CSCE 658: Randomized Algorithms

Lecture 18

Samson Zhou

Relevant Supplementary Material

- Lecture 14 of "Advanced Algorithms" Course Notes (http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15 850-f20/www/notes/lec15.pdf), by Anupam Gupta

Last Time: Prediction with Expert Advice

a fundamental problem of sequential prediction

Last Time: Hedge Algorithm

- Initially give each expert weight 1
- On day t, randomly follows expert i with probability $p_{i}^{t}=$

$$
\frac{w_{i}^{t}}{w_{1}^{t}+\cdots+w_{n}^{t}}=\frac{w_{i}^{t}}{\sum_{j} w_{j}^{t}}
$$

- Each weight is updated by $w_{i}^{t+1}=w_{i}^{t} \cdot \exp \left(-\varepsilon \ell_{i}^{t}\right)$

Last Time: Hedge Algorithm

- If we set $\varepsilon=\sqrt{\frac{\ln n}{T}}$, we have $\sum_{t}\left\langle p^{t}, \ell^{t}\right\rangle \leq \sum_{t} \ell_{m^{*}}^{t}+\varepsilon T+$ $\frac{\ln n}{\varepsilon} \leq \sum_{t} \ell_{m^{*}}^{t}+2 \sqrt{T \ln N}$
- Total regret is $2 \sqrt{T \ln N}$
- Amortized regret is $2 \sqrt{\frac{\ln N}{T}}$

Two-Player Zero Sum Games

- Two players in a game, the "row player" and the "column player"
- Each player has some set of actions: row player has actions [m], column player has actions [n]
- Payoff matrix $M \in \mathbb{R}^{m \times n}$

Two-Player Zero Sum Games

- In each round of the game, the row player chooses a row $i \in$ $[m]$, and the column player chooses a row $j \in[n]$
- The row player gets $M_{i, j}$ and the column player loses $M_{i, j}$ (which could be good for the column player if $M_{i, j}$ is negative) so the payoff is from column player to row player
- Winnings of the two players sum to zero (hence the name)

Two-Player Zero Sum Games

- Row player wants to maximize $M_{i, j}$ and the column player wants to minimize $M_{i, j}$

Two-Player Zero Sum Games

	A	B	C
1	30	-10	20
2	-10	20	-20

-What would you play as the row player?
-What would you play as the column player?

Two-Player Zero Sum Games

	A	B	C
1	30	-10	20
2	-10	20	-20

- What would you play as the row player if column player played B?
- What would you play as the column player if row player played 1?

Two-Player Zero Sum Games

	A	B	C
1	30	-10	20
2	-10	20	-20

- What would you play as the row player if you went first (and your choice is known)?
- What would you play as the column player if you went first (and your choice is known)?

Two-Player Zero Sum Games

	A	B	C
1	30	-10	20
2	-10	20	-20

- What would you play as the row player if you went first? 1
- What would you play as the column player if you went first? B or C

Best Strategies

- Each player plays simultaneously and can have randomized strategies
- Are there two-player games where randomized strategies are better than deterministic strategies?

Rock-Paper-Scissors

	Rock	Paper	Scissors
Rock	0	-1	1
Paper	1	0	-1
Scissors	-1	1	0

- Any deterministic strategy can have value -1
- Best randomized strategy has value 0

Best Strategies

- Each player plays simultaneously and can have randomized strategies
- Suppose row player plays p and the column player plays q, what is the expected payoff to the row player?

Best Strategies

- Each player plays simultaneously and can have randomized strategies
- Suppose row player plays p and the column player plays q, what is the expected payoff to the row player?

$$
E[\text { Payoff to row player }]=p^{\top} M q=\sum_{i, j} p_{i} q_{j} M_{i, j}
$$

Best Strategies

- Row player wants to maximize $\sum_{i, j} p_{i} q_{j} M_{i, j}$ and column player wants to minimize $\sum_{i, j} p_{i} q_{j} M_{i, j}$
- Suppose strategy p of row player is known, then the column player computes $C(p)=\min _{q} p^{\top} M q=\min _{j \in[n]} p^{\top} M e_{j}$.
- Suppose strategy q of column player is known, then the row player computes $R(q)=\max _{p} p^{\top} M q=\max _{i \in[m]} e_{i}^{\top} M q$

Best Strategies

- Suppose strategy p of row player is known, then the column player computes $C(p)=\min _{q} p^{\top} M q=\min _{j \in[n]} p^{\top} M e_{j}$.
- Suppose strategy q of column player is known, then the row player computes $R(q)=\max _{p} p^{\top} M q=\max _{i \in[m]} e_{i}^{\top} M q$
- How do $C(p)$ and $R(q)$ relate?

Best Strategies

- Suppose strategy p of row player is known, then the column player computes $C(p)=\min _{q} p^{\top} M q=\min _{j \in[n]} p^{\top} M e_{j}$.
- Suppose strategy q of column player is known, then the row player computes $R(q)=\max _{p} p^{\top} M q=\max _{i \in[m]} e_{i}^{\top} M q$
- How do $C(p)$ and $R(q)$ relate?
- $C(p) \leq R(q)$

Best Strategies

- Intuitively, if the column player plays a strategy q first, then the row player has more power
- Formally, the row player could always play strategy p in response to q and achieve value $C(p)$
- $R(q)$ is the best response, which can be even higher, so $C(p) \leq R(q)$

Von Neumann's Minimax Theorem

- For any finite zero-sum game $M \in \mathbb{R}^{m \times n}$,

$$
\max _{p} C(p)=\min _{q} R(q)
$$

- Suppose $\min _{q} R(q)-\max _{p} C(p)=\delta$ for some $\delta>0$
- Set initial row player strategy $p^{1}=\left(\frac{1}{m}, \frac{1}{m}, \ldots, \frac{1}{m}\right)$
- At each time t, column player plays the best response j_{t} to p^{t}

Von Neumann's Minimax Theorem

- Row player experiences gain $g_{t}=M e_{j_{t}}$
- Update the weights to get p^{t+1} via Hedge algorithm
- By the Hedge algorithm, after $T \geq O\left(\frac{\log m}{\varepsilon^{2}}\right)$ steps, we have

$$
\frac{1}{T} \sum_{i}\left\langle p^{t}, g^{t}\right\rangle \geq \max _{i} \frac{1}{T} \sum_{i}\left\langle e_{i}, g^{t}\right\rangle-\varepsilon
$$

Von Neumann's Minimax Theorem

$$
\frac{1}{T} \sum_{i}\left\langle p^{t}, g^{t}\right\rangle \geq \max _{i} \frac{1}{T} \sum_{i}\left\langle e_{i}, g^{t}\right\rangle-\varepsilon
$$

$$
=\max _{i}\left\langle e_{i}, \frac{1}{T} \sum_{i} g^{t}\right\rangle-\varepsilon
$$

(definition of $\left.g^{t}\right)=\max _{i}\left(e_{i}, M\left(\frac{1}{T} \sum_{i} e_{j_{t}}\right)\right)-\varepsilon$

$$
=R(\hat{q})-\varepsilon \quad\left(\text { for } \hat{q}=\frac{1}{T} \sum_{i} e_{j_{t}}\right)
$$

Von Neumann's Minimax Theorem

- We have $\frac{1}{T} \sum_{i}\left\langle p^{t}, g^{t}\right\rangle \geq R(\hat{q})-\varepsilon$
- Can also show $\frac{1}{T} \sum_{i}\left\langle p^{t}, g^{t}\right\rangle \leq C(\hat{p})$, so it follows there exists strategies with $C(\hat{p}) \geq R(\hat{q})-\varepsilon$
- We know $C(\hat{p}) \leq R(\hat{q})$
- By setting $\varepsilon \leq \delta$, the claim follows

Previously: Linear Programming (Standard Form)

- Maximize a linear objective function:

$$
c^{\top} x=\langle c, x\rangle, c, x \in \mathbb{R}^{n}
$$

- Subject to constraints:

$$
\begin{gathered}
A x \leq b \text { for } A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{m} \\
x \geq 0 \text { (entry-wise non-negativity) }
\end{gathered}
$$

Online Learning for Solving LP's

- Use learning with experts to solve LP
- Assume we have any oracle that finds a point in feasible region that does not violate a certain constraint

Online Learning for Solving LP's

- Use learning with experts to solve LP
- Have m experts, one corresponding to each constraint
- The loss of an expert in a round is based on how badly the constraint was violated by the current solution
- Intuition: Greater violation means more loss, and hence larger weight decrease in the next iteration, which forces us to not violate the constraint
- After $T=O\left(\frac{\log n}{\varepsilon^{2}}\right)$ iterations, approximately solves LP

