CSCE 658: Randomized Algorithms

Lecture 15

Samson Zhou

Relevant Supplementary Material

- Chapter 29 in "Introduction to Algorithms", by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein
- Chapters 5.1-5.5 in "The Design of Approximation Algorithms", by David P. Williamson and David B. Shmoys

MAX-SAT

- In the MAX-SAT problem, the input is a CNF formula $f\left(x_{1}, \ldots, x_{n}\right)$ with m clauses C_{1}, \ldots, C_{m}
- The goal is to assign values to x_{1}, \ldots, x_{n} to maximize the number of satisfied clauses

MAX-SAT

- Suppose we assign each variable x_{i} a separate random TRUE/FALSE value
- For each $i \in[m]$, we have $\operatorname{Pr}\left[C_{i}\right.$ is FALSE $] \leq 1 / 2$
- By a linearity of expectation, the expected number of satisfied clauses is at least $m / 2$
- Random assignment gives (at least) a $\frac{1}{2}$-approximation in expectation

Derandomization of MAX-SAT

- How to get an algorithm that achieves $\frac{1}{2}$?
- Method of conditional expectation
- Set x_{1} to be the value with the higher conditional expectation
- Random assignment is a $\frac{1}{2}$-approximation in expectation, so there is a value of x_{1} that is a $\frac{1}{2}$-approximation in expectation
- Iterate

Better Algorithm for MAX-SAT

- First suppose there is no unit clause $\overline{x_{i}}$ (will remove assumption later)
- Set each x_{i} to be TRUE with probability $p>1 / 2$ independently

Better Algorithm for MAX-SAT

- Claim: The probability that any given clause is satisfied is $\min \left(p, 1-p^{2}\right)$
- If the clause has one literal, the probability the clause is TRUE is p
- Otherwise if the clause has a literals that are negated, b literals that are not negated, the probability the clause is TRUE is $1-p^{a}(1-p)^{b}>1-p^{2}$ for $a+b \geq 2$ and $p>\frac{1}{2}$

Better Algorithm for MAX-SAT

- Claim: The probability that any given clause is satisfied is $\min \left(p, 1-p^{2}\right)$
- $\min \left(p, 1-p^{2}\right)$ is maximized ≈ 0.618 for $p=\frac{1}{2}(\sqrt{5}-1)$
- If there is no unit clause $\overline{x_{i}}$, there is $\mathrm{a} \approx 0.618$ approximation algorithm for MAX-SAT

Better Algorithm for MAX-SAT

- Let U be the set of clauses excluding negated unit clauses $\overline{x_{i}}$
- Assume without loss of generality that for each fixed $i \in[n]$, the number of unit clauses x_{i} is at least the number of unit clauses $\overline{x_{i}}$
- Let v_{i} be the number of unit clauses $\overline{x_{i}}$
- OPT $\leq m-\sum_{i \in[n]} v_{i}$ since x_{i} cannot be both TRUE and FALSE (and the assumption that x_{i} appears more than $\overline{x_{i}}$)

Better Algorithm for MAX-SAT

$$
\sum_{j \in[m]} \operatorname{Pr}\left[C_{j} \text { is satisfied }\right]=\sum_{j \in U} \operatorname{Pr}\left[C_{j} \text { is satisfied }\right]
$$

Political Problems...

- As a politician seeking approval ratings, you would like the support of 50 urban voters, 100 suburban voters, 25 rural voters
- For each $\$ 1$ spent advertising one of the following policies, the resulting effects are:
- Optimize your budget
- (Warm-up from CLRS)

Policy	Urban	Suburban	Rural
Zombie apocalypse	-2	+5	-3
Sharks with lasers	+8	+2	-5
Flying cars roads	0	0	+10
Dolphins voting	+10	0	-2

Political Problems...

- You seek 50 urban voters, 100 suburban voters, 25 rural voters

Policy	Urban	Suburban	Rural
Zombie apocalypse	-2	+5	-3
Sharks with lasers	+8	+2	-5
Flying cars roads	0	0	+10
Dolphins voting	+10	0	-2

- Let x_{1} be the money spent on ads for preparing for a zombie apocalypse, x_{2} be the money for ads for sharks with lasers, x_{3} be the money spent on ads for roads for flying cars, and x_{4} be the money spent on ads for allowing dolphins to vote
- Urban voters: $-2 x_{1}+8 x_{2}+10 x_{4}$
- Constraint: $-2 x_{1}+8 x_{2}+10 x_{4} \geq 50$

Political Problems...

- You seek 50 urban voters, 100 suburban voters, 25 rural voters

Policy	Urban	Suburban	Rural
Zombie apocalypse	-2	+5	-3
Sharks with lasers	+8	+2	-5
Flying cars roads	0	0	+10
Dolphins voting	+10	0	-2

- Let x_{1} be the money spent on ads for preparing for a zombie apocalypse, x_{2} be the money for ads for sharks with lasers, x_{3} be the money spent on ads for roads for flying cars, and x_{4} be the money spent on ads for allowing dolphins to vote
- Suburban voters: $5 x_{1}+2 x_{2}$
- Constraint: $5 x_{1}+2 x_{2} \geq 100$

Political Problems...

- You seek 50 urban voters, 100 suburban voters, 25 rural voters

Policy	Urban	Suburban	Rural
Zombie apocalypse	-2	+5	-3
Sharks with lasers	+8	+2	-5
Flying cars roads	0	0	+10
Dolphins voting	+10	0	-2

- Let x_{1} be the money spent on ads for preparing for a zombie apocalypse, x_{2} be the money for ads for sharks with lasers, x_{3} be the money spent on ads for roads for flying cars, and x_{4} be the money spent on ads for allowing dolphins to vote
- Rural voters: $-3 x_{1}-5 x_{2}+10 x_{3}-2 x_{4}$
- Constraint: $-3 x_{1}-5 x_{2}+10 x_{3}-2 x_{4} \geq 25$

Minimization Problem

- You seek 50 urban voters, 100 suburban voters, 25 rural voters

Policy	Urban	Suburban	Rural
Zombie apocalypse	-2	+5	-3
Sharks with lasers	+8	+2	-5
Flying cars roads	0	0	+10
Dolphins voting	+10	0	-2

- Minimize: $x_{1}+x_{2}+x_{3}+x_{4}$
- Constraints:

$$
\begin{gathered}
-2 x_{1}+8 x_{2}+10 x_{4} \geq 50 \\
5 x_{1}+2 x_{2} \geq 100 \\
-3 x_{1}-5 x_{2}+10 x_{3}-2 x_{4} \geq 25
\end{gathered}
$$

Linear Programming

- Maximize a linear objective function:

$$
f\left(x_{1}, \ldots, x_{n}\right)=c_{1} x_{1}+\cdots+c_{n} x_{n}
$$

- Subject to constraints:

$$
\begin{gathered}
\sum_{j=1}^{n} a_{i, j} x_{j} \leq b_{i} \text { for } i=1, \ldots, m \\
x_{j} \geq 0 \text { for } j=1, \ldots, n
\end{gathered}
$$

Linear Programming (Standard Form)

- Maximize a linear objective function:

$$
c^{\top} x=\langle c, x\rangle, c, x \in \mathbb{R}^{n}
$$

- Subject to constraints:

$$
\begin{gathered}
A x \leq b \text { for } A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m} \\
x \geq 0 \text { (entry-wise non-negativity) }
\end{gathered}
$$

Linear Programming (Standard Form)

- If a particular solution \bar{x} satisfies all the constraints, we call it a feasible solution; otherwise, we call it an infeasible solution
- Can convert any linear program into standard form, even if there are equality constraints or variables that can take on negative values

Linear Programming

- Minimize: $x_{1}+x_{2}$
- Subject to:

$$
\begin{gathered}
4 x_{1}-x_{2} \leq 8 \\
2 x_{1}+x_{2} \leq 10 \\
5 x_{1}-2 x_{2} \leq-2 \\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

Linear Programming

- Minimize: $x_{1}+x_{2}$
- Subject to:

$$
\begin{gathered}
4 x_{1}-x_{2} \leq 8 \\
2 x_{1}+x_{2} \leq 10 \\
5 x_{1}-2 x_{2} \leq-2 \\
x_{1}, x_{2} \geq 0
\end{gathered}
$$

- Optimal solution is always located at vertex of feasible region

(a)

(b)

Linear Programming

- Simplex algorithm: finds a feasible solution at a vertex of the polytope and then searches along the edges to vertices with non-decreasing values
- Good in practice but exponential time in the worst-case

Linear Programming

- Ellipsoid algorithm: iterative algorithm that generates a sequence of smaller ellipsoids, each of which separate the current iterate with the optimal solution
- Requires a separation oracle
- Polynomial time algorithm in theory but inefficient in practice and can suffer from numerical instability

Duality

- Maximize $c_{1} x_{1}+\cdots+c_{n} x_{n}$ subject to $\sum_{j=1}^{n} a_{i, j} x_{j} \leq b_{i}$ for $i=1, \ldots, m$ and $x_{j} \geq 0$ for $j=1, \ldots, n$
- For the above linear program, its dual is

Minimize: $b_{1} y_{1}+\cdots+b_{m} y_{m}$
Subject to: $\sum_{i=1}^{m} a_{i, j} y_{i} \geq c_{j}$ for $j=1, \ldots, n$

$$
y_{i} \geq 0 \text { for } i=1, \ldots, m
$$

Duality

Maximize: $3 x_{1}+x_{2}+4 x_{3}$
Subject to: $x_{1}+x_{2}+3 x_{3} \leq 30$

$$
\begin{gathered}
2 x_{1}+2 x_{2}+5 x_{3} \leq 24 \\
4 x_{1}+x_{2}+2 x_{3} \leq 36 \\
x_{1}, x_{2}, x_{3} \geq 0
\end{gathered}
$$

-What is its dual program?
(Williamson-Shmoys)

Duality

Minimize: $30 y_{1}+24 y_{2}+36 y_{3}$
Subject to: $y_{1}+2 y_{2}+4 y_{3} \geq 3$

$$
\begin{gathered}
y_{1}+2 y_{2}+y_{3} \geq 1 \\
3 y_{1}+5 y_{2}+2 y_{3} \geq 4 \\
y_{1}, y_{2}, y_{3} \geq 0
\end{gathered}
$$

Duality

- Intuition: What if we take the original constraints and add the first two constraints?

Maximize: $3 x_{1}+x_{2}+4 x_{3}$
Subject to: $x_{1}+x_{2}+3 x_{3} \leq 30$

$$
\begin{gathered}
2 x_{1}+2 x_{2}+5 x_{3} \leq 24 \\
4 x_{1}+x_{2}+2 x_{3} \leq 36 \\
x_{1}, x_{2}, x_{3} \geq 0
\end{gathered}
$$

Duality

- Intuition: What if we take the original constraints and add the first two constraints?

$$
3 x_{1}+3 x_{2}+8 x_{3} \leq 54
$$

Maximize: $3 x_{1}+x_{2}+4 x_{3}$
Subject to: $x_{1}+x_{2}+3 x_{3} \leq 30$

$$
\begin{gathered}
2 x_{1}+2 x_{2}+5 x_{3} \leq 24 \\
4 x_{1}+x_{2}+2 x_{3} \leq 36
\end{gathered}
$$

$$
x_{1}, x_{2}, x_{3} \geq 0
$$

- Coefficients all larger than objective
- The primal solution must be at most 54

Duality

- Intuition: What if we take the original constraints and add the first two constraints?

Maximize: $3 x_{1}+x_{2}+4 x_{3}$
Subject to: $x_{1}+x_{2}+3 x_{3} \leq 30$

$$
\begin{gathered}
2 x_{1}+2 x_{2}+5 x_{3} \leq 24 \\
4 x_{1}+x_{2}+2 x_{3} \leq 36 \\
x_{1}, x_{2}, x_{3} \geq 0
\end{gathered}
$$

- Can we find a linear combination of the equations that exactly matches the objective?

Duality

- Intuition: What if we take the original constraints and add the first two constraints?

Maximize: $3 x_{1}+x_{2}+4 x_{3}$
Subject to: $x_{1}+x_{2}+3 x_{3} \leq 30$ $2 x_{1}+2 x_{2}+5 x_{3} \leq 24$ $4 x_{1}+x_{2}+2 x_{3} \leq 36$ $x_{1}, x_{2}, x_{3} \geq 0$

- Suppose we multiply the first constraint by y_{1}, the second constraint by y_{2}, the third constraint by y_{3}
- What relationship do we get for x_{1} ?

Duality

Minimize: $30 y_{1}+24 y_{2}+36 y_{3}$
Subject to: $y_{1}+2 y_{2}+4 y_{3} \geq 3$

$$
\begin{gathered}
y_{1}+2 y_{2}+y_{3} \geq 1 \\
3 y_{1}+5 y_{2}+2 y_{3} \geq 4 \\
y_{1}, y_{2}, y_{3} \geq 0
\end{gathered}
$$

- The dual is exactly this program

Duality

- Weak duality: any feasible solution to the primal linear program has objective at most any feasible solution to the dual linear program, i.e., $\langle c, \bar{x}\rangle \leq\langle b, \bar{y}\rangle$
- LP duality: If both the primal linear program and the corresponding dual are feasible and bounded, then for optimal solutions x^{*} and $y^{*},\left\langle c, x^{*}\right\rangle=\left\langle b, y^{*}\right\rangle$

