 𝑚 Pr 𝐶𝑖  is FALSE

≤
𝑚

2𝑘
< 1



Probabilistic Method for 𝑘-SAT

• In the 𝑘-SAT problem, we are given a CNF formula 
𝑓 𝑥1, … , 𝑥𝑛  with 𝑚 clauses 𝐶1, … . , 𝐶𝑚 and 𝑘 distinct 
variables per clause

• If 𝑚 < 2𝑘, then 𝑓 is satisfiable

• What about 𝑚 ≥ 2𝑘?



Dependency Graph

• Let 𝐸1, … , 𝐸𝑛 be events and let 𝐺 be a graph on the vertices 
𝑛 ≔ {1, … , 𝑛}

• 𝐺 is called a dependency graph for the events 𝐸1, … , 𝐸𝑛 if 
and only if 𝐸𝑖 is mutually independent of all events 𝐸𝑗 for 
which (𝑖, 𝑗) is not an edge in 𝐸

• 𝐺 models the dependencies between the events 𝐸1, … , 𝐸𝑛



Lovász Local Lemma

• Theorem: Let 𝐸1, … , 𝐸𝑛 be events and let 𝐺 be their 
dependency graph. Suppose for all 𝑖 ∈ 𝑛 ,

• Then Pr 𝐸1
𝐶 ∩ 𝐸2

𝐶 ∩ ⋯ ∩ 𝐸𝑛
𝐶 > 0, where 𝐸𝑖

𝐶  denotes the 
complement of 𝐸𝑖

Pr 𝐸𝑖 ≤ 𝑝,  deg 𝑖 ≤ 𝑑,  4𝑑𝑝 ≤ 1



Lovász Local Lemma

• To show Pr 𝐸1
𝐶 ∩ 𝐸2

𝐶 ∩ ⋯ ∩ 𝐸𝑛
𝐶 > 0, it suffices to show 

Pr 𝐸𝑖 | 𝐸1
𝐶 ∩ 𝐸2

𝐶 ∩ ⋯ ∩ 𝐸𝑖−1
𝐶 ≤ 2𝑝 for all 𝑖 ∈ 𝑛 .



Lovász Local Lemma

• To show Pr 𝐸1
𝐶 ∩ 𝐸2

𝐶 ∩ ⋯ ∩ 𝐸𝑛
𝐶 > 0, it suffices to show 

Pr 𝐸𝑖 | 𝐸1
𝐶 ∩ 𝐸2

𝐶 ∩ ⋯ ∩ 𝐸𝑖−1
𝐶 ≤ 2𝑝 for all 𝑖 ∈ 𝑛 .

• Indeed:

Pr 𝐸1
𝐶 ∩ 𝐸2

𝐶 ∩ ⋯ ∩ 𝐸𝑛
𝐶 = Π𝑖=1

𝑛 Pr 𝐸𝑖
𝐶  | 𝐸1

𝐶 ∩ 𝐸2
𝐶 ∩ ⋯ ∩ 𝐸𝑖−1

𝐶

≥ Π𝑖=1
𝑛 1 − 2𝑝 > 0



Lovász Local Lemma

• To show Pr 𝐸𝑖 | 𝐸1
𝐶 ∩ 𝐸2

𝐶 ∩ ⋯ ∩ 𝐸𝑖−1
𝐶 ≤ 2𝑝 for all 𝑖 ∈ 𝑛 , 

we instead show Pr 𝐸𝑖 | ∩𝑗∈𝑆 𝐸𝑗
𝐶 ≤ 2𝑝 for all 𝑆 ≤ 𝑠

• Use induction on 𝑠

• Our assumption is that for all 𝑖 ∈ 𝑛 :

• Base case follows from assumption for 𝑠 = 1

Pr 𝐸𝑖 ≤ 𝑝,  deg 𝑖 ≤ 𝑑,  4𝑑𝑝 ≤ 1



Lovász Local Lemma

• Assume true for 𝑠 − 1, show Pr 𝐸𝑖 | ∩𝑗∈𝑆 𝐸𝑗
𝐶 ≤ 2𝑝 for all 

𝑆 ≤ 𝑠

• Let Λ be the neighbors of 𝑖 in 𝐺

• By joint probability, 

Pr 𝐸𝑖 |⋂𝑗∈𝑆𝐸𝑗
𝐶 =

Pr 𝐸𝑖 ∩ ⋂𝑗∈Λ 𝐸𝑗
𝐶  | ⋂𝑗∈𝑆∖Λ𝐸𝑗

𝐶

Pr ⋂𝑗∈Λ𝐸𝑗
𝐶  | ⋂𝑗∈𝑆∖Λ𝐸𝑗

𝐶



Lovász Local Lemma

• The numerator is Pr 𝐸𝑖 ∩ ⋂𝑗∈Λ 𝐸𝑗
𝐶  | ⋂𝑗∈𝑆∖Λ𝐸𝑗

𝐶

• We have Pr 𝐸𝑖 ∩ ⋂𝑗∈Λ 𝐸𝑗
𝐶  | ⋂𝑗∈𝑆∖Λ𝐸𝑗

𝐶 ≤ Pr 𝐸𝑖 | ⋂𝑗∈𝑆∖Λ𝐸𝑗
𝐶

• Since 𝐸𝑖 is independent of 𝐸𝑗 for 𝑗 ∈ 𝑆 ∖ Λ, then 
Pr 𝐸𝑖 | ⋂𝑗∈𝑆∖Λ𝐸𝑗

𝐶 = Pr 𝐸𝑖 ≤ 𝑝



Lovász Local Lemma

• The denominator is Pr ⋂𝑗∈Λ𝐸𝑗
𝐶  | ⋂𝑗∈𝑆∖Λ𝐸𝑗

𝐶

• Our assumption is that for all 𝑖 ∈ 𝑛 :

• By a union bound, 

Pr 𝐸𝑖 ≤ 𝑝,  deg 𝑖 ≤ 𝑑,  4𝑑𝑝 ≤ 1

Pr ⋂𝑗∈Λ𝐸𝑗
𝐶  | ⋂𝑗∈𝑆∖Λ𝐸𝑗

𝐶 ≥ 1 − 

𝑗∈Λ

Pr 𝐸𝑗| ⋂𝑗∈𝑆∖Λ𝐸𝑗
𝐶

≥ 1 − 

𝑗∈Λ

2𝑝 ≥ 1 − 2𝑝𝑑 ≥
1

2



Lovász Local Lemma

• Assume true for 𝑠 − 1, show Pr 𝐸𝑖 | ∩𝑗∈𝑆 𝐸𝑗
𝐶 ≤ 2𝑝 for all 

𝑆 ≤ 𝑠

• Let Λ be the neighbors of 𝑖 in 𝐺

• By conditional probability, 

Pr 𝐸𝑖 |⋂𝑗∈𝑆𝐸𝑗
𝐶 =

Pr 𝐸𝑖 ∩ ⋂𝑗∈Λ 𝐸𝑗
𝐶  | ⋂𝑗∈𝑆∖Λ𝐸𝑗

𝐶

Pr ⋂𝑗∈Λ𝐸𝑗
𝐶  | ⋂𝑗∈𝑆∖Λ𝐸𝑗

𝐶
≤

𝑝

1/2
= 2𝑝



Lovász Local Lemma

• Theorem: Let 𝐸1, … , 𝐸𝑛 be events and let 𝐺 be their 
dependency graph. Suppose for all 𝑖 ∈ 𝑛 ,

• Then Pr 𝐸1
𝐶 ∩ 𝐸2

𝐶 ∩ ⋯ ∩ 𝐸𝑛
𝐶 > 0, where 𝐸𝑖

𝐶  denotes the 
complement of 𝐸𝑖

Pr 𝐸𝑖 ≤ 𝑝,  deg 𝑖 ≤ 𝑑,  4𝑑𝑝 ≤ 1



Probabilistic Method for 𝑘-SAT

• In the 𝑘-SAT problem, we are given a CNF formula 
𝑓 𝑥1, … , 𝑥𝑛  with 𝑚 clauses 𝐶1, … . , 𝐶𝑚 and 𝑘 distinct 
variables per clause

• If 𝑚 < 2𝑘, then 𝑓 is satisfiable

• What about 𝑚 ≥ 2𝑘?



Resampling Algorithm for 𝑘-SAT

• We say clauses 𝐶𝑖  and 𝐶𝑗  intersect if there exists a variable 𝑥𝑘 
(or its negation) that appears in both 𝐶𝑖  and 𝐶𝑗  

• Theorem: If each clause intersects with at most 𝑑 ≤
2𝑘

4
 other 

clauses, then 𝑓 is satisfiable



Resampling Algorithm for 𝑘-SAT

• Suppose we assign each variable 𝑥𝑖  a separate random 
TRUE/FALSE value

• For each 𝑖 ∈ [𝑚], we have Pr 𝐶𝑖  is FALSE ≤ 1/2𝑘

• If each clause intersects with at most 𝑑 ≤
2𝑘

4
 other clauses, 

then by the Lovász Local Lemma, the algorithm finds 
satisfying assignment with nonzero probability

• Thus by the probabilistic method, the assignment must be 
satisfiable



Resampling Algorithm for 𝑘-SAT

• Suppose we assign each variable 𝑥𝑖  a separate random 
TRUE/FALSE value

• As long as there is a clause 𝐶𝑗  that is unsatisfied, we 
resample all the variables in 𝐶𝑗  independently and uniformly 
at random

• Algorithm may never terminate? 

• Algorithmic version of the Lovász Local Lemma (we will not 
cover this)



Edge-Disjoint Paths 

• Suppose there are 𝑛 pairs of users who want to communicate 
over a network. Find a routing such that no communication 
paths for each pair share any edges

• Theorem: Let 𝑃𝑖 be the set of paths that pair 𝑖 can use. Suppose:
• 𝑃𝑖 ≥ 𝑚 for all 𝑖 ∈ 𝑛
• For all 𝑖 ≠ 𝑗 and any path 𝑃 ∈ 𝑃𝑖, there are at most 𝑘 other 

paths 𝑃′ ∈ 𝑃𝑗 that conflict with 𝑃

• If 
8𝑛𝑘

𝑚
≤ 1, then there exists a routing with no conflicting paths



Edge-Disjoint Paths 

• Suppose 𝑃𝑖 = 𝑚 and choose a random path from each 𝑃𝑖, 
independently for each 𝑖 ∈ [𝑛]

• Let 𝐸𝑖,𝑗 be the event that the paths chosen from 𝑃𝑖  and 𝑃𝑗  
conflict

• After fixing a path from 𝑃𝑖, there are at most 𝑘 conflicting 
paths 𝑃𝑗  among 𝑚 possible paths, so that Pr 𝐸𝑖,𝑗 ≤ 𝑘/𝑚

• Set 𝑝 = 𝑘/𝑚 in the Lovász Local Lemma



Edge-Disjoint Paths 

• Since 𝐸𝑖,𝑗 is independent of 𝐸𝑥,𝑦 for 𝑥, 𝑦 ∉ {𝑖, 𝑗}, then each 
vertex in the dependency graph has degree less than 2𝑛

• Set 𝑑 < 2𝑛 in the Lovász Local Lemma

• Then 4𝑝𝑑 < 4
𝑘

𝑚
2𝑛 =

8𝑛𝑘

𝑚
≤ 1

• By the Lovász Local Lemma, the algorithm finds a disjoint 
routing with nonzero probability

• Thus by the probabilistic method, there exists a disjoint 
routing
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