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Relevant Supplementary Material

• Chapter 29 in “Introduction to Algorithms”, by Thomas H. 
Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford 
Stein

• Chapters 5.1-5.5 in “The Design of Approximation 
Algorithms”, by David P. Williamson and David B. Shmoys



Linear Programming (Standard Form)

• Maximize a linear objective function:

• Subject to constraints:

𝐴𝑥 ≤ 𝑏 for 𝐴 ∈ ℝ𝑚×𝑛, 𝑏 ∈ ℝ𝑚

𝑥 ≥ 0 (entry-wise non-negativity)

𝑐⊤𝑥 = ⟨𝑐, 𝑥⟩,  𝑐, 𝑥 ∈ ℝ𝑛



Max 𝑠 − 𝑡 Flow in a Directed Graph

• Input: A directed graph 𝐺 = 𝑉, 𝐸 , capacities 𝑐(𝑢,𝑣) for each 
edge 𝑢, 𝑣 ∈ 𝐸, source vertex 𝑠, and sink vertex 𝑡

• A flow is assignment of weights to edges so that:
• Capacity constraint: the flow of an edge does not exceed 

its capacity
• Conservation of flow: sum of flows entering a node equals 

sum of flows exiting a node, except for 𝑠 and 𝑡

• Goal: Route as much flow as possible from 𝑠 to 𝑡



Max 𝑠 − 𝑡 Flow in a Directed Graph
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Max 𝑠 − 𝑡 Flow in a Directed Graph
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Linear Program for Max 𝑠 − 𝑡 Flow

• What variables do we want?

• Flow 𝑓(𝑢,𝑣) for each edge (𝑢, 𝑣)

• What constraints do we want?

• Capacity constraint, conservation of flow



Linear Program for Max 𝑠 − 𝑡 Flow

• Maximize: σ𝑣: 𝑠,𝑣 ∈𝐸 𝑓(𝑠,𝑣) − σ𝑣: 𝑣,𝑠 ∈𝐸 𝑓(𝑣,𝑠)

• Subject to:

𝑓(𝑢,𝑣) ≥ 0 for all (𝑢, 𝑣) ∈ 𝐸

𝑓(𝑢,𝑣) ≤ 𝑐(𝑢,𝑣) for all (𝑢, 𝑣) ∈ 𝐸

σ𝑢: 𝑢,𝑣 ∈𝐸 𝑓(𝑢,𝑣) = σ𝑤: 𝑣,𝑤 ∈𝐸 𝑓(𝑣,𝑢) for all 𝑣 ≠ 𝑠, 𝑡



Dual Program for Max 𝑠 − 𝑡 Flow

• Minimize: σ𝑣: 𝑢,𝑣 ∈𝐸 𝑐(𝑢,𝑣)𝑑(𝑢,𝑣), where 𝑑(𝑢,𝑣) indicates 
whether 𝑢, 𝑣  crosses the cut, 𝑐(𝑢,𝑣) is the capacity of 𝑢, 𝑣

• Subject to: 𝑑(𝑢,𝑣) ≥ 0 for all (𝑢, 𝑣) ∈ 𝐸

𝑑(𝑢,𝑣) − 𝑧𝑢 + 𝑧𝑣 ≥ 0 for all 𝑢, 𝑣 ∈ 𝐸, 𝑢 ≠ 𝑠, 𝑣 ≠ 𝑡

𝑑 𝑠,𝑣 + 𝑧𝑣 ≥ 1 for all 𝑠, 𝑣 ∈ 𝐸

𝑑 𝑢,𝑡 − 𝑧𝑢 ≥ 0 for all 𝑢, 𝑡 ∈ 𝐸



Cuts

• A cut 𝐶 = 𝑆1, 𝑆2 of a graph 𝐺 is a partition of the vertices 𝑉 
into a set 𝑆1 and the remaining vertices 𝑆2 = 𝑉 − 𝑆1

• An edge (𝑢, 𝑣) crosses the cut 𝐶 if 𝑢 ∈ 𝑆1 and 𝑣 ∈ 𝑆2

• The size of the cut 𝐶 is the number of edges that cross 𝐶



Minimum 𝑠 − 𝑡 Cut

• The minimum cut of a graph is the size of the smallest cut 
across all pairs of sets of vertices 𝑆1 and 𝑆2 = 𝑉 − 𝑆1

• Find the minimum cut of a graph 𝐺 that separates 𝑠 and 𝑡 
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What is the minimum 𝑠 − 𝑡 cut of the graph?
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Min cut is 15



Linear Program for Min 𝑠 − 𝑡 Cut

• What variables do we want?

• Variables 𝑑(𝑢,𝑣) for each edge (𝑢, 𝑣) indicating whether it 
crosses the cut

• Set 𝑑(𝑢,𝑣) ≥ 𝑧𝑢 − 𝑧𝑣 , 𝑧𝑣 − 𝑧𝑢, where 𝑧𝑢 ∈ {0,1} indicates 
whether 𝑢 is on the side of 𝑠

• Need 𝑑(𝑠,𝑣) ≥ 1 − 𝑧𝑣, 𝑑(𝑢,𝑡) ≥ 𝑧𝑢



Linear Program for Min 𝑠 − 𝑡 Cut

• Minimize: σ𝑣: 𝑢,𝑣 ∈𝐸 𝑐(𝑢,𝑣)𝑑(𝑢,𝑣), where 𝑑(𝑢,𝑣) indicates 
whether 𝑢, 𝑣  crosses the cut, 𝑐(𝑢,𝑣) is the capacity of 𝑢, 𝑣

• Subject to: 𝑑(𝑢,𝑣) ≥ 0 for all (𝑢, 𝑣) ∈ 𝐸

𝑧𝑢 ∈ {0,1} for all 𝑢 ∈ 𝑉
𝑑(𝑢,𝑣) − 𝑧𝑢 + 𝑧𝑣 ≥ 0 for all 𝑢, 𝑣 ∈ 𝐸, 𝑢 ≠ 𝑠, 𝑣 ≠ 𝑡

𝑑 𝑠,𝑣 + 𝑧𝑣 ≥ 1 for all 𝑠, 𝑣 ∈ 𝐸

𝑑 𝑢,𝑡 − 𝑧𝑢 ≥ 0 for all 𝑢, 𝑡 ∈ 𝐸



Dual Program for Max 𝑠 − 𝑡 Flow

• Minimize: σ𝑣: 𝑢,𝑣 ∈𝐸 𝑐(𝑢,𝑣)𝑑(𝑢,𝑣), where 𝑑(𝑢,𝑣) indicates 
whether 𝑢, 𝑣  crosses the cut, 𝑐(𝑢,𝑣) is the capacity of 𝑢, 𝑣

• Subject to: 𝑑(𝑢,𝑣) ≥ 0 for all (𝑢, 𝑣) ∈ 𝐸

𝑑(𝑢,𝑣) − 𝑧𝑢 + 𝑧𝑣 ≥ 0 for all 𝑢, 𝑣 ∈ 𝐸, 𝑢 ≠ 𝑠, 𝑣 ≠ 𝑡

𝑑 𝑠,𝑣 + 𝑧𝑣 ≥ 1 for all 𝑠, 𝑣 ∈ 𝐸

𝑑 𝑢,𝑡 − 𝑧𝑢 ≥ 0 for all 𝑢, 𝑡 ∈ 𝐸



Min Cut-Max Flow Theorem?

• Recall: the max-flow min-cut theorem states the maximum 
flow through any graph between any fixed source and sink is 
exactly equal to the minimum cut

• However, the dual LP to the max-flow problem is a fractional 
problem, while the LP for the min-cut problem requires 
integral solutions



Linear Programming (Standard Form)

• Maximize a linear objective function:

• Subject to constraints:

𝐴𝑥 ≤ 𝑏 for 𝐴 ∈ ℝ𝑚×𝑛, 𝑏 ∈ ℝ𝑚

𝑥 ≥ 0 (entry-wise non-negativity)

𝑐⊤𝑥 = ⟨𝑐, 𝑥⟩,  𝑐, 𝑥 ∈ ℝ𝑛



Integer Linear Programming (Standard Form)

• Maximize a linear objective function:

• Subject to constraints:

𝐴𝑥 + 𝑠 = 𝑏 for 𝐴 ∈ ℝ𝑚×𝑛, 𝑠, 𝑏 ∈ ℝ𝑚

𝑠, 𝑥 ≥ 0 (entry-wise non-negativity)

𝑐⊤𝑥 = ⟨𝑐, 𝑥⟩,  𝑐 ∈  ℝ𝑛, 𝑥 ∈ ℤ𝑛



Integer Linear Programming (Standard Form)

• Integer linear programming is NP-hard (solves vertex cover)

• When constraint is 𝐴𝑥 = 𝑏, the matrix 𝐴 and the vector 𝑏 all 
have integer entries, and 𝐴 is totally unimodular (every 
square submatrix has determinant −1,0,1), then the vertices 
of the LP polytope are integers

• Can use standard LP algorithms



MAX-SAT Revisited

• In the MAX-SAT problem, the input is a CNF formula 
𝑓 𝑥1, … , 𝑥𝑛  with 𝑚 clauses 𝐶1, … . , 𝐶𝑚

• The goal is to assign values to 𝑥1, … , 𝑥𝑛 to maximize the 
number of satisfied clauses



MAX-SAT Revisited

• Suppose we assign each variable 𝑥𝑖  a separate random 
TRUE/FALSE value

• For each 𝑖 ∈ [𝑚], we have Pr 𝐶𝑖  is FALSE ≤ 1/2

• By a linearity of expectation, the expected number of 
satisfied clauses is at least 𝑚/2

• Random assignment gives (at least) a 
1

2
-approximation in 

expectation



Derandomization of MAX-SAT

• How to get an algorithm that achieves 
1

2
?

• Method of conditional expectation
• Set 𝑥1 to be the value with the higher conditional expectation

• Random assignment is a 
1

2
-approximation in expectation, so 

there is a value of 𝑥1 that is a 
1

2
-approximation in expectation

• Iterate



Better Algorithm for MAX-SAT

• First suppose there is no unit clause 𝑥𝑖  (will remove 
assumption later)

• Set each 𝑥𝑖  to be TRUE with probability 𝑝 > 1/2 
independently



Better Algorithm for MAX-SAT

• Claim: The probability that any given clause is satisfied is 
min 𝑝, 1 − 𝑝2

• min 𝑝, 1 − 𝑝2  is maximized ≈ 0.618 for 𝑝 =
1

2
( 5 − 1)

• If there is no unit clause 𝑥𝑖, there is a ≈ 0.618 approximation 
algorithm for MAX-SAT



MAX-SAT Revisited (Integer Program)

• Maximize: σ𝑗∈[𝑚] 𝑍𝑗

• Subject to:

σ𝑖:𝑥𝑖∈𝐶𝑗
𝑦𝑖 + σ𝑖:𝑥𝑖∈𝐶𝑗

(1 − 𝑦𝑖) ≥ 𝑍𝑗  for all 𝑗 ∈ [𝑚]

𝑍𝑗 ∈ {0,1} for all 𝑗 ∈ [𝑚]

𝑦𝑖 ∈ {0,1} for all 𝑖 ∈ [𝑛]



MAX-SAT Revisited (LP Relaxation)

• Maximize: σ𝑗∈[𝑚] 𝑍𝑗

• Subject to:

σ𝑖:𝑥𝑖∈𝐶𝑗
𝑦𝑖 + σ𝑖:𝑥𝑖∈𝐶𝑗

(1 − 𝑦𝑖) ≥ 𝑍𝑗  for all 𝑗 ∈ [𝑚]

0 ≤ 𝑍𝑗 ≤ 1 for all 𝑗 ∈ [𝑚]

0 ≤ 𝑦𝑖 ≤ 1 for all 𝑖 ∈ [𝑛]



Randomized Rounding for MAX-SAT

• Let 𝑦𝑖
∗ and 𝑧𝑗

∗ be the optimal solution to the LP relaxation

• Set 𝑥𝑖 = 1 with probability 𝑦𝑖
∗ 

• Pr 𝐶𝑗  is not satisfied = ς𝑖∈𝑃𝑗
1 − 𝑦𝑖

∗ ς𝑖∈𝑁𝑗
𝑦𝑖

∗, where we 

split clause 𝐶𝑗  into positive literals 𝑃𝑗  and negative literals 𝑁𝑗



Randomized Rounding for MAX-SAT

Pr 𝐶𝑗  is not satisfied = ς𝑖∈𝑃𝑗
1 − 𝑦𝑖

∗ ς𝑖∈𝑁𝑗
𝑦𝑖

∗ 

≤
1

𝐶𝑗
σ𝑖∈𝑃𝑗

(1 − 𝑦𝑖
∗) + σ𝑖∈𝑁𝑗

𝑦𝑖
∗

|𝐶𝑗|

  (AM-GM)

= 1 −
1

𝐶𝑗
σ𝑖∈𝑃𝑗

𝑦𝑖
∗ + σ𝑖∈𝑁𝑗

(1 − 𝑦𝑖
∗)

|𝐶𝑗|

  

= 1 −
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∗
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Randomized Rounding for MAX-SAT

Pr 𝐶𝑗  is satisfied ≥ 1 − 1 −
𝑧𝑗

∗

𝐶𝑗

|𝐶𝑗|

≥ 1 − 1 −
1

𝐶𝑗

|𝐶𝑗|

 𝑧𝑗
∗

≥ 1 −
1

𝑒
𝑧𝑗

∗

(concavity)



Randomized Rounding for MAX-SAT

• Let 𝑦𝑖
∗ and 𝑧𝑗

∗ be the optimal solution to the LP relaxation

• Set 𝑥𝑖 = 1 with probability 𝑦𝑖
∗ 

• 1 −
1

𝑒
≈ 0.6321-approximation algorithm



MAX-SAT Summary

• Random assignment gives ≈ 0.618-approximation

• Randomized rounding gives ≈ 0.6321-approximation

Pr 𝐶𝑗  is satisfied ≥ 𝑧𝑗
∗ 1 − 1 −

1

𝐶𝑗

𝐶𝑗

Pr 𝐶𝑗  is satisfied ≥ 1 − 2− 𝐶𝑗 ≥ 𝑧𝑗
∗ 1 − 2− 𝐶𝑗



MAX-SAT Summary

• Random assignment gives ≈ 0.618-approximation

• Randomized rounding gives ≈ 0.6321-approximation

Pr 𝐶𝑗  is satisfied ≥ 𝑧𝑗
∗ 1 − 1 −

1

𝐶𝑗

𝐶𝑗

Pr 𝐶𝑗  is satisfied ≥ 1 − 2− 𝐶𝑗 ≥ 𝑧𝑗
∗ 1 − 2− 𝐶𝑗



MAX-SAT Summary

• Random assignment gives ≈ 0.618-approximation

• Randomized rounding gives ≈ 0.6321-approximation

• How do these behave across values of 𝐶𝑗 ?

Pr 𝐶𝑗  is satisfied ≥ 𝑧𝑗
∗ 1 − 1 −

1

𝐶𝑗

𝐶𝑗

Pr 𝐶𝑗  is satisfied ≥ 1 − 2− 𝐶𝑗 ≥ 𝑧𝑗
∗ 1 − 2− 𝐶𝑗



MAX-SAT Summary

• When 𝐶𝑗  is small, 1 − 2− 𝐶𝑗  is small and 1 − 1 −
1

𝐶𝑗

𝐶𝑗

 is 

large

• When 𝐶𝑗  is large, 1 − 2− 𝐶𝑗  is large and 1 − 1 −
1

𝐶𝑗

𝐶𝑗

 is 

small



Choosing the Better of Two Solutions

• Run randomized rounding and random assignment and take the 
better of the two solutions

• We have max a, b ≥
𝑎+𝑏

2
 

Pr 𝐶𝑗  is satisfied ≥ 𝑧𝑗
∗ max 1 − 2− 𝐶𝑗 , 1 − 1 −

1

𝐶𝑗

𝐶𝑗



Choosing the Better of Two Solutions

• Run randomized rounding and random assignment and take the 
better of the two solutions

• For 𝐶𝑗 = 1, 
1

2
1 − 2− 𝐶𝑗 + 1 − 1 −

1

𝐶𝑗

𝐶𝑗

=
3

4
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Choosing the Better of Two Solutions

• Run randomized rounding and random assignment and take the 
better of the two solutions

• For 𝐶𝑗 = 2, 
1

2
1 − 2− 𝐶𝑗 + 1 − 1 −

1

𝐶𝑗

𝐶𝑗

=
3

4

Pr 𝐶𝑗  is satisfied ≥ 𝑧𝑗
∗ ⋅

1

2
1 − 2− 𝐶𝑗 + 1 − 1 −

1

𝐶𝑗
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Choosing the Better of Two Solutions

• For 𝐶𝑗 ≥ 3:

1

2
1 − 2− 𝐶𝑗 + 1 − 1 −

1

𝐶𝑗

𝐶𝑗

≥
1

2
1 −

1

𝑒
+

1

2
⋅

7

8

≈ 0.753 ≥
3

4



Choosing the Better of Two Solutions

• Run randomized rounding and random assignment and take the 
better of the two solutions

• By linearity of expectation, 
3

4
-approximation algorithm

Pr 𝐶𝑗  is satisfied ≥
3

4
⋅ 𝑧𝑗

∗



Nonlinear Randomized Rounding for MAX-SAT

• Let 𝑦𝑖
∗ and 𝑧𝑗

∗ be the optimal solution to the LP relaxation

• Previously: Set 𝑥𝑖 = 1 with probability 𝑦𝑖
∗ 

• What if we set 𝑥𝑖 = 1 with probability 𝑓(𝑦𝑖
∗)? 

• Pr 𝐶𝑗  is not satisfied = ς𝑖∈𝑃𝑗
1 − 𝑓(𝑦𝑖

∗) ς𝑖∈𝑁𝑗
𝑓(𝑦𝑖

∗), 

where we split clause 𝐶𝑗  into positive literals 𝑃𝑗  and negative 
literals 𝑁𝑗



Nonlinear Randomized Rounding for MAX-SAT

• Pr 𝐶𝑗  is not satisfied = ς𝑖∈𝑃𝑗
1 − 𝑓(𝑦𝑖

∗) ς𝑖∈𝑁𝑗
𝑓(𝑦𝑖

∗)

• Suppose we set 1 − 4−𝑥 ≤ 𝑓 𝑥 ≤ 4𝑥−1 

• Pr 𝐶𝑗  is not satisfied = ς𝑖∈𝑃𝑗
4−𝑦𝑖

∗
ς𝑖∈𝑁𝑗

4𝑦𝑖
∗−1

• Pr 𝐶𝑗  is satisfied ≥ 1 − 4−𝑧𝑗
∗

≥ 1 −
1

4
𝑧𝑗

∗ =
3

4
 𝑧𝑗

∗

= 4
− σ𝑖∈𝑃𝑗

𝑦𝑖
∗+σ𝑖∈𝑁𝑗

(1−𝑦𝑖
∗)

≤ 4−𝑧𝑗
∗



Nonlinear Randomized Rounding for MAX-SAT

• Let 𝑦𝑖
∗ and 𝑧𝑗

∗ be the optimal solution to the LP relaxation

• Set 𝑥𝑖 = 1 with probability 𝑓(𝑦𝑖
∗)

• By linearity of expectation, 
3

4
-approximation algorithm
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