CSCE 658: Randomized Algorithms

Lecture 16

Samson Zhou

Relevant Supplementary Material

- Chapter 29 in "Introduction to Algorithms", by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein
- Chapters 5.1-5.5 in "The Design of Approximation Algorithms", by David P. Williamson and David B. Shmoys

Linear Programming (Standard Form)

- Maximize a linear objective function:

$$
c^{\top} x=\langle c, x\rangle, c, x \in \mathbb{R}^{n}
$$

- Subject to constraints:

$$
\begin{gathered}
A x \leq b \text { for } A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m} \\
x \geq 0 \text { (entry-wise non-negativity) }
\end{gathered}
$$

Max $s-t$ Flow in a Directed Graph

- Input: A directed graph $G=(V, E)$, capacities $c_{(u, v)}$ for each edge $(u, v) \in E$, source vertex s, and sink vertex t
- A flow is assignment of weights to edges so that:
- Capacity constraint: the flow of an edge does not exceed its capacity
- Conservation of flow: sum of flows entering a node equals sum of flows exiting a node, except for s and t
- Goal: Route as much flow as possible from s to t

Max $s-t$ Flow in a Directed Graph

Max $s-t$ Flow in a Directed Graph

Max flow is 15

Linear Program for Max $s-t$ Flow

-What variables do we want?

- Flow $f_{(u, v)}$ for each edge (u, v)
- What constraints do we want?
- Capacity constraint, conservation of flow

Linear Program for Max $s-t$ Flow

- Maximize: $\sum_{v:(s, v) \in E} f_{(s, v)}-\sum_{v:(v, s) \in E} f_{(v, s)}$
- Subject to:

$$
\begin{gathered}
f_{(u, v)} \geq 0 \text { for all }(u, v) \in E \\
f_{(u, v)} \leq c_{(u, v)} \text { for all }(u, v) \in E \\
\sum_{u:(u, v) \in E} f_{(u, v)}=\sum_{w:(v, w) \in E} f_{(v, u)} \text { for all } v \neq s, t
\end{gathered}
$$

Dual Program for Max $s-t$ Flow

- Minimize: $\sum_{v:(u, v) \in E} c_{(u, v)} d_{(u, v)}$, where $d_{(u, v)}$ indicates whether (u, v) crosses the cut, $c_{(u, v)}$ is the capacity of (u, v)
- Subject to:

$$
\begin{gathered}
d_{(u, v)} \geq 0 \text { for all }(u, v) \in E \\
d_{(u, v)}-z_{u}+z_{v} \geq 0 \text { for all }(u, v) \in E, u \neq s, v \neq t \\
d_{(s, v)}+z_{v} \geq 1 \text { for all }(s, v) \in E \\
d_{(u, t)}-z_{u} \geq 0 \text { for all }(u, t) \in E
\end{gathered}
$$

Cuts

- A cut $C=S_{1}, S_{2}$ of a graph G is a partition of the vertices V into a set S_{1} and the remaining vertices $S_{2}=V-S_{1}$
- An edge (u, v) crosses the cut C if $u \in S_{1}$ and $v \in S_{2}$
- The size of the cut C is the number of edges that cross C

Minimum $s-t$ Cut

- The minimum cut of a graph is the size of the smallest cut across all pairs of sets of vertices S_{1} and $S_{2}=V-S_{1}$
- Find the minimum cut of a graph G that separates s and t

What is the minimum $s-t$ cut of the graph?

What is the minimum $s-t$ cut of the graph?

Min cut is 15

Linear Program for Min $s-t$ Cut

-What variables do we want?

- Variables $d_{(u, v)}$ for each edge (u, v) indicating whether it crosses the cut
- Set $d_{(u, v)} \geq z_{u}-z_{v}, z_{v}-z_{u}$, where $z_{u} \in\{0,1\}$ indicates whether u is on the side of S
- Need $d_{(s, v)} \geq 1-z_{v}, d_{(u, t)} \geq z_{u}$

Linear Program for Min $s-t$ Cut

- Minimize: $\sum_{v:(u, v) \in E} c_{(u, v)} d_{(u, v)}$, where $d_{(u, v)}$ indicates whether (u, v) crosses the cut, $c_{(u, v)}$ is the capacity of (u, v)
- Subject to: $\quad d_{(u, v)} \geq 0$ for all $(u, v) \in E$

$$
\begin{gathered}
z_{u} \in\{0,1\} \text { for all } u \in V \\
d_{(u, v)}-z_{u}+z_{v} \geq 0 \text { for all }(u, v) \in E, u \neq s, v \neq t \\
d_{(s, v)}+z_{v} \geq 1 \text { for all }(s, v) \in E \\
d_{(u, t)}-z_{u} \geq 0 \text { for all }(u, t) \in E
\end{gathered}
$$

Dual Program for Max $s-t$ Flow

- Minimize: $\sum_{v:(u, v) \in E} c_{(u, v)} d_{(u, v)}$, where $d_{(u, v)}$ indicates whether (u, v) crosses the cut, $c_{(u, v)}$ is the capacity of (u, v)
- Subject to:

$$
\begin{gathered}
d_{(u, v)} \geq 0 \text { for all }(u, v) \in E \\
d_{(u, v)}-z_{u}+z_{v} \geq 0 \text { for all }(u, v) \in E, u \neq s, v \neq t \\
d_{(s, v)}+z_{v} \geq 1 \text { for all }(s, v) \in E \\
d_{(u, t)}-z_{u} \geq 0 \text { for all }(u, t) \in E
\end{gathered}
$$

Min Cut-Max Flow Theorem?

- Recall: the max-flow min-cut theorem states the maximum flow through any graph between any fixed source and sink is exactly equal to the minimum cut
- However, the dual LP to the max-flow problem is a fractional problem, while the LP for the min-cut problem requires integral solutions

Linear Programming (Standard Form)

- Maximize a linear objective function:

$$
c^{\top} x=\langle c, x\rangle, c, x \in \mathbb{R}^{n}
$$

- Subject to constraints:

$$
\begin{gathered}
A x \leq b \text { for } A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m} \\
x \geq 0 \text { (entry-wise non-negativity) }
\end{gathered}
$$

Integer Linear Programming (Standard Form)

- Maximize a linear objective function:

$$
c^{\top} x=\langle c, x\rangle, c \in \mathbb{R}^{n}, x \in \mathbb{Z}^{n}
$$

- Subject to constraints:

$$
\begin{gathered}
A x+s=b \text { for } A \in \mathbb{R}^{m \times n}, s, b \in \mathbb{R}^{m} \\
s, x \geq 0 \text { (entry-wise non-negativity) }
\end{gathered}
$$

Integer Linear Programming (Standard Form)

- Integer linear programming is NP-hard (solves vertex cover)
- When constraint is $A x=b$, the matrix A and the vector b all have integer entries, and A is totally unimodular (every square submatrix has determinant $-1,0,1$), then the vertices of the LP polytope are integers
- Can use standard LP algorithms

MAX-SAT Revisited

- In the MAX-SAT problem, the input is a CNF formula $f\left(x_{1}, \ldots, x_{n}\right)$ with m clauses C_{1}, \ldots, C_{m}
- The goal is to assign values to x_{1}, \ldots, x_{n} to maximize the number of satisfied clauses

MAX-SAT Revisited

- Suppose we assign each variable x_{i} a separate random TRUE/FALSE value
- For each $i \in[m]$, we have $\operatorname{Pr}\left[C_{i}\right.$ is FALSE $] \leq 1 / 2$
- By a linearity of expectation, the expected number of satisfied clauses is at least $m / 2$
- Random assignment gives (at least) a $\frac{1}{2}$-approximation in expectation

Derandomization of MAX-SAT

- How to get an algorithm that achieves $\frac{1}{2}$?
- Method of conditional expectation
- Set x_{1} to be the value with the higher conditional expectation
- Random assignment is a $\frac{1}{2}$-approximation in expectation, so there is a value of x_{1} that is a $\frac{1}{2}$-approximation in expectation
- Iterate

Better Algorithm for MAX-SAT

- First suppose there is no unit clause $\overline{x_{i}}$ (will remove assumption later)
- Set each x_{i} to be TRUE with probability $p>1 / 2$ independently

Better Algorithm for MAX-SAT

- Claim: The probability that any given clause is satisfied is $\min \left(p, 1-p^{2}\right)$
- $\min \left(p, 1-p^{2}\right)$ is maximized ≈ 0.618 for $p=\frac{1}{2}(\sqrt{5}-1)$
- If there is no unit clause $\overline{x_{i}}$, there is $\mathrm{a} \approx 0.618$ approximation algorithm for MAX-SAT

MAX-SAT Revisited (Integer Program)

- Maximize: $\sum_{j \in[m]} Z_{j}$
- Subject to:

$$
\begin{gathered}
\sum_{i: x_{i} \in C_{j}} y_{i}+\sum_{i: \overline{x_{i}} \in C_{j}}\left(1-y_{i}\right) \geq Z_{j} \text { for all } j \in[m] \\
Z_{j} \in\{0,1\} \text { for all } j \in[m] \\
y_{i} \in\{0,1\} \text { for all } i \in[n]
\end{gathered}
$$

MAX-SAT Revisited (LP Relaxation)

- Maximize: $\sum_{j \in[m]} Z_{j}$
- Subject to:

$$
\begin{gathered}
\sum_{i: x_{i} \in C_{j}} y_{i}+\sum_{i: \overline{\bar{x}_{i}} \in C_{j}}\left(1-y_{i}\right) \geq Z_{j} \text { for all } j \in[m] \\
0 \leq Z_{j} \leq 1 \text { for all } j \in[m] \\
0 \leq y_{i} \leq 1 \text { for all } i \in[n]
\end{gathered}
$$

Randomized Rounding for MAX-SAT

- Let y_{i}^{*} and z_{j}^{*} be the optimal solution to the LP relaxation
- Set $x_{i}=1$ with probability y_{i}^{*}
- $\operatorname{Pr}\left[C_{j}\right.$ is not satisfied $]=\prod_{i \in P_{j}}\left(1-y_{i}^{*}\right) \prod_{i \in N_{j}} y_{i}^{*}$, where we split clause C_{j} into positive literals P_{j} and negative literals N_{j}

Randomized Rounding for MAX-SAT

$\operatorname{Pr}\left[C_{j}\right.$ is not satisfied $]=\prod_{i \in P_{j}}\left(1-y_{i}^{*}\right) \prod_{i \in N_{j}} y_{i}^{*}$
(AM-GM)

$$
\begin{aligned}
& \leq\left[\frac{1}{\left|C_{j}\right|}\left(\sum_{i \in P_{j}}\left(1-y_{i}^{*}\right)+\sum_{i \in N_{j}} y_{i}^{*}\right)\right]^{\left|C_{j}\right|} \\
& =\left[1-\frac{1}{\left|C_{j}\right|}\left(\sum_{i \in P_{j}} y_{i}^{*}+\sum_{i \in N_{j}}\left(1-y_{i}^{*}\right)\right)\right]^{\left|C_{j}\right|} \\
& =\left[1-\frac{z_{j}^{*}}{\left|C_{j}\right|}\right]^{\left|C_{j}\right|}
\end{aligned}
$$

Randomized Rounding for MAX-SAT

$\operatorname{Pr}\left[C_{j}\right.$ is satisfied $] \geq 1-\left[1-\frac{z_{j}^{*}}{\left|C_{j}\right|}\right]^{\left|C_{j}\right|}$
(concavity) $\geq 1-\left[1-\frac{1}{\left|C_{j}\right|}\right]^{\left|C_{j}\right|} z_{j}^{*}$

$$
\geq\left(1-\frac{1}{e}\right) z_{j}^{*}
$$

Randomized Rounding for MAX-SAT

- Let y_{i}^{*} and z_{j}^{*} be the optimal solution to the LP relaxation
- Set $x_{i}=1$ with probability y_{i}^{*}
$\cdot\left(1-\frac{1}{e}\right) \approx 0.6321$-approximation algorithm

MAX-SAT Summary

- Random assignment gives ≈ 0.618-approximation

$$
\operatorname{Pr}\left[C_{j} \text { is satisfied }\right] \geq\left(1-2^{-\left|C_{j}\right|}\right) \geq z_{j}^{*}\left(1-2^{-\left|C_{j}\right|}\right)
$$

- Randomized rounding gives ≈ 0.6321-approximation

$$
\operatorname{Pr}\left[C_{j} \text { is satisfied }\right] \geq z_{j}^{*}\left(1-\left[1-\frac{1}{\left|C_{j}\right|}\right]^{\left|C_{j}\right|}\right)
$$

MAX-SAT Summary

- Random assignment gives ≈ 0.618-approximation

$$
\operatorname{Pr}\left[C_{j} \text { is satisfied }\right] \geq\left(1-2^{-\left|C_{j}\right|}\right) \geq z_{j}^{*}\left(1-2^{-\left|C_{j}\right|}\right)
$$

- Randomized rounding gives ≈ 0.6321-approximation

$$
\operatorname{Pr}\left[C_{j} \text { is satisfied }\right] \geq z_{j}^{*}\left(1-\left[1-\frac{1}{\left|C_{j}\right|}\right]^{\left|C_{j}\right|}\right)
$$

MAX-SAT Summary

- Random assignment gives ≈ 0.618-approximation

$$
\operatorname{Pr}\left[C_{j} \text { is satisfied }\right] \geq\left(1-2^{-\left|C_{j}\right|}\right) \geq z_{j}^{*}\left(1-2^{-\left|C_{j}\right|}\right)
$$

- Randomized rounding gives ≈ 0.6321-approximation

$$
\operatorname{Pr}\left[C_{j} \text { is satisfied }\right] \geq z_{j}^{*}\left(1-\left[1-\frac{1}{\left|C_{j}\right|}\right]^{\left|C_{j}\right|}\right)
$$

- How do these behave across values of $\left|C_{j}\right|$?

MAX-SAT Summary

- When $\left|C_{j}\right|$ is small, $\left(1-2^{-\left|C_{j}\right|}\right)$ is small and $\left(1-\left[1-\frac{1}{\left|C_{j}\right|}\right]^{\left|C_{j}\right|}\right)$ is large
- When $\left|C_{j}\right|$ is large, $\left(1-2^{-\left|c_{j}\right|}\right)$ is large and $\left(1-\left[1-\frac{1}{\left|c_{j}\right|}\right]^{\left|c_{j}\right|}\right)$ is small

Choosing the Better of Two Solutions

- Run randomized rounding and random assignment and take the better of the two solutions
$\operatorname{Pr}\left[C_{j}\right.$ is satisfied $] \geq z_{j}^{*} \max \left(\left(1-2^{-\left|C_{j}\right|}\right),\left(1-\left[1-\frac{1}{\left|C_{j}\right|}\right]^{\left|C_{j}\right|}\right)\right)$
- We have $\max (\mathrm{a}, \mathrm{b}) \geq \frac{a+b}{2}$

Choosing the Better of Two Solutions

- Run randomized rounding and random assignment and take the better of the two solutions
$\operatorname{Pr}\left[C_{j}\right.$ is satisfied $] \geq z_{j}^{*} \cdot \frac{1}{2}\left(\left(1-2^{-\left|C_{j}\right|}\right)+\left(1-\left[1-\frac{1}{\left|C_{j}\right|}\right]^{\left|C_{j}\right|}\right)\right)$
- For $\left|C_{j}\right|=1, \frac{1}{2}\left(\left(1-2^{-\left|C_{j}\right|}\right)+\left(1-\left[1-\frac{1}{\left|C_{j}\right|}\right]^{\left|C_{j}\right|}\right)\right)=\frac{3}{4}$

Choosing the Better of Two Solutions

- Run randomized rounding and random assignment and take the better of the two solutions
$\operatorname{Pr}\left[C_{j}\right.$ is satisfied $] \geq z_{j}^{*} \cdot \frac{1}{2}\left(\left(1-2^{-\left|C_{j}\right|}\right)+\left(1-\left[1-\frac{1}{\left|C_{j}\right|}\right]^{\left|C_{j}\right|}\right)\right)$
- For $\left|C_{j}\right|=2, \frac{1}{2}\left(\left(1-2^{-\left|C_{j}\right|}\right)+\left(1-\left[1-\frac{1}{\left|C_{j}\right|}\right]^{\left|C_{j}\right|}\right)\right)=\frac{3}{4}$

Choosing the Better of Two Solutions

- $\operatorname{For}\left|C_{j}\right| \geq 3$:

$$
\begin{aligned}
\frac{1}{2}\left(\left(1-2^{-\left|c_{j}\right|}\right)+\left(1-\left[1-\frac{1}{\left|c_{j}\right|}\right]^{\left|c_{j}\right|}\right)\right) & \geq \frac{1}{2}\left(1-\frac{1}{e}\right)+\frac{1}{2} \cdot \frac{7}{8} \\
& \approx 0.753 \geq \frac{3}{4}
\end{aligned}
$$

Choosing the Better of Two Solutions

- Run randomized rounding and random assignment and take the better of the two solutions

$$
\operatorname{Pr}\left[C_{j} \text { is satisfied }\right] \geq \frac{3}{4} \cdot z_{j}^{*}
$$

- By linearity of expectation, $\frac{3}{4}$-approximation algorithm

Nonlinear Randomized Rounding for MAX-SAT

- Let y_{i}^{*} and z_{j}^{*} be the optimal solution to the LP relaxation
- Previously: Set $x_{i}=1$ with probability y_{i}^{*}
- What if we set $x_{i}=1$ with probability $f\left(y_{i}^{*}\right)$?
- $\operatorname{Pr}\left[C_{j}\right.$ is not satisfied $]=\prod_{i \in P_{j}}\left(1-f\left(y_{i}^{*}\right)\right) \prod_{i \in N_{j}} f\left(y_{i}^{*}\right)$, where we split clause C_{j} into positive literals P_{j} and negative literals N_{j}

Nonlinear Randomized Rounding for MAX-SAT

- $\operatorname{Pr}\left[C_{j}\right.$ is not satisfied $]=\prod_{i \in P_{j}}\left(1-f\left(y_{i}^{*}\right)\right) \prod_{i \in N_{j}} f\left(y_{i}^{*}\right)$
- Suppose we set $1-4^{-x} \leq f(x) \leq 4^{x-1}$
- $\operatorname{Pr}\left[C_{j}\right.$ is not satisfied $]=\prod_{i \in P_{j}} 4^{-y_{i}^{*}} \prod_{i \in N_{j}} 4^{y_{i}^{*}-1}$

$$
\begin{aligned}
= & 4^{-\left(\sum_{i \in P_{j}} v_{i}^{*}+\sum_{i \in N_{j}}\left(1-y_{i}^{*}\right)\right)} \\
& \leq 4^{-Z_{j}^{*}}
\end{aligned}
$$

- $\operatorname{Pr}\left[C_{j}\right.$ is satisfied $] \geq 1-4^{-z_{j}^{*}} \geq\left(1-\frac{1}{4}\right) z_{j}^{*}=\frac{3}{4} z_{j}^{*}$

Nonlinear Randomized Rounding for MAX-SAT

- Let y_{i}^{*} and z_{j}^{*} be the optimal solution to the LP relaxation
- Set $x_{i}=1$ with probability $f\left(y_{i}^{*}\right)$
- By linearity of expectation, $\frac{3}{4}$-approximation algorithm

