
CSCE 658: Randomized Algorithms

Lecture 2

Samson Zhou

Last Time: Schwartz-Zippel Lemma

• [Schwartz-Zippel] Suppose 𝑃 is a degree 𝑑 polynomial in
𝑥1, … , 𝑥𝑛. Let 𝑟1, … , 𝑟𝑛 be randomly drawn from 1,2,3, … , 𝑞 .
Then

• Upshot: A random evaluation of a low-degree polynomial is
unlikely to be zero

Pr 𝑃 𝑟1, … , 𝑟𝑛 = 0 ≤
𝑑

𝑞

Last Time: Equality Problem

• Alice is given a string 𝐴 and Bob is given a string 𝐵, each of
length 𝑛, and they must determine whether 𝐴 = 𝐵, using
the minimum amount of communication

• Any deterministic protocol must use Ω(𝑛) bits of
communication, but there exists a randomized protocol that
uses 𝑂(log 𝑛) bits of communication

Last Time: Equality Problem

• Algorithm: Suppose Alice and Bob have access to a randomly
generated string 𝑥 ∈ 1,2,3, … , 𝑞 𝑛. Alice sends over 𝐴𝑥 and
Bob determines whether 𝐴𝑥 = 𝐵𝑥

• If 𝐴 = 𝐵, then 𝐴𝑥 = 𝐵𝑥 so the protocol succeeds

• If 𝐴 ≠ 𝐵, then what is the probability that 𝐴𝑥 ≠ 𝐵𝑥?

• By Schwartz-Zippel, the probability that 𝐴𝑥 ≠ 𝐵𝑥 is at least
9

10

Polynomial Identity Testing

• 𝑓 𝑥, 𝑦 = 𝑥2 − 𝑦2

• 𝑔 𝑥, 𝑦 = 𝑥 + 𝑦 (𝑥 − 𝑦)

• Do we have 𝑓 𝑥, 𝑦 ≡ 𝑔 𝑥, 𝑦 ?

Polynomial Identity Testing

• 𝑓 𝑥, 𝑦 = 𝑥3 + 3𝑥𝑦 + 𝑦3 − 1

• 𝑔 𝑥, 𝑦 =
1

2
𝑥 + 𝑦 − 1 𝑥 + 1 2 + 𝑦 + 1 2 + 𝑥 − 𝑦 2

• Do we have 𝑓 𝑥, 𝑦 ≡ 𝑔 𝑥, 𝑦 ?

Polynomial Identity Testing

• 𝑓 𝑥, 𝑦 = 𝑥3 + 3𝑥𝑦 + 𝑦3 − 1

• 𝑔 𝑥, 𝑦 =
1

2
𝑥 + 𝑦 − 1 𝑥 + 1 2 + 𝑦 + 1 2 + 𝑥 − 𝑦 2

• Do we have 𝑓 𝑥, 𝑦 ≡ 𝑔 𝑥, 𝑦 ?

• Both are equal to ℎ 𝑥, 𝑦 = 𝑥 + 𝑦 − 1 (
)

𝑥2 − 𝑥𝑦 + 𝑦2 + 𝑥 +
𝑦 + 1

Polynomial Identity Testing

• Efficiently determine whether polynomials of degree 𝑑 satisfy
𝑓 𝑥1, … , 𝑥𝑛 ≡ 𝑔 𝑥1, … , 𝑥𝑛

• Why not just expand the polynomials and see whether they are
equal?

• How many terms can be in 𝑥1 + 𝑥2 +⋯+ 𝑥𝑛
𝑑?

Polynomial Identity Testing

• Efficiently determine whether polynomials of degree 𝑑 satisfy
𝑓 𝑥1, … , 𝑥𝑛 ≡ 𝑔 𝑥1, … , 𝑥𝑛

• Why not just expand the polynomials and see whether they are
equal?

• How many terms can be in 𝑥1 + 𝑥2 +⋯+ 𝑥𝑛
𝑑?

• Can be as large as 𝑛
𝑑

≈ 𝑛𝑑, which can be exponential in size

Polynomial Identity Testing

• It suffices to determine if 𝑓 𝑥1, … , 𝑥𝑛 − 𝑔 𝑥1, … , 𝑥𝑛 ≡ 0

• Determine whether a polynomial 𝑃 𝑥1, … , 𝑥𝑛 ≡ 0

• Checking if a polynomial is identically zero has a large number of
applications!

Graph Analysis

• Graphs can be represented via adjacency matrices

• The determinants of adjacency matrices (and other
matrices) reveal information about the structural of the
graph, e.g., whether the determinant is non-zero if and
only if a bipartite graph has a perfect matching

• Determinants are polynomials!

Primality Checking

• The polynomial 𝑃 𝑧 ≔ 1 + 𝑧 𝑛 − 1 − 𝑧𝑛 (mod 𝑛)
is identically zero if and only if 𝑛 is prime

Polynomial Identity Testing

• Determine whether a polynomial 𝑃 𝑥1, … , 𝑥𝑛 ≡ 0

• Expanding the polynomial can be slow, but evaluating the
polynomial at any value of 𝑥1, … , 𝑥𝑛 is efficient

• What should we do?

Polynomial Identity Testing

• Algorithm: Randomly pick values 𝑥1 = 𝑟1, … , 𝑥𝑛 = 𝑟𝑛 and
evaluate 𝑃(𝑟1, … , 𝑟𝑛).
• If 𝑃 𝑟1, … , 𝑟𝑛 = 0, return 𝑃 𝑥1, … , 𝑥𝑛 = 0
• If 𝑃 𝑟1, … , 𝑟𝑛 ≠ 0, return 𝑃 𝑥1, … , 𝑥𝑛 ≠ 0

Polynomial Identity Testing

• Algorithm: Randomly pick values 𝑥1 = 𝑟1, … , 𝑥𝑛 = 𝑟𝑛 and
evaluate 𝑃(𝑟1, … , 𝑟𝑛).
• If 𝑃 𝑟1, … , 𝑟𝑛 = 0, return 𝑃 𝑥1, … , 𝑥𝑛 = 0
• If 𝑃 𝑟1, … , 𝑟𝑛 ≠ 0, return 𝑃 𝑥1, … , 𝑥𝑛 ≠ 0

• If 𝑃 𝑥1, … , 𝑥𝑛 = 0, then the protocol succeeds

• If 𝑃 𝑥1, … , 𝑥𝑛 ≠ 0, what is the probability of 𝑃 𝑟1, … , 𝑟𝑛 ≠ 0?

Polynomial Identity Testing

• If 𝑃 𝑥1, … , 𝑥𝑛 = 0, then the protocol succeeds

• If 𝑃 𝑥1, … , 𝑥𝑛 ≠ 0, what is the probability of 𝑃 𝑟1, … , 𝑟𝑛 ≠ 0?

• Suppose we choose 𝑥𝑖 randomly from {1, … , 𝑆}

• By Schwartz-Zippel, the probability that 𝑃 𝑟1, … , 𝑟𝑛 ≠ 0 is at

least 1 −
𝑑

𝑆
≥ 0.9 for 𝑆 ≥ 10𝑑

Questions?

Graph Theory

• Suppose we have a graph 𝐺 with vertex set 𝑉 and edge set 𝐸

• Let 𝑉 = [𝑛] for simplicity, so each vertex is an integer from 1 to 𝑛

• Then each edge 𝑒 ∈ 𝐸 can be written as 𝑒 = (𝑢, 𝑣) for 𝑢, 𝑣 ∈ [𝑛]

• In other words, each edge is a pair of integers from 1 to 𝑛

5

1 2

34

6

Cuts

• A cut 𝐶 = 𝑆1, 𝑆2 of a graph 𝐺 is a partition of the vertices 𝑉
into a set 𝑆1 and the remaining vertices 𝑆2 = 𝑉 − 𝑆1

• An edge (𝑢, 𝑣) crosses the cut 𝐶 if 𝑢 ∈ 𝑆1 and 𝑣 ∈ 𝑆2

• The size of the cut 𝐶 is the number of edges that cross 𝐶

5

1 2

34

6

5

1 2

34

6

𝑆1 = {1,4,5}

𝑆2 = {2,3,6}

What is the size of the cut 𝐶 = 𝑆1, 𝑆2?

5

1 2

34

6

𝑆1 = {1,4,5}

𝑆2 = {2,3,6}

What is the size of the cut 𝐶 = 𝑆1, 𝑆2?

5

1 2

34

6

𝑆1 = {1,4,5}

𝑆2 = {2,3,6}

What is the size of the cut 𝐶 = 𝑆1, 𝑆2?

The cut size is five

Minimum Cut

• The minimum cut of a graph is the size of the smallest cut
across all pairs of sets of vertices 𝑆1 and 𝑆2 = 𝑉 − 𝑆1

• Find the minimum cut of a graph 𝐺

5

1 2

34

6

What is the minimum cut of the graph?

5

1 2

34

6

What is the minimum cut of the graph?

Karger’s Minimum Cut Algorithm

1. Start with original graph and iteratively reduce the
number of vertices via a series of edge contractions

2. In each step, choose a random edge and merge the two
endpoints of that edge into a single vertex, preserving
edges (allow multi-edges but not self-loops)

3. Iterate until there are only two vertices 𝑢1 and 𝑢2 left

4. Return the vertices merged into 𝑢1 as one set

5. Return the vertices merged into 𝑢2 as the other set

5

1 2

34

6

5

1 2

34

6

5

1 2

34

6

5

1 2

34

6

5

1 2

34

6

5

1 2

34

6

5 1 2

34

6

5 1 2

34

6

5 1 2

6

34

5 1 2

6

34

Return 𝑆1, 𝑆2

𝑆1 = {1,2,3,4,5}

𝑆2 = {6}

Karger’s Minimum Cut Algorithm

• Intuition: Suppose the graph is disconnected. Then we will
ALWAYS return the correct min-cut

• Now suppose the graph consists of two components
connected by a single. Algorithm is successful as long as it
avoids selecting the single edge that crosses the two
components

• Why? As long as it avoids the single edge, each edge
contraction will just shrink one of the two components

• There is a good chance we never contract the single edge

Karger’s Minimum Cut Algorithm

• Analysis: Fix a min-cut 𝐶 = 𝑆1, 𝑆2 with size 𝑘

• Probability that we contract an edge of 𝐶 is
𝑘

|𝐸|
, where |𝐸| is

the number of edges

• Since the min-cut is 𝑘, then each vertex must have degree

at least 𝑘 so 𝐸 ≥
𝑛𝑘

2

• The probability that we DO NOT contract an edge of 𝐶 is at

least 1 −
𝑘

(𝑛𝑘/2)
=

𝑛−2

𝑛

Karger’s Minimum Cut Algorithm

• After 𝑖 steps, the number of vertices left is 𝑛 − 𝑖, so the
probability that we DO NOT contract an edge of 𝐶 is at

least
𝑛−𝑖−2

𝑛−𝑖

• Probability of success is at least:

𝑛 − 2

𝑛
×
𝑛 − 3

𝑛 − 1
×
𝑛 − 4

𝑛 − 2
×⋯×

1

3
≥

2

𝑛 𝑛 − 1

Karger’s Minimum Cut Algorithm

• Probability of success is at least
2

𝑛2

• Will succeed with probability 0.99 if we repeat 𝑂 𝑛2

times

	Slide 1: CSCE 658: Randomized Algorithms
	Slide 2: Last Time: Schwartz-Zippel Lemma
	Slide 3: Last Time: Equality Problem
	Slide 4: Last Time: Equality Problem
	Slide 5: Polynomial Identity Testing
	Slide 6: Polynomial Identity Testing
	Slide 7: Polynomial Identity Testing
	Slide 8: Polynomial Identity Testing
	Slide 9: Polynomial Identity Testing
	Slide 10: Polynomial Identity Testing
	Slide 11: Graph Analysis
	Slide 12: Primality Checking
	Slide 13: Polynomial Identity Testing
	Slide 14: Polynomial Identity Testing
	Slide 15: Polynomial Identity Testing
	Slide 16: Polynomial Identity Testing
	Slide 17: Questions?
	Slide 18: Graph Theory
	Slide 19
	Slide 20: Cuts
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25: Minimum Cut
	Slide 26
	Slide 27
	Slide 28: Karger’s Minimum Cut Algorithm
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39: Karger’s Minimum Cut Algorithm
	Slide 40: Karger’s Minimum Cut Algorithm
	Slide 41: Karger’s Minimum Cut Algorithm
	Slide 42: Karger’s Minimum Cut Algorithm

