CSCE 658: Randomized Algorithms

Lecture 16

Samson Zhou

Relevant Supplementary Material

e Chapter 29 in “Introduction to Algorithms”, by Thomas H.
Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford
Stein

* Chapters 5.1-5.5 in “The Design of Approximation
Algorithms”, by David P. Williamson and David B. Shmoys

Linear Programming (Standard Form)

* Maximize a linear objective function:

c'x ={c,x), c,x ER"

* Subject to constraints:

Ax < bforA e R™*" ph € R™
x = 0 (entry-wise non-negativity)

Max s — t Flow in a Directed Graph

* Input: A directed graph G = (V, E), capacities c(, ,, for each
edge (u,v) € E, source vertex s, and sink vertex t
* A flow is assignment of weights to edges so that:

e Capacity constraint: the flow of an edge does not exceed
Its capacity

* Conservation of flow: sum of flows entering a node equals
sum of flows exiting a node, except for s and ¢

* Goal: Route as much flow as possible from sto ¢t

Max s — t Flow in a Directed Graph

Max s — t Flow in a Directed Graph

a 4/4 b

5/5

3/4 $/6

Max flow is 15] 3/3 d

Linear Program for Max s — t Flow

* What variables do we want?
* Flow f(,, 1, for each edge (u, v)

* What constraints do we want?
 Capacity constraint, conservation of flow

Linear Program for Max s — t Flow
* Maximize: Zv:(s,v)EE f(S,v) o Zv:(v,s)EE f(V,S)

* Subject to:
fauwvy = 0forall (u,v) €E
fauw) < Cup) forall (u,v) € E
Zu:(u,v)EE f(u,v) — ZW:(V,W)EE f(v,u) forallv # s,t

Dual Program for Max s — t Flow

* Minimize: 2., vyer Cauw)deup), Where d, . indicates
whether (u, v) crosses the cut, c(,, . is the capacity of (u, v)

* Subject to: Ay = 0forall (u,v) €E
dyvy — Zy + 2y, = 0forall (w,v) €EE,u#s,v+#t

disv) + 2, = 1forall (s,v) EE
Ao — 2zy = 0forall (u,t) €EE

Cuts

*AcutC = 54,5, of agraph G is a partition of the vertices I/
into a set 5; and the remaining vertices S, =1V — 5,

* An edge (u,v) crossesthecut Cifu € S;and v € 5,

* The size of the cut C is the number of edges that cross C

Minimum s — t Cut

* The minimum cut of a graph is the size of the smallest cut
across all pairs of sets of vertices S; and S, =V — 5,

* Find the minimum cut of a graph G that separates s and ¢t

What is the minimum s — t cut of the graph?

What is the minimum s — t cut of the graph?

Min cutis 15

Linear Program for Min s — t Cut

e What variables do we want?

* Variables d,, ., for each edge (u, v) indicating whether it
crosses the cut

*Set dyv) = Zy — Zy, Z, — Zy, Where z,, € {0,1} indicates
whether u is on the side of s

* Need d(s,v) > 1 — Zy, d(u,t) = Zy

Linear Program for Min s — t Cut

* Minimize: 2., vyer Cauw)deup), Where d, . indicates
whether (u, v) crosses the cut, c(,, . is the capacity of (u, v)

Ay = 0forall (u,v) €E
z, €{0,1}forallu eV
dyv) — Zy + 2y, = 0forall (w,v) €EE,u #s,v+#t
disvy) + 2z, = 1forall (s,v) EE
A — 2zy = 0forall (u,t) EE

* Subject to:

Dual Program for Max s — t Flow

* Minimize: 2., vyer Cauw)deup), Where d, . indicates
whether (u, v) crosses the cut, c(,, . is the capacity of (u, v)

* Subject to: Ay = 0forall (u,v) €E
dyvy — Zy + 2y, = 0forall (w,v) €EE,u#s,v+#t

disv) + 2, = 1forall (s,v) EE
Ao — 2zy = 0forall (u,t) €EE

Min Cut-Max Flow Theorem?

* Recall: the max-flow min-cut theorem states the maximum
flow through any graph between any fixed source and sink is
exactly equal to the minimum cut

* However, the dual LP to the max-flow problem is a fractional
problem, while the LP for the min-cut problem requires
integral solutions

Linear Programming (Standard Form)

* Maximize a linear objective function:

c'x ={c,x), c,x ER"

* Subject to constraints:

Ax < bforA e R™*" ph € R™
x = 0 (entry-wise non-negativity)

Integer Linear Programming (Standard Form)

* Maximize a linear objective function:

c'x ={(c,x), ce R, x € Z"

* Subject to constraints:

Ax +s=bforA e R™" s b e R™
s, x = 0 (entry-wise non-negativity)

Integer Linear Programming (Standard Form)

* Integer linear programming is NP-hard (solves vertex cover)

* When constraint is Ax = b, the matrix A and the vector b all
have integer entries, and A is totally unimodular (every
square submatrix has determinant —1,0,1), then the vertices
of the LP polytope are integers

* Can use standard LP algorithms

MAX-SAT Revisited

* In the MAX-SAT problem, the input is a CNF formula
f(xq, ..., x,,) with m clauses Cy,, C,,

* The goal is to assign values to x4, ..., x,;, to maximize the
number of satisfied clauses

MAX-SAT Revisited

* Suppose we assign each variable x; a separate random
TRUE/FALSE value

* For each i € [m], we have Pr|C; is FALSE| < 1/2

* By a linearity of expectation, the expected number of
satisfied clauses is at least m /2

. . 1 L
 Random assignment gives (at least) a ~-approximation in

expectation

Derandomization of MAX-SAT

. . 1
* How to get an algorithm that achieves E?

* Method of conditional expectation

* Set x4 to be the value with the higher conditional expectation

: : 1 : : : :
* Random assignment s a E-apprommatlon In expectation, soO

. .1 . .
there is a value of x; that is a E-apprommatlon in expectation

* [terate

Better Algorithm for MAX-SAT

* First suppose there is no unit clause x; (will remove
assumption later)

* Set each x; to be TRUE with probability p > 1/2
independently

Better Algorithm for MAX-SAT

e Claim: The probability that any given clause is satisfied is
min(p, 1 — p?)

e min(p, 1 — p?) is maximized ~ 0.618 for p = %(\/g — 1)

* If there is no unit clause x;, there is a = 0.618 approximation
algorithm for MAX-SAT

MAX-SAT Revisited (Integer Program)

* Maximize:). jermi Z;

* Subject to:
Zi:xiECj y; + Zi:x_iecj(l —y;) = Zjforall j € [m]
Z; € {0,1} forall j € [m]
y; €{0,1}foralli € [n]

MAX-SAT Revisited (LP Relaxation)

* Maximize:). jermi Z;

* Subject to:
Zi:xiECj y; + Zi:x_iecj(l —y;) = Zjforall j € [m]

0<Z,<1forallje€ [m]
0<y;,<1foralli € [n]

Randomized Rounding for MAX-SAT

* Let y; and z; be the optimal solution to the LP relaxation

* Set x; = 1 with probability y;

* Pr|C; is not satisfied| =]_[l-epj(l —) HiENj y;, where we
split clause C; into positive literals P; and negative literals V;

Randomized Rounding for MAX-SAT

Pr[Cj is not satisfied] = Hiepj(l - ;) HieNj Vi

i 1Cl
1 * *
(AM'GM) < W(ZiEPj(l o yl) T ZiENj Yi)]
_ |Cjl
1 * ¥
= |1~ 151 (Bien, i + Ziew, 1 - 3D)
- k% |C]|
Z.
—[1 =2
Gl.

Randomized Rounding for MAX-SAT

. C _ Z]?k 1
Pr[Cj is satlsfled] >1—11 ‘C ‘
(ty) 1Cjl
concavity > 1 — [1 — ¥
¢ J

1 *

Randomized Rounding for MAX-SAT

* Let y; and z; be the optimal solution to the LP relaxation

* Set x; = 1 with probability y;

. (1 — 1) ~ (0.6321-approximation algorithm

e

MAX-SAT Summary

* Random assignment gives = 0.618-approximation

Pr[Cj is satisfied] > (1 — 2_|CJ'|) > z]f" (1 — 2‘|Cj|)

* Randomized rounding gives =~ 0.6321-approximation
1 |CJ'|
Gl

Pr[Cj is satisfied] > Z]f" 1—11

MAX-SAT Summary

* Random assignment gives = 0.618-approximation

Pr[Cj is satisfied] > (1 — 2_|CJ'|) > z]f" (1 — 2‘|Cj|)
* Randomized rounding gives =~ 0.6321-approximation
1 |Cj|
Gl.

Pr[Cj is satisfied] > Z]f" 1—11

MAX-SAT Summary

* Random assignment gives = 0.618-approximation

Pr[Cj is satisfied] > (1 — 2_|CJ'|) > z]f" (1 — 2‘|Cj|)
* Randomized rounding gives =~ 0.6321-approximation
1 |Cj|
Gl.

Pr[Cj is satisfied] > Z]f" 1—11

* How do these behave across values of ‘Cj‘?

MAX-SAT Summary

- (o7
* When ‘C ‘ is small, (1 — 2 | J|) issmalland | 1 — [1 - m] is
]

large

- 5]
'When‘C‘ls large, (1—2 | Jl)IS large and 1—[1—— IS

small

Choosing the Better of Two Solutions

* Run randomized rounding and random assignment and take the

better of the two solutions

Pr[Cj is satisfied] > Z]fk max (1 — 2_|CJ'|), 1—

* We have max(a,b) > aTer

1

1

Gl

11¢5 \

/

Choosing the Better of Two Solutions

* Run randomized rounding and random assignment and take the
better of the two solutions

1 '|C]'|
Gl.

, i
Pr[Cj IS satisfied] = Z]tk E (1 — 2_|CJ'|) +(1—|1

(1-271al) + ([1 — Ic_,lrc l)

| W

* For |Cj| =1

-
N | =

Choosing the Better of Two Solutions

* Run randomized rounding and random assignment and take the
better of the two solutions

1 '|C]'|
Gl.

, i
Pr[Cj IS satisfied] = Z]tk E (1 — 2_|CJ'|) +(1—|1

(1-271al) + ([1 — Ic_,lrc l)

| W

* For |Cj| = 2

-
N | =

Choosing the Better of Two Solutions

* For |Cj| > 3:

1
2

[

\

a-1)o o]

G|

)

IV

2

N | =

col BN

Choosing the Better of Two Solutions

* Run randomized rounding and random assignment and take the
better of the two solutions

*

.Zj

S O

Pr|C; is satisfied| =

. . .3 L. .
* By linearity of expectation, Z-apprommatlon algorithm

Nonlinear Randomized Rounding for MAX-SAT

* Let y; and z; be the optimal solution to the LP relaxation
* Previously: Set x; = 1 with probability y;
* What if we set x; = 1 with probability f(y;)?

* Pr(C; is not satisfied] = [Tiep, (1 — () Tien, f /D),
where we split clause (; into positive literals P; and negative
literals N;

Nonlinear Randomized Rounding for MAX-SAT

* Pr(C; is not satisfied| = [Tiep, (1 = f () [ien, £)
* Suppose weset 1 —47% < f(x) < 4% 1
. Pr[Cj is not satisfied] = HiEPj 47Yi HiENj 4Yi—1

< 477
3 x

. Pr[Cj is satisfied] >1— 4_2; > (1 — i) Zf =%

Nonlinear Randomized Rounding for MAX-SAT

* Let y; and z; be the optimal solution to the LP relaxation
* Set x; = 1 with probability f(y;)

. . .3 L .
* By linearity of expectation, Z-approximation algorithm

	Slide 1: CSCE 658: Randomized Algorithms
	Slide 2: Relevant Supplementary Material
	Slide 3: Linear Programming (Standard Form)
	Slide 4: Max s minus t Flow in a Directed Graph
	Slide 5: Max s minus t Flow in a Directed Graph
	Slide 6: Max s minus t Flow in a Directed Graph
	Slide 7: Linear Program for Max s minus t Flow
	Slide 8: Linear Program for Max s minus t Flow
	Slide 9: Dual Program for Max s minus t Flow
	Slide 10: Cuts
	Slide 11: Minimum s minus t Cut
	Slide 12
	Slide 13
	Slide 14: Linear Program for Min s minus t Cut
	Slide 15: Linear Program for Min s minus t Cut
	Slide 16: Dual Program for Max s minus t Flow
	Slide 17: Min Cut-Max Flow Theorem?
	Slide 18: Linear Programming (Standard Form)
	Slide 19: Integer Linear Programming (Standard Form)
	Slide 20: Integer Linear Programming (Standard Form)
	Slide 21: MAX-SAT Revisited
	Slide 22: MAX-SAT Revisited
	Slide 23: Derandomization of MAX-SAT
	Slide 24: Better Algorithm for MAX-SAT
	Slide 25: Better Algorithm for MAX-SAT
	Slide 26: MAX-SAT Revisited (Integer Program)
	Slide 27: MAX-SAT Revisited (LP Relaxation)
	Slide 28: Randomized Rounding for MAX-SAT
	Slide 29: Randomized Rounding for MAX-SAT
	Slide 30: Randomized Rounding for MAX-SAT
	Slide 31: Randomized Rounding for MAX-SAT
	Slide 32: MAX-SAT Summary
	Slide 33: MAX-SAT Summary
	Slide 34: MAX-SAT Summary
	Slide 35: MAX-SAT Summary
	Slide 36: Choosing the Better of Two Solutions
	Slide 37: Choosing the Better of Two Solutions
	Slide 38: Choosing the Better of Two Solutions
	Slide 39: Choosing the Better of Two Solutions
	Slide 40: Choosing the Better of Two Solutions
	Slide 41: Nonlinear Randomized Rounding for MAX-SAT
	Slide 42: Nonlinear Randomized Rounding for MAX-SAT
	Slide 43: Nonlinear Randomized Rounding for MAX-SAT

