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Last Time: Schwartz-Zippel Lemma

• [Schwartz-Zippel] Suppose 𝑃 is a degree 𝑑 polynomial in 
𝑥1, … , 𝑥𝑛. Let 𝑟1, … , 𝑟𝑛 be randomly drawn from 1,2,3, … , 𝑞 . 
Then

• Upshot: A random evaluation of a low-degree polynomial is 
unlikely to be zero

Pr 𝑃 𝑟1, … , 𝑟𝑛 = 0 ≤
𝑑

𝑞



Last Time: Equality Problem

• Alice is given a string 𝐴 and Bob is given a string 𝐵, each of 
length 𝑛, and they must determine whether 𝐴 = 𝐵, using 
the minimum amount of communication

• Any deterministic protocol must use Ω(𝑛) bits of 
communication, but there exists a randomized protocol that 
uses 𝑂(log 𝑛) bits of communication



Last Time: Equality Problem

• Algorithm: Suppose Alice and Bob have access to a randomly 
generated string 𝑥 ∈ 1,2,3, … , 𝑞 𝑛. Alice sends over 𝐴𝑥 and 
Bob determines whether 𝐴𝑥 = 𝐵𝑥

• If 𝐴 = 𝐵, then 𝐴𝑥 = 𝐵𝑥 so the protocol succeeds

• If 𝐴 ≠ 𝐵, then what is the probability that 𝐴𝑥 ≠ 𝐵𝑥?

• By Schwartz-Zippel, the probability that 𝐴𝑥 ≠ 𝐵𝑥 is at least 
9

10



Polynomial Identity Testing

• 𝑓 𝑥, 𝑦 = 𝑥2 − 𝑦2

• 𝑔 𝑥, 𝑦 = 𝑥 + 𝑦 (𝑥 − 𝑦)

• Do we have 𝑓 𝑥, 𝑦 ≡ 𝑔 𝑥, 𝑦 ?



Polynomial Identity Testing

• 𝑓 𝑥, 𝑦 = 𝑥3 + 3𝑥𝑦 + 𝑦3 − 1

• 𝑔 𝑥, 𝑦 =
1

2
𝑥 + 𝑦 − 1 𝑥 + 1 2 + 𝑦 + 1 2 + 𝑥 − 𝑦 2

• Do we have 𝑓 𝑥, 𝑦 ≡ 𝑔 𝑥, 𝑦 ?



Polynomial Identity Testing

• 𝑓 𝑥, 𝑦 = 𝑥3 + 3𝑥𝑦 + 𝑦3 − 1

• 𝑔 𝑥, 𝑦 =
1

2
𝑥 + 𝑦 − 1 𝑥 + 1 2 + 𝑦 + 1 2 + 𝑥 − 𝑦 2

• Do we have 𝑓 𝑥, 𝑦 ≡ 𝑔 𝑥, 𝑦 ?

• Both are equal to ℎ 𝑥, 𝑦 = 𝑥 + 𝑦 − 1 (
)

𝑥2 − 𝑥𝑦 + 𝑦2 + 𝑥 +
𝑦 + 1



Polynomial Identity Testing

• Efficiently determine whether polynomials of degree 𝑑 satisfy 
𝑓 𝑥1, … , 𝑥𝑛 ≡ 𝑔 𝑥1, … , 𝑥𝑛

• Why not just expand the polynomials and see whether they are 
equal?

• How many terms can be in 𝑥1 + 𝑥2 +⋯+ 𝑥𝑛
𝑑?



Polynomial Identity Testing

• Efficiently determine whether polynomials of degree 𝑑 satisfy 
𝑓 𝑥1, … , 𝑥𝑛 ≡ 𝑔 𝑥1, … , 𝑥𝑛

• Why not just expand the polynomials and see whether they are 
equal?

• How many terms can be in 𝑥1 + 𝑥2 +⋯+ 𝑥𝑛
𝑑?

• Can be as large as 𝑛
𝑑

≈ 𝑛𝑑, which can be exponential in size



Polynomial Identity Testing

• It suffices to determine if 𝑓 𝑥1, … , 𝑥𝑛 − 𝑔 𝑥1, … , 𝑥𝑛 ≡ 0

• Determine whether a polynomial 𝑃 𝑥1, … , 𝑥𝑛 ≡ 0

• Checking if a polynomial is identically zero has a large number of 
applications!



Graph Analysis

• Graphs can be represented via adjacency matrices

• The determinants of adjacency matrices (and other 
matrices) reveal information about the structural of the 
graph, e.g., whether the determinant is non-zero if and 
only if a bipartite graph has a perfect matching

• Determinants are polynomials!



Primality Checking

• The polynomial 𝑃 𝑧 ≔ 1 + 𝑧 𝑛 − 1 − 𝑧𝑛 (mod 𝑛)
is identically zero if and only if 𝑛 is prime



Polynomial Identity Testing

• Determine whether a polynomial 𝑃 𝑥1, … , 𝑥𝑛 ≡ 0

• Expanding the polynomial can be slow, but evaluating the 
polynomial at any value of 𝑥1, … , 𝑥𝑛 is efficient

• What should we do?



Polynomial Identity Testing

• Algorithm: Randomly pick values 𝑥1 = 𝑟1, … , 𝑥𝑛 = 𝑟𝑛 and 
evaluate 𝑃(𝑟1, … , 𝑟𝑛).
• If 𝑃 𝑟1, … , 𝑟𝑛 = 0, return 𝑃 𝑥1, … , 𝑥𝑛 = 0
• If 𝑃 𝑟1, … , 𝑟𝑛 ≠ 0, return 𝑃 𝑥1, … , 𝑥𝑛 ≠ 0



Polynomial Identity Testing

• Algorithm: Randomly pick values 𝑥1 = 𝑟1, … , 𝑥𝑛 = 𝑟𝑛 and 
evaluate 𝑃(𝑟1, … , 𝑟𝑛).
• If 𝑃 𝑟1, … , 𝑟𝑛 = 0, return 𝑃 𝑥1, … , 𝑥𝑛 = 0
• If 𝑃 𝑟1, … , 𝑟𝑛 ≠ 0, return 𝑃 𝑥1, … , 𝑥𝑛 ≠ 0

• If 𝑃 𝑥1, … , 𝑥𝑛 = 0, then the protocol succeeds

• If 𝑃 𝑥1, … , 𝑥𝑛 ≠ 0, what is the probability of 𝑃 𝑟1, … , 𝑟𝑛 ≠ 0?



Polynomial Identity Testing

• If 𝑃 𝑥1, … , 𝑥𝑛 = 0, then the protocol succeeds

• If 𝑃 𝑥1, … , 𝑥𝑛 ≠ 0, what is the probability of 𝑃 𝑟1, … , 𝑟𝑛 ≠ 0?

• Suppose we choose 𝑥𝑖 randomly from {1, … , 𝑆}

• By Schwartz-Zippel, the probability that 𝑃 𝑟1, … , 𝑟𝑛 ≠ 0 is at 

least 1 −
𝑑

𝑆
≥ 0.9 for 𝑆 ≥ 10𝑑



Questions?



Graph Theory

• Suppose we have a graph 𝐺 with vertex set 𝑉 and edge set 𝐸

• Let 𝑉 = [𝑛] for simplicity, so each vertex is an integer from 1 to 𝑛

• Then each edge 𝑒 ∈ 𝐸 can be written as 𝑒 = (𝑢, 𝑣) for 𝑢, 𝑣 ∈ [𝑛]

• In other words, each edge is a pair of integers from 1 to 𝑛
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Cuts

• A cut 𝐶 = 𝑆1, 𝑆2 of a graph 𝐺 is a partition of the vertices 𝑉
into a set 𝑆1 and the remaining vertices 𝑆2 = 𝑉 − 𝑆1

• An edge (𝑢, 𝑣) crosses the cut 𝐶 if 𝑢 ∈ 𝑆1 and 𝑣 ∈ 𝑆2

• The size of the cut 𝐶 is the number of edges that cross 𝐶
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𝑆1 = {1,4,5}

𝑆2 = {2,3,6}

What is the size of the cut 𝐶 = 𝑆1, 𝑆2?
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𝑆1 = {1,4,5}

𝑆2 = {2,3,6}

What is the size of the cut 𝐶 = 𝑆1, 𝑆2?



5
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34

6

𝑆1 = {1,4,5}

𝑆2 = {2,3,6}

What is the size of the cut 𝐶 = 𝑆1, 𝑆2?

The cut size is five



Minimum Cut

• The minimum cut of a graph is the size of the smallest cut 
across all pairs of sets of vertices 𝑆1 and 𝑆2 = 𝑉 − 𝑆1

• Find the minimum cut of a graph 𝐺
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What is the minimum cut of the graph?
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What is the minimum cut of the graph?



Karger’s Minimum Cut Algorithm

1. Start with original graph and iteratively reduce the 
number of vertices via a series of edge contractions

2. In each step, choose a random edge and merge the two 
endpoints of that edge into a single vertex, preserving 
edges (allow multi-edges but not self-loops)

3. Iterate until there are only two vertices 𝑢1 and 𝑢2 left

4. Return the vertices merged into 𝑢1 as one set

5. Return the vertices merged into 𝑢2 as the other set
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Return 𝑆1, 𝑆2 

𝑆1 = {1,2,3,4,5}

𝑆2 = {6}



Karger’s Minimum Cut Algorithm

• Intuition: Suppose the graph is disconnected. Then we will 
ALWAYS return the correct min-cut

• Now suppose the graph consists of two components 
connected by a single. Algorithm is successful as long as it 
avoids selecting the single edge that crosses the two 
components

• Why? As long as it avoids the single edge, each edge 
contraction will just shrink one of the two components

• There is a good chance we never contract the single edge



Karger’s Minimum Cut Algorithm

• Analysis: Fix a min-cut 𝐶 = 𝑆1, 𝑆2 with size 𝑘

• Probability that we contract an edge of 𝐶 is 
𝑘

|𝐸|
, where |𝐸| is 

the number of edges

• Since the min-cut is 𝑘, then each vertex must have degree 

at least 𝑘 so 𝐸 ≥
𝑛𝑘

2

• The probability that we DO NOT contract an edge of 𝐶 is at 

least 1 −
𝑘

(𝑛𝑘/2)
=

𝑛−2

𝑛



Karger’s Minimum Cut Algorithm

• After 𝑖 steps, the number of vertices left is 𝑛 − 𝑖, so the 
probability that we DO NOT contract an edge of 𝐶 is at 

least 
𝑛−𝑖−2

𝑛−𝑖

• Probability of success is at least:

𝑛 − 2

𝑛
×
𝑛 − 3

𝑛 − 1
×
𝑛 − 4

𝑛 − 2
×⋯×

1

3
≥

2

𝑛 𝑛 − 1



Karger’s Minimum Cut Algorithm

• Probability of success is at least 
2

𝑛2

• Will succeed with probability 0.99 if we repeat 𝑂 𝑛2

times
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