CSCE 658: Randomized Algorithms

Lecture 17

Samson Zhou

Relevant Supplementary Material

 Lecture 13 of "Advanced Algorithms" Course Notes (http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15 850-f20/www/notes/lec14.pdf), by Anupam Gupta

Online Learning

- There are *n* experts who make a prediction about each of *T* days ($n \gg T$)
- Algorithm uses advice from experts to make predictions each day

• Goal is to minimize the number of mistakes, i.e., the number of times our prediction differs from the outcome

Prediction with Expert Advice

a fundamental problem of sequential prediction

The Online Learning with Experts Problem

- *n* experts who decide either $\{0,1\}$ on each of *T* days $(n \gg T)$
- Algorithm takes advice from experts and predict either {0,1} on each day
- Algorithm sees the outcome, which is either {0,1}, of each day and can use this information on future days
- The cost of the algorithm is the number of incorrect predictions

Prediction with Expert Advice

a fundamental problem of sequential prediction

Algorithm makes 2 mistakes Best expert makes 1 mistake

Applications of the Experts Problem

• Ensemble learning, e.g., AdaBoost

• Forecast and portfolio optimization

• Special case of online convex optimization

Perfect Expert

• Theorem: If there is a perfect expert, there exists an algorithm that makes at most $\lceil \log_2 n \rceil$ mistakes

 Consider majority vote of all experts who have made no mistakes so far

• Every time we make a mistake, the number of mistakes who have not been wrong decreases by a factor of at least 2

Errors by Algorithm

 Theorem: Any algorithm MUST make at least [log₂n] mistakes

Suppose on day *i*, the experts with *i*-th bit 0 in their binary representation predict 0 and the experts with *i*-th bit 1 in their binary representation predict 1

 Theorem: There exists an algorithm that makes M ≤ m^{*}([log₂n] + 1) + [log₂n] mistakes, where m^{*} is the number of mistakes made by the best expert

• Theorem: There exists an algorithm that makes $M \leq m^*(\lceil \log_2 n \rceil + 1) + \lceil \log_2 n \rceil$ mistakes, where m^* is the number of mistakes made by the best expert

- Split the time into epochs
- Keep perfect experts in each epoch and do majority vote
- When no more perfect experts, epoch ends and start a new epoch with all experts

• Theorem: There exists an algorithm that makes $M \leq m^*(\lceil \log_2 n \rceil + 1) + \lceil \log_2 n \rceil$ mistakes, where m^* is the number of mistakes made by the best expert

- Split the time into epochs
- Keep perfect experts in each epoch and do majority vote
- When no more perfect experts, epoch ends and start a new epoch with all experts HOW MANY EPOCHS CAN THERE BE?

• Theorem: There exists an algorithm that makes $M \leq m^*(\lceil \log_2 n \rceil + 1) + \lceil \log_2 n \rceil$ mistakes, where m^* is the number of mistakes made by the best expert

- [log₂n] + 1 mistakes per epoch before there is a perfect expert
- $[\log_2 n]$ mistakes when there is a perfect expert
- m^* epochs before there is a perfect expert

- Initially give each expert weight 1
- Choose the weighted majority of experts
- For each time, maintain the weight of each correct expert, decrease the weight of each incorrect expert by $\frac{1}{2}$

Guarantee for Weighted Majority

- What is the sum of the weights at the beginning? *n*
- What is an upper bound on the weights in each round?
- Each round the algorithm makes a mistake, at least half of its experts have their weights decrease by half

• Sum of the weights
$$\leq \left(1 - \frac{1}{4}\right)^M n$$

Guarantee for Weighted Majority

- What is the weight of the best expert at the end? $\frac{1}{2m^*}$
- Sum of the weights $\geq \frac{1}{2^{m^*}}$

•
$$\frac{1}{2^{m^*}} \le \text{sum of the weights} \le \left(1 - \frac{1}{4}\right)^M n$$

• $M \le \frac{m^* + \log_2 n}{\log_2 \frac{4}{3}} \approx 2.41(m^* + \log_2 n)$

- Initially give each expert weight 1
- Choose the weighted majority of experts

• For each time, maintain the weight of each correct expert, decrease the weight of each incorrect expert by $(1 - \varepsilon)$

Guarantee for Weighted Majority

- What is the sum of the weights at the beginning? *n*
- What is an upper bound on the weights in each round?
- Each round the algorithm makes a mistake, at least half of its experts have their weights decrease by (1ε)
- Sum of the weights $\leq \left(1 \frac{\varepsilon}{2}\right)^M n$

Guarantee for Weighted Majority

- What is the weight of the best expert at the end? $(1 \varepsilon)^{m^*}$
- Sum of the weights $\geq (1 \varepsilon)^{m^*}$

•
$$(1 - \varepsilon)^{m^*} \le \text{sum of the weights} \le \left(1 - \frac{\varepsilon}{2}\right)^M n \le e^{-\frac{\varepsilon M}{2}}n$$

• $M \le 2(1 + \varepsilon)m^* + O\left(\frac{\log n}{\varepsilon}\right)$
• $(\text{since} - \ln(1 - \varepsilon) = \varepsilon + \frac{\varepsilon^2}{2} + \frac{\varepsilon^3}{3} + \dots \le \varepsilon + \varepsilon^2 \text{ for } \varepsilon \in [0, 1])$

Deterministic Algorithm Error

- Theorem: No deterministic algorithm can do better than a factor of 2 compared to the best expert
- Consider two experts A and B, where A always picks 1 and B always picks 0
- Since the algorithm is deterministic, can always make the algorithm wrong on the next day
- Algorithm is incorrect every day, some expert is correct on half of the days

- Initially give each expert weight 1
- Prediction at each time is drawn randomly proportional to the current weights of the experts

• For each time, maintain the weight of each correct expert, decrease the weight of each incorrect expert by $(1 - \varepsilon)$

• Let the potential function Φ_t denote the sum of the weights at time t

- Let f_t be the fraction of incorrect experts at time t
- By linearity of expectation $E[M] = \sum_t f_t$
- We have $\Phi_{t+1} = \Phi_t ((1 f_t) + f_t (1 \varepsilon)) = \Phi_t (1 \varepsilon f_t)$
- $\Phi_T = n \prod_t (1 \varepsilon f_t) \le n e^{-\varepsilon \sum_t f_t} = n e^{-\varepsilon E[M]}$

- We have $\Phi_T \leq ne^{-\varepsilon E[M]}$
- We also have $(1 \varepsilon)^{m^*} \leq \Phi_T$

• Then $E[M] \le m^*(1 + \varepsilon) + \frac{\ln n}{\varepsilon}$ by using $-\ln(1 - \varepsilon) \le \varepsilon + \varepsilon^2$

- Initially give each expert weight 1
- Prediction at each time is drawn randomly proportional to the current weights of the experts

• For each time, maintain the weight of each correct expert, decrease the weight of each incorrect expert by $(1 - \varepsilon)$

Multiplicative Weights

• Initially give each expert weight 1

• Prediction at each time is drawn randomly proportional to the current weights of the experts

• For each time *t*, change the weight of each expert by $(1 - \epsilon m_i^{(t)})$, where $m_i^{(t)}$ is the loss of the *i*-th expert

An Alternate Perspective

- Suppose in each round that the algorithm produces a vector of probabilities $p^t = (p_1^t, \dots, p_n^t)$
- We have $p_i^t \in [0,1]$ for all $i \in [n]$ and $p_1^t + \dots + p_n^t = 1$

• p_i^t corresponds to the probability of picking expert i on day t

An Alternate Perspective

- The loss on day t is $\ell^t = (\ell_1^t, \dots, \ell_n^t) \in [0, 1]^n$
- p_i^t corresponds to the probability of picking expert *i* on day *t*
- Expected loss on day t is $\langle p^t, \ell^t \rangle$

• Initially give each expert weight 1

- On day *t*, randomly follows expert *i* with probability $p_i^t = \frac{w_i^t}{w_1^t + \dots + w_n^t} = \frac{w_i^t}{\sum_j w_j^t}$
- Each weight is updated by $w_i^{t+1} = w_i^t \cdot \exp(-\varepsilon \ell_i^t)$

- Let the potential function Φ_t denote the sum of the weights at time t
- We have: $\Phi_{t+1} = \sum w_i^{t+1} = \sum w_i^t e^{-\varepsilon \ell_i^t}$ • Since $e^x \leq 1 + x + x^2$ for $x \in [-1,1]$ and also $|\ell_i^t| \leq 1$, we $\Phi_{t+1} \leq \sum_{i} w_i^t \left(1 - \varepsilon \ell_i^t + \varepsilon^2 \left(\ell_i^t \right)^2 \right)$ have $\leq \sum w_i^t (1 + \varepsilon^2) - \varepsilon \sum w_i^t \ell_i^t$

• We have
$$\Phi_{t+1} \leq \sum_{i} w_i^t (1 + \varepsilon^2) - \varepsilon \sum_{i} w_i^t \ell_i^t$$

• Since
$$w_i^t = p_i^t \cdot \Phi^t$$
, then
 $\Phi_{t+1} \le (1 + \varepsilon^2) \Phi^t - \varepsilon \Phi^t \langle p^t, \ell^t \rangle$
 $= \Phi^t (1 + \varepsilon^2 - \varepsilon \langle p^t, \ell^t \rangle)$
(since $1 + x \le e^x$) $\le \Phi^t \exp(\varepsilon^2 - \varepsilon \langle p^t, \ell^t \rangle)$

- We have $\Phi_T \leq n \exp(\varepsilon^2 T \varepsilon \sum_t \langle p^t, \ell^t \rangle)$
- We also have $\exp(-\varepsilon \sum_t \ell_{m^*}^t) \le \Phi_T$

• Then
$$\sum_t \langle p^t, \ell^t \rangle \leq \sum_t \ell_{m^*}^t + \varepsilon T + \frac{\ln n}{\varepsilon}$$

• If we set
$$\varepsilon = \sqrt{\frac{\ln n}{T}}$$
, we have $\varepsilon T + \frac{\ln n}{\varepsilon} = 2\sqrt{T \ln N}$

Regret

- Regret is the difference M m between the number of mistakes M by our algorithm and the number of mistakes by the best expert m^*
- (Amortized) regret is the ratio $\frac{M-m^*}{T}$, i.e., the regret amortized over the total number of days T

Prediction with Expert Advice

a fundamental problem of sequential prediction

Algorithm makes 2 mistakes Best expert makes 1 mistake

Prediction with Expert Advice

a fundamental problem of sequential prediction

• If we set
$$\varepsilon = \sqrt{\frac{\ln n}{T}}$$
, we have $\sum_t \langle p^t, \ell^t \rangle \le \sum_t \ell_{m^*}^t + \varepsilon T + \frac{\ln n}{\varepsilon} \le \sum_t \ell_{m^*}^t + 2\sqrt{T \ln N}$

• Total regret is $2\sqrt{T \ln N}$

• Amortized regret is
$$2\sqrt{\frac{\ln N}{T}}$$