CSCE 658: Randomized Algorithms

Lecture 15

Samson Zhou

Relevant Supplementary Material

 Chapter 29 in "Introduction to Algorithms", by Thomas H.
 Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein

 Chapters 5.1-5.5 in "The Design of Approximation Algorithms", by David P. Williamson and David B. Shmoys

MAX-SAT

• In the MAX-SAT problem, the input is a CNF formula $f(x_1, ..., x_n)$ with m clauses $C_1, ..., C_m$

• The goal is to assign values to $x_1, ..., x_n$ to maximize the number of satisfied clauses

MAX-SAT

- Suppose we assign each variable x_i a separate random TRUE/FALSE value
- For each $i \in [m]$, we have $\Pr[C_i \text{ is FALSE}] \leq 1/2$
- By a linearity of expectation, the expected number of satisfied clauses is at least m/2

• Random assignment gives (at least) a $\frac{1}{2}$ -approximation in expectation

Derandomization of MAX-SAT

• How to get an algorithm that achieves $\frac{1}{2}$?

- Method of conditional expectation
 - Set x_1 to be the value with the higher conditional expectation
 - Random assignment is a $\frac{1}{2}$ -approximation in expectation, so there is a value of x_1 that is a $\frac{1}{2}$ -approximation in expectation
 - Iterate

• First suppose there is no unit clause $\overline{x_i}$ (will remove assumption later)

• Set each x_i to be TRUE with probability p>1/2 independently

• Claim: The probability that any given clause is satisfied is $\min(p, 1 - p^2)$

- ullet If the clause has one literal, the probability the clause is TRUE is p
- Otherwise if the clause has a literals that are negated, b literals that are not negated, the probability the clause is TRUE is $1-p^a(1-p)^b>1-p^2$ for $a+b\geq 2$ and $p>\frac{1}{2}$

• Claim: The probability that any given clause is satisfied is $\min(p, 1 - p^2)$

- $\min(p, 1 p^2)$ is maximized ≈ 0.618 for $p = \frac{1}{2}(\sqrt{5} 1)$
- If there is no unit clause $\overline{x_i}$, there is a ≈ 0.618 approximation algorithm for MAX-SAT

- Let U be the set of clauses excluding negated unit clauses $\overline{x_i}$
- Assume without loss of generality that for each fixed $i \in [n]$, the number of unit clauses x_i is at least the number of unit clauses $\overline{x_i}$
- Let v_i be the number of unit clauses $\overline{x_i}$

• OPT $\leq m - \sum_{i \in [n]} v_i$ since x_i cannot be both TRUE and FALSE (and the assumption that x_i appears more than $\overline{x_i}$)

$$\sum_{j \in [m]} \Pr[C_j \text{ is satisfied}] = \sum_{j \in U} \Pr[C_j \text{ is satisfied}]$$

$$\geq p|U| \qquad \text{ with probability } p)$$

$$(U \text{ is the set of clauses}$$

$$\text{excluding negated}$$

$$\text{unit clauses } \overline{x_i})$$

$$= p\left(m - \sum_{i \in [n]} v_i\right)$$

 $\geq p \cdot OPT$

- As a politician seeking approval ratings, you would like the support of 50 urban voters, 100 suburban voters, 25 rural voters
- For each \$1 spent advertising one of the following policies, the resulting effects are:
- Optimize your budget

• (Warm-up from CLRS)

Policy	Urban	Suburban	Rural
Zombie apocalypse	-2	+5	-3
Sharks with lasers	+8	+2	-5
Flying cars roads	0	0	+10
Dolphins voting	+10	0	-2

You seek 50 urban
 voters, 100 suburban
 voters, 25 rural voters

Policy	Urban	Suburban	Rural
Zombie apocalypse	-2	+5	-3
Sharks with lasers	+8	+2	-5
Flying cars roads	0	0	+10
Dolphins voting	+10	0	-2

- Let x_1 be the money spent on ads for preparing for a zombie apocalypse, x_2 be the money for ads for sharks with lasers, x_3 be the money spent on ads for roads for flying cars, and x_4 be the money spent on ads for allowing dolphins to vote
- Urban voters: $-2x_1 + 8x_2 + 10x_4$
- Constraint: $-2x_1 + 8x_2 + 10x_4 \ge 50$

You seek 50 urban
 voters, 100 suburban
 voters, 25 rural voters

Policy	Urban	Suburban	Rural
Zombie apocalypse	-2	+5	-3
Sharks with lasers	+8	+2	-5
Flying cars roads	0	0	+10
Dolphins voting	+10	0	-2

- Let x_1 be the money spent on ads for preparing for a zombie apocalypse, x_2 be the money for ads for sharks with lasers, x_3 be the money spent on ads for roads for flying cars, and x_4 be the money spent on ads for allowing dolphins to vote
- Suburban voters: $5x_1 + 2x_2$
- Constraint: $5x_1 + 2x_2 \ge 100$

You seek 50 urban
 voters, 100 suburban
 voters, 25 rural voters

Policy	Urban	Suburban	Rural
Zombie apocalypse	-2	+5	-3
Sharks with lasers	+8	+2	-5
Flying cars roads	0	0	+10
Dolphins voting	+10	0	-2

- Let x_1 be the money spent on ads for preparing for a zombie apocalypse, x_2 be the money for ads for sharks with lasers, x_3 be the money spent on ads for roads for flying cars, and x_4 be the money spent on ads for allowing dolphins to vote
- Rural voters: $-3x_1 5x_2 + 10x_3 2x_4$
- Constraint: $-3x_1 5x_2 + 10x_3 2x_4 \ge 25$

Minimization Problem

You seek 50 urban
 voters, 100 suburban
 voters, 25 rural voters

• Minimize: $x_1 + x_2$	$+ x_3 + x_4$
-------------------------	---------------

Constraints:

$-2x_1 + 8x_2 + 10x_4 \ge 50$
$5x_1 + 2x_2 \ge 100$
$-3x_1 - 5x_2 + 10x_3 - 2x_4 \ge 25$

Policy	Urban	Suburban	Rural
Zombie apocalypse	-2	+5	-3
Sharks with lasers	+8	+2	-5
Flying cars roads	0	0	+10
Dolphins voting	+10	0	-2

Maximize a linear objective function:

$$f(x_1, ..., x_n) = c_1 x_1 + \dots + c_n x_n$$

Subject to constraints:

$$\sum_{j=1}^{n} a_{i,j} x_j \le b_i \text{ for } i = 1, \dots, m$$
$$x_j \ge 0 \text{ for } j = 1, \dots, n$$

Linear Programming (Standard Form)

Maximize a linear objective function:

$$c^{\mathsf{T}}x = \langle c, x \rangle, \ c, x \in \mathbb{R}^n$$

Subject to constraints:

$$Ax \le b$$
 for $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$
 $x \ge 0$ (entry-wise non-negativity)

Linear Programming (Standard Form)

• If a particular solution \bar{x} satisfies all the constraints, we call it a *feasible solution*; otherwise, we call it an *infeasible solution*

 Can convert any linear program into standard form, even if there are equality constraints or variables that can take on negative values

- Minimize: $x_1 + x_2$
- Subject to:

$$4x_1 - x_2 \le 8$$

$$2x_1 + x_2 \le 10$$

$$5x_1 - 2x_2 \le -2$$

$$x_1, x_2 \ge 0$$

- Minimize: $x_1 + x_2$
- Subject to:

$$4x_{1} - x_{2} \le 8$$

$$2x_{1} + x_{2} \le 10$$

$$5x_{1} - 2x_{2} \le -2$$

$$x_{1}, x_{2} \ge 0$$

 Optimal solution is always located at vertex of feasible region

• Simplex algorithm: finds a feasible solution at a vertex of the polytope and then searches along the edges to vertices with non-decreasing values

Good in practice but exponential time in the worst-case

• Ellipsoid algorithm: iterative algorithm that generates a sequence of smaller ellipsoids, each of which separate the current iterate with the optimal solution

Requires a separation oracle

 Polynomial time algorithm in theory but inefficient in practice and can suffer from numerical instability

• Maximize $c_1x_1+\cdots+c_nx_n$ subject to $\sum_{j=1}^n a_{i,j}x_j \leq b_i$ for $i=1,\ldots,m$ and $x_j\geq 0$ for $j=1,\ldots,n$

• For the above linear program, its dual is

Minimize:
$$b_1 y_1 + \cdots + b_m y_m$$

Subject to: $\sum_{i=1}^m a_{i,j} y_i \ge c_j$ for $j=1,\ldots,n$
 $y_i \ge 0$ for $i=1,\ldots,m$

Maximize:
$$3x_1 + x_2 + 4x_3$$

Subject to: $x_1 + x_2 + 3x_3 \le 30$
 $2x_1 + 2x_2 + 5x_3 \le 24$
 $4x_1 + x_2 + 2x_3 \le 36$
 $x_1, x_2, x_3 \ge 0$

• What is its dual program?

(Williamson-Shmoys)

Minimize:
$$30y_1 + 24y_2 + 36y_3$$

Subject to: $y_1 + 2y_2 + 4y_3 \ge 3$
 $y_1 + 2y_2 + y_3 \ge 1$
 $3y_1 + 5y_2 + 2y_3 \ge 4$
 $y_1, y_2, y_3 \ge 0$

 Intuition: What if we take the original constraints and add the first two constraints?

Maximize:
$$3x_1 + x_2 + 4x_3$$

Subject to: $x_1 + x_2 + 3x_3 \le 30$
 $2x_1 + 2x_2 + 5x_3 \le 24$
 $4x_1 + x_2 + 2x_3 \le 36$
 $x_1, x_2, x_3 \ge 0$

• Intuition: What if we take the original constraints and add the first two constraints? $3x_1 + 3x_2 + 8x_3 \le 54$

Maximize:
$$3x_1 + x_2 + 4x_3$$

Subject to: $x_1 + x_2 + 3x_3 \le 30$
 $2x_1 + 2x_2 + 5x_3 \le 24$
 $4x_1 + x_2 + 2x_3 \le 36$
 $x_1, x_2, x_3 \ge 0$

- Coefficients all larger than objective
- The primal solution must be at most 54

 Intuition: What if we take the original constraints and add the first two constraints?

Maximize:
$$3x_1 + x_2 + 4x_3$$

Subject to: $x_1 + x_2 + 3x_3 \le 30$
 $2x_1 + 2x_2 + 5x_3 \le 24$
 $4x_1 + x_2 + 2x_3 \le 36$
 $x_1, x_2, x_3 \ge 0$

 Can we find a linear combination of the equations that exactly matches the objective?

 Intuition: What if we take the original constraints and add the first two constraints?

Maximize:
$$3x_1 + x_2 + 4x_3$$

Subject to: $x_1 + x_2 + 3x_3 \le 30$
 $2x_1 + 2x_2 + 5x_3 \le 24$
 $4x_1 + x_2 + 2x_3 \le 36$
 $x_1, x_2, x_3 \ge 0$

- Suppose we multiply the first constraint by y_1 , the second constraint by y_2 , the third constraint by y_3
- What relationship do we get for x_1 ?

Minimize:
$$30y_1 + 24y_2 + 36y_3$$

Subject to: $y_1 + 2y_2 + 4y_3 \ge 3$
 $y_1 + 2y_2 + y_3 \ge 1$
 $3y_1 + 5y_2 + 2y_3 \ge 4$
 $y_1, y_2, y_3 \ge 0$

The dual is exactly this program

• Weak duality: any feasible solution to the primal linear program has objective at most any feasible solution to the dual linear program, i.e., $\langle c, \overline{x} \rangle \leq \langle b, \overline{y} \rangle$

• LP duality: If both the primal linear program and the corresponding dual are feasible and bounded, then for optimal solutions x^* and y^* , $\langle c, x^* \rangle = \langle b, y^* \rangle$