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Relevant Supplementary Material

e Lecture 13 of “Advanced Algorithms” Course Notes
(http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15
850-f20/www/notes/lec14.pdf), by Anupam Gupta



Online Learning

* There are n experts who make a prediction about each of T
days (n > T)

* Algorithm uses advice from experts to make predictions each
day

e Goal is to minimize the number of mistakes, i.e., the number
of times our prediction differs from the outcome



Prediction with Expert Advice

a fundamental problem of sequential prediction
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The Online Learning with Experts Problem

* . experts who decide either {0,1} on each of T days (n > T)

* Algorithm takes advice from experts and predict either {0,1}
onh each day

* Algorithm sees the outcome, which is either {0,1}, of each
day and can use this information on future days

* The cost of the algorithm is the number of incorrect
predictions




Prediction with Expert Advice

a fundamental problem of sequential prediction
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Applications of the Experts Problem

* Ensemble learning, e.g., AdaBoost

* Forecast and portfolio optimization

* Special case of online convex optimization



Perfect Expert

* Theorem: If there is a perfect expert, there exists an
algorithm that makes at most [log,n| mistakes

* Consider majority vote of all experts who have made no
mistakes so far

* Every time we make a mistake, the number of mistakes who
have not been wrong decreases by a factor of at least 2



Errors by Algorithm

* Theorem: Any algorithm MUST make at least [log,n|
mistakes

* Suppose on day i, the experts with i-th bit O in their binary
representation predict O and the experts with i-th bit 1 in
their binary representation predict 1



Algorithms for Online Learning

 Theorem: There exists an algorithm that makes M <
m*([log,n| + 1) + [log,n| mistakes, where m” is the
number of mistakes made by the best expert



Algorithms for Online Learning

 Theorem: There exists an algorithm that makes M <
m*([log,n| + 1) + [log,n| mistakes, where m” is the
number of mistakes made by the best expert

* Split the time into epochs
* Keep perfect experts in each epoch and do majority vote

* When no more perfect experts, epoch ends and start a new
epoch with all experts



Algorithms for Online Learning

 Theorem: There exists an algorithm that makes M <
m*([log,n| + 1) + [log,n| mistakes, where m” is the
number of mistakes made by the best expert

* Split the time into epochs
* Keep perfect experts in each epoch and do majority vote

* When no more perfect experts, epoch ends and start a new
epoch with all experts HOW MANY EPOCHS CAN THERE BE?



Algorithms for Online Learning

 Theorem: There exists an algorithm that makes M <
m*([log,n| + 1) + [log,n| mistakes, where m” is the
number of mistakes made by the best expert

* [log,n| + 1 mistakes per epoch before there is a perfect
expert

* [log,n| mistakes when there is a perfect expert
* m” epochs before there is a perfect expert
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Weighted Majority (Littlestone, Warmuth 89)

* Initially give each expert weight 1
* Choose the weighted majority of experts

* For each time, maintain the weight of each correct expert,
. . 1
decrease the weight of each incorrect expert by E



Guarantee for Weighted Majority

* What is the sum of the weights at the beginning? n
* What is an upper bound on the weights in each round?

* Each round the algorithm makes a mistake, at least half of its
experts have their weights decrease by half

M
* Sum of the weights < (1 — Z) n



Guarantee for Weighted Majority

1 . 1\
" omt = _(1_1) n
M < +log2n~ 2.41(m" + log, n)

log, 5
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Weighted Majority (Littlestone, Warmuth 89)

* Initially give each expert weight 1
* Choose the weighted majority of experts

* For each time, maintain the weight of each correct expert,
decrease the weight of each incorrect expert by (1 — ¢)
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Guarantee for Weighted Majority

* What is the sum of the weights at the beginning? n
* What is an upper bound on the weights in each round?

* Each round the algorithm makes a mistake, at least half of its
experts have their weights decrease by (1 — ¢)

A M
* Sum of the weights < (1 — 5) n



Guarantee for Weighted Majority

* What is the weight of the best expert at the end? (1 — &)™
* Sum of the weights > (1 — &)™

° — m” I _EM _%
(1 —&)™ < sum of the weights < (1 ) n<e zn

‘M <2(1+&)m* +0 (log”)

E

*(since —In(1 —¢) = €4 82 | 83 e < e+ e fore € [0,1])




Deterministic Algorithm Error

* Theorem: No deterministic algorithm can do better than a factor of 2
compared to the best expert

* Consider two experts A and B, where A always picks 1 and B always
picks 0

 Since the algorithm is deterministic, can always make the algorithm
wrong on the next day

* Algorithm is incorrect every day, some expert is correct on half of the
days



Randomized Weighted Majority (Littlestone,
Warmuth 89)

* Initially give each expert weight 1

* Prediction at each time is drawn randomly proportional to
the current weights of the experts

* For each time, maintain the weight of each correct expert,
decrease the weight of each incorrect expert by (1 — ¢)



Randomized Weighted Majority (Littlestone,
Warmuth 89)

* Let the potential function ®; denote the sum of the weights
attime t

* Let f; be the fraction of incorrect experts at time ¢

* By linearity of expectation E|M| = ), f;

* We have @41 = @,((1 - f) + fr(1 — &) = (1 — &f;)
e & =nJ],(1—¢ef,) < ne €2t = pne¢EIM]



Randomized Weighted Majority (Littlestone,
Warmuth 89)

* We have @, < ne ¢EIM]

* We also have (1 — &)™ < &,

*Then E[M]| <m*(1 + ¢) n 7 by using —In(1 —¢) < ¢

E
82



Randomized Weighted Majority (Littlestone,
Warmuth 89)

* Initially give each expert weight 1

* Prediction at each time is drawn randomly proportional to
the current weights of the experts

* For each time, maintain the weight of each correct expert,
decrease the weight of each incorrect expert by (1 — ¢)



Multiplicative Weights

* Initially give each expert weight 1

* Prediction at each time is drawn randomly proportional to
the current weights of the experts

* For each time t, change the weight of each expert by (1 —

emgt)), where ml@ is the loss of the i-th expert



An Alternate Perspective

* Suppose in each round that the algorithm produces a vector
of probabilities p¢ = (p}, ..., pl)

* We have p; € [0,1] foralli € [n]andp! + -+ pL =1

. pf corresponds to the probability of picking expert i on day ¢



An Alternate Perspective

* The loss on day t is £t = (¢4, ...,¢%) € [0,1]"
« p; corresponds to the probability of picking expert i on day ¢

* Expected loss on day t is (p®, £%)



Hedge Algorithm

* Initially give each expert weight 1

* On day t, randomly follows expert i with probability p; =

* Each weight is updated by Wt+1 lt - exp(—eff)



Hedge Algorithm

* Let the potential function ®; denote the sum of the weights
attime t

e We have: _opt
CI)t+1 — Wt+1 Wt 83

*Since e <1+ x + x* forx € [— 1,1] and also |#}| < 1, we

have O, < z wi (1 — eft + ez(ff)z)

l
< zwit(l + &2) — ezwfff
; ;




Hedge Algorithm
* We have @, < Zwit(l + &%) — €2Wit£f

* Since w; = p; - @, then
D, q < (14 2Dt — edl(pt, £1)

= O (1 + &% — &(p", £%))
(since 1+ x < e*) < dlexp(e? — &(pt, £Y))



Hedge Algorithm

e We have @ < nexp(eT — ). (pt, £%))
* We also have exp(—e Y, £5 ) < Oy

Inn

* Then Zt(ljt; ) < Dt ff‘n* + T + —

E

e If we set € = /lnTn, we have €T+1n—n= 2T In N



Regret

* Regret is the difference M — m between the number of
mistakes M by our algorithm and the number of mistakes by
the best expert m”

*

M-m

* (Amortized) regret is the ratio , i.e., the regret
amortized over the total number of days T



Prediction with Expert Advice

a fundamental problem of sequential prediction
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Prediction with Expert Advice

a fundamental problem of sequential prediction
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Hedge Algorithm

Inn

o If we set € = T we have Y. (pt, %) <Y, £ . + T +
s ¢t 4+ 2VTInN

&E

* Total regret is 2T In N

. . /1 N
* Amortized regret is 2 DT
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