CSCE 658: Randomized Algorithms

Lecture 17

Samson Zhou

Relevant Supplementary Material

- Lecture 13 of "Advanced Algorithms" Course Notes (http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15 850-f20/www/notes/lec14.pdf), by Anupam Gupta

Online Learning

- There are n experts who make a prediction about each of T days ($n \gg T$)
- Algorithm uses advice from experts to make predictions each day
- Goal is to minimize the number of mistakes, i.e., the number of times our prediction differs from the outcome

Prediction with Expert Advice

a fundamental problem of sequential prediction
(2) Actual outcome

The Online Learning with Experts Problem

- n experts who decide either $\{0,1\}$ on each of T days ($n \gg T$)
- Algorithm takes advice from experts and predict either $\{0,1\}$ on each day
- Algorithm sees the outcome, which is either $\{0,1\}$, of each day and can use this information on future days
- The cost of the algorithm is the number of incorrect predictions

Prediction with Expert Advice

a fundamental problem of sequential prediction

Day π ?

You

Actual outcome

2

3

Algorithm makes 2 mistakes Best expert makes 1 mistake

Applications of the Experts Problem

- Ensemble learning, e.g., AdaBoost
- Forecast and portfolio optimization
- Special case of online convex optimization

Perfect Expert

- Theorem: If there is a perfect expert, there exists an algorithm that makes at most $\left\lceil\log _{2} n\right\rceil$ mistakes
- Consider majority vote of all experts who have made no mistakes so far
- Every time we make a mistake, the number of mistakes who have not been wrong decreases by a factor of at least 2

Errors by Algorithm

- Theorem: Any algorithm MUST make at least $\left\lceil\log _{2} n\right\rceil$ mistakes
- Suppose on day i, the experts with i-th bit 0 in their binary representation predict 0 and the experts with i-th bit 1 in their binary representation predict 1

Algorithms for Online Learning

- Theorem: There exists an algorithm that makes $M \leq$ $m^{*}\left(\left\lceil\log _{2} n\right\rceil+1\right)+\left\lceil\log _{2} n\right\rceil$ mistakes, where m^{*} is the number of mistakes made by the best expert

Algorithms for Online Learning

- Theorem: There exists an algorithm that makes $M \leq$ $m^{*}\left(\left\lceil\log _{2} n\right\rceil+1\right)+\left\lceil\log _{2} n\right\rceil$ mistakes, where m^{*} is the number of mistakes made by the best expert
- Split the time into epochs
- Keep perfect experts in each epoch and do majority vote
- When no more perfect experts, epoch ends and start a new epoch with all experts

Algorithms for Online Learning

- Theorem: There exists an algorithm that makes $M \leq$ $m^{*}\left(\left\lceil\log _{2} n\right\rceil+1\right)+\left\lceil\log _{2} n\right\rceil$ mistakes, where m^{*} is the number of mistakes made by the best expert
- Split the time into epochs
- Keep perfect experts in each epoch and do majority vote
- When no more perfect experts, epoch ends and start a new epoch with all experts HOW MANY EPOCHS CAN THERE BE?

Algorithms for Online Learning

- Theorem: There exists an algorithm that makes $M \leq$ $m^{*}\left(\left\lceil\log _{2} n\right\rceil+1\right)+\left\lceil\log _{2} n\right\rceil$ mistakes, where m^{*} is the number of mistakes made by the best expert
- $\left\lceil\log _{2} n\right\rceil+1$ mistakes per epoch before there is a perfect expert
- $\left\lceil\log _{2} n\right\rceil$ mistakes when there is a perfect expert
- m^{*} epochs before there is a perfect expert

Weighted Majority (Littlestone, Warmuth 89)

weights Alsorithm Actual outcome

Weighted Majority (Littlestone, Warmuth 89)

- Initially give each expert weight 1
- Choose the weighted majority of experts
- For each time, maintain the weight of each correct expert, decrease the weight of each incorrect expert by $\frac{1}{2}$

Guarantee for Weighted Majority

- What is the sum of the weights at the beginning? n
-What is an upper bound on the weights in each round?
- Each round the algorithm makes a mistake, at least half of its experts have their weights decrease by half
- Sum of the weights $\leq\left(1-\frac{1}{4}\right)^{M} n$

Guarantee for Weighted Majority

- What is the weight of the best expert at the end? $\frac{1}{2^{m^{*}}}$
- Sum of the weights $\geq \frac{1}{2^{m^{*}}}$
- $\frac{1}{2^{m^{*}}} \leq$ sum of the weights $\leq\left(1-\frac{1}{4}\right)^{M} n$
- $M \leq \frac{m^{*}+\log _{2} n}{\log _{2} \frac{4}{3}} \approx 2.41\left(m^{*}+\log _{2} n\right)$

Weighted Majority (Littlestone, Warmuth 89)

weights Alsorithm Actual outcome

Weighted Majority (Littlestone, Warmuth 89)

- Initially give each expert weight 1
- Choose the weighted majority of experts
- For each time, maintain the weight of each correct expert, decrease the weight of each incorrect expert by $(1-\varepsilon)$

Weighted Majority (Littlestone, Warmuth 89)

weights

Guarantee for Weighted Majority

- What is the sum of the weights at the beginning? n
-What is an upper bound on the weights in each round?
- Each round the algorithm makes a mistake, at least half of its experts have their weights decrease by $(1-\varepsilon)$
- Sum of the weights $\leq\left(1-\frac{\varepsilon}{2}\right)^{M} n$

Guarantee for Weighted Majority

- What is the weight of the best expert at the end? $(1-\varepsilon)^{m^{*}}$
- Sum of the weights $\geq(1-\varepsilon)^{m^{*}}$
$\cdot(1-\varepsilon)^{m^{*}} \leq$ sum of the weights $\leq\left(1-\frac{\varepsilon}{2}\right)^{M} n \leq e^{-\frac{\varepsilon M}{2} n}$
- $M \leq 2(1+\varepsilon) m^{*}+O\left(\frac{\log n}{\varepsilon}\right)$
- $\left(\right.$ since $-\ln (1-\varepsilon)=\varepsilon+\frac{\varepsilon^{2}}{2}+\frac{\varepsilon^{3}}{3}+\cdots \leq \varepsilon+\varepsilon^{2}$ for $\left.\varepsilon \in[0,1]\right)$

Deterministic Algorithm Error

- Theorem: No deterministic algorithm can do better than a factor of 2 compared to the best expert
- Consider two experts A and B, where A always picks 1 and B always picks 0
- Since the algorithm is deterministic, can always make the algorithm wrong on the next day
- Algorithm is incorrect every day, some expert is correct on half of the days

Randomized Weighted Majority (Littlestone, Warmuth 89)

- Initially give each expert weight 1
- Prediction at each time is drawn randomly proportional to the current weights of the experts
- For each time, maintain the weight of each correct expert, decrease the weight of each incorrect expert by $(1-\varepsilon)$

Randomized Weighted Majority (Littlestone, Warmuth 89)

- Let the potential function Φ_{t} denote the sum of the weights at time t
- Let f_{t} be the fraction of incorrect experts at time t
- By linearity of expectation $E[M]=\sum_{t} f_{t}$
- We have $\Phi_{t+1}=\Phi_{t}\left(\left(1-f_{t}\right)+f_{t}(1-\varepsilon)\right)=\Phi_{t}\left(1-\varepsilon f_{t}\right)$
- $\Phi_{T}=n \prod_{t}\left(1-\varepsilon f_{t}\right) \leq n e^{-\varepsilon \sum_{t} f_{t}}=n e^{-\varepsilon E[M]}$

Randomized Weighted Majority (Littlestone, Warmuth 89)

- We have $\Phi_{T} \leq n e^{-\varepsilon E[M]}$
- We also have $(1-\varepsilon)^{m^{*}} \leq \Phi_{T}$
- Then $E[M] \leq m^{*}(1+\varepsilon)+\frac{\ln n}{\varepsilon}$ by using $-\ln (1-\varepsilon) \leq \varepsilon+$ ε^{2}

Randomized Weighted Majority (Littlestone, Warmuth 89)

- Initially give each expert weight 1
- Prediction at each time is drawn randomly proportional to the current weights of the experts
- For each time, maintain the weight of each correct expert, decrease the weight of each incorrect expert by $(1-\varepsilon)$

Multiplicative Weights

- Initially give each expert weight 1
- Prediction at each time is drawn randomly proportional to the current weights of the experts
- For each time t, change the weight of each expert by (1$\varepsilon m_{i}^{(t)}$), where $m_{i}^{(t)}$ is the loss of the i-th expert

An Alternate Perspective

- Suppose in each round that the algorithm produces a vector of probabilities $p^{t}=\left(p_{1}^{t}, \ldots, p_{n}^{t}\right)$
- We have $p_{i}^{t} \in[0,1]$ for all $i \in[n]$ and $p_{1}^{t}+\cdots+p_{n}^{t}=1$
- p_{i}^{t} corresponds to the probability of picking expert i on day t

An Alternate Perspective

- The loss on day t is $\ell^{t}=\left(\ell_{1}^{t}, \ldots, \ell_{n}^{t}\right) \in[0,1]^{n}$
- p_{i}^{t} corresponds to the probability of picking expert i on day t
- Expected loss on day t is $\left\langle p^{t}, \ell^{t}\right\rangle$

Hedge Algorithm

- Initially give each expert weight 1
- On day t, randomly follows expert i with probability $p_{i}^{t}=$

$$
\frac{w_{i}^{t}}{w_{1}^{t}+\cdots+w_{n}^{t}}=\frac{w_{i}^{t}}{\sum_{j} w_{j}^{t}}
$$

- Each weight is updated by $w_{i}^{t+1}=w_{i}^{t} \cdot \exp \left(-\varepsilon \ell_{i}^{t}\right)$

Hedge Algorithm

- Let the potential function Φ_{t} denote the sum of the weights at time t
- We have:

$$
\Phi_{t+1}=\sum_{i} w_{i}^{t+1}=\sum_{t} w_{i}^{t} e^{-\varepsilon \ell_{i}^{t}}
$$

- Since $e^{x} \leq 1+x+x^{2}$ for $x \in[-1,1]$ and also $\left|\ell_{i}^{t}\right| \leq 1$, we have

$$
\begin{aligned}
\Phi_{t+1} & \leq \sum_{i} w_{i}^{t}\left(1-\varepsilon \ell_{i}^{t}+\varepsilon^{2}\left(\ell_{i}^{t}\right)^{2}\right) \\
& \leq \sum_{i} w_{i}^{t}\left(1+\varepsilon^{2}\right)-\varepsilon \sum_{i} w_{i}^{t} \ell_{i}^{t}
\end{aligned}
$$

Hedge Algorithm

- We have $\Phi_{t+1} \leq \sum_{i} w_{i}^{t}\left(1+\varepsilon^{2}\right)-\varepsilon \sum_{i} w_{i}^{t} \ell_{i}^{t}$
- Since $w_{i}^{t}=p_{i}^{t} \cdot \Phi^{t}$, then

$$
\begin{aligned}
\Phi_{t+1} & \leq\left(1+\varepsilon^{2}\right) \Phi^{t}-\varepsilon \Phi^{t}\left\langle p^{t}, \ell^{t}\right\rangle \\
& =\Phi^{t}\left(1+\varepsilon^{2}-\varepsilon\left\langle p^{t}, \ell^{t}\right\rangle\right)
\end{aligned}
$$

(since $\left.1+x \leq e^{x}\right) \leq \Phi^{t} \exp \left(\varepsilon^{2}-\varepsilon\left\langle p^{t}, \ell^{t}\right\rangle\right)$

Hedge Algorithm

- We have $\Phi_{T} \leq n \exp \left(\varepsilon^{2} T-\varepsilon \sum_{t}\left\langle p^{t}, \ell^{t}\right\rangle\right)$
- We also have $\exp \left(-\varepsilon \sum_{t} \ell_{m^{*}}^{t}\right) \leq \Phi_{T}$
- Then $\sum_{t}\left\langle p^{t}, \ell^{t}\right\rangle \leq \sum_{t} \ell_{m^{*}}^{t}+\varepsilon T+\frac{\ln n}{\varepsilon}$
- If we set $\varepsilon=\sqrt{\frac{\ln n}{T}}$, we have $\varepsilon T+\frac{\ln n}{\varepsilon}=2 \sqrt{T \ln N}$

Regret

- Regret is the difference $M-m$ between the number of mistakes M by our algorithm and the number of mistakes by the best expert m^{*}
- (Amortized) regret is the ratio $\frac{M-m^{*}}{T}$, i.e., the regret amortized over the total number of days T

Prediction with Expert Advice

a fundamental problem of sequential prediction

Day π ?

You

Actual outcome

2

3

Algorithm makes 2 mistakes Best expert makes 1 mistake

Prediction with Expert Advice

a fundamental problem of sequential prediction

Hedge Algorithm

- If we set $\varepsilon=\sqrt{\frac{\ln n}{T}}$, we have $\sum_{t}\left\langle p^{t}, \ell^{t}\right\rangle \leq \sum_{t} \ell_{m^{*}}^{t}+\varepsilon T+$ $\frac{\ln n}{\varepsilon} \leq \sum_{t} \ell_{m^{*}}^{t}+2 \sqrt{T \ln N}$
- Total regret is $2 \sqrt{T \ln N}$
- Amortized regret is $2 \sqrt{\frac{\ln N}{T}}$

