CSCE 658: Randomized Algorithms

Lecture 2

Samson Zhou

Last Time: Schwartz-Zippel Lemma

• [Schwartz-Zippel] Suppose *P* is a degree *d* polynomial in $x_1, ..., x_n$. Let $r_1, ..., r_n$ be randomly drawn from $\{1, 2, 3, ..., q\}$. Then

$$\Pr[P(r_1, \dots, r_n) = 0] \le \frac{\alpha}{q}$$

• Upshot: A random evaluation of a low-degree polynomial is unlikely to be zero

Last Time: Equality Problem

• Alice is given a string A and Bob is given a string B, each of length n, and they must determine whether A = B, using the minimum amount of communication

• Any deterministic protocol must use $\Omega(n)$ bits of communication, but there exists a randomized protocol that uses $O(\log n)$ bits of communication

Last Time: Equality Problem

• Algorithm: Suppose Alice and Bob have access to a randomly generated string $x \in \{1,2,3, ..., q\}^n$. Alice sends over Ax and Bob determines whether Ax = Bx

- If A = B, then Ax = Bx so the protocol succeeds
- If $A \neq B$, then what is the probability that $Ax \neq Bx$?
- By Schwartz-Zippel, the probability that $Ax \neq Bx$ is at least $\frac{9}{10}$

- $f(x,y) = x^2 y^2$
- g(x,y) = (x+y)(x-y)
- Do we have $f(x, y) \equiv g(x, y)$?

•
$$f(x, y) = x^3 + 3xy + y^3 - 1$$

• $g(x, y) = \frac{1}{2}(x + y - 1)((x + 1)^2 + (y + 1)^2 + (x - y)^2)$

• Do we have $f(x, y) \equiv g(x, y)$?

•
$$f(x, y) = x^3 + 3xy + y^3 - 1$$

• $g(x, y) = \frac{1}{2}(x + y - 1)((x + 1)^2 + (y + 1)^2 + (x - y)^2)$

- Do we have $f(x, y) \equiv g(x, y)$?
- Both are equal to $h(x, y) = (x + y 1)(x^2 xy + y^2 + x + y + 1)$

- Efficiently determine whether polynomials of degree d satisfy $f(x_1, ..., x_n) \equiv g(x_1, ..., x_n)$
- Why not just expand the polynomials and see whether they are equal?

• How many terms can be in $(x_1 + x_2 + \dots + x_n)^d$?

- Efficiently determine whether polynomials of degree d satisfy $f(x_1, ..., x_n) \equiv g(x_1, ..., x_n)$
- Why not just expand the polynomials and see whether they are equal?

- How many terms can be in $(x_1 + x_2 + \dots + x_n)^d$?
- Can be as large as $\binom{n}{d} \approx n^d$, which can be exponential in size

- It suffices to determine if $f(x_1, ..., x_n) g(x_1, ..., x_n) \equiv 0$
- Determine whether a polynomial $P(x_1, ..., x_n) \equiv 0$
- Checking if a polynomial is identically zero has a large number of applications!

Graph Analysis

• Graphs can be represented via adjacency matrices

• The determinants of adjacency matrices (and other matrices) reveal information about the structural of the graph, e.g., whether the determinant is non-zero if and only if a bipartite graph has a perfect matching

• Determinants are polynomials!

Primality Checking

• The polynomial $P(z) \coloneqq (1+z)^n - 1 - z^n \pmod{n}$ is identically zero if and only if n is prime

- Determine whether a polynomial $P(x_1, ..., x_n) \equiv 0$
- Expanding the polynomial can be slow, but evaluating the polynomial at any value of x_1, \ldots, x_n is efficient

• What should we do?

- Algorithm: Randomly pick values $x_1 = r_1, ..., x_n = r_n$ and evaluate $P(r_1, ..., r_n)$.
 - If $P(r_1, ..., r_n) = 0$, return $P(x_1, ..., x_n) = 0$
 - If $P(r_1, \dots, r_n) \neq 0$, return $P(x_1, \dots, x_n) \neq 0$

- Algorithm: Randomly pick values $x_1 = r_1, ..., x_n = r_n$ and evaluate $P(r_1, ..., r_n)$.
 - If $P(r_1, ..., r_n) = 0$, return $P(x_1, ..., x_n) = 0$
 - If $P(r_1, \dots, r_n) \neq 0$, return $P(x_1, \dots, x_n) \neq 0$
- If $P(x_1, ..., x_n) = 0$, then the protocol succeeds
- If $P(x_1, ..., x_n) \neq 0$, what is the probability of $P(r_1, ..., r_n) \neq 0$?

- If $P(x_1, ..., x_n) = 0$, then the protocol succeeds
- If $P(x_1, \dots, x_n) \neq 0$, what is the probability of $P(r_1, \dots, r_n) \neq 0$?
- Suppose we choose *x_i* randomly from {1, ..., *S*}
- By Schwartz-Zippel, the probability that $P(r_1, ..., r_n) \neq 0$ is at least $1 \frac{d}{s} \ge 0.9$ for $S \ge 10d$

Questions?

Graph Theory

• Suppose we have a graph G with vertex set V and edge set E

• Let V = [n] for simplicity, so each vertex is an integer from 1 to n

- Then each edge $e \in E$ can be written as e = (u, v) for $u, v \in [n]$
- In other words, each edge is a pair of integers from 1 to n

Cuts

• A cut $C = S_1, S_2$ of a graph G is a partition of the vertices V into a set S_1 and the remaining vertices $S_2 = V - S_1$

• An edge (u, v) crosses the cut C if $u \in S_1$ and $v \in S_2$

• The size of the cut *C* is the number of edges that cross *C*

What is the size of the cut $C = S_1, S_2$?

What is the size of the cut $C = S_1, S_2$?

What is the size of the cut $C = S_1, S_2$?

Minimum Cut

• The minimum cut of a graph is the size of the smallest cut across all pairs of sets of vertices S_1 and $S_2 = V - S_1$

• Find the minimum cut of a graph *G*

What is the minimum cut of the graph?

What is the minimum cut of the graph?

- 1. Start with original graph and iteratively reduce the number of vertices via a series of edge contractions
- 2. In each step, choose a random edge and merge the two endpoints of that edge into a single vertex, preserving edges (allow multi-edges but not self-loops)
- 3. Iterate until there are only two vertices u_1 and u_2 left
- 4. Return the vertices merged into u_1 as one set
- 5. Return the vertices merged into u_2 as the other set

Return S_1 , S_2

- Intuition: Suppose the graph is disconnected. Then we will ALWAYS return the correct min-cut
- Now suppose the graph consists of two components connected by a single. Algorithm is successful as long as it avoids selecting the single edge that crosses the two components
- Why? As long as it avoids the single edge, each edge contraction will just shrink one of the two components
- There is a good chance we never contract the single edge

- Analysis: Fix a min-cut $C = S_1$, S_2 with size k
- Probability that we contract an edge of C is $\frac{k}{|E|}$, where |E| is the number of edges
- Since the min-cut is k, then each vertex must have degree at least k so $|E| \ge \frac{nk}{2}$
- The probability that we DO NOT contract an edge of C is at least $1 \frac{k}{(nk/2)} = \frac{n-2}{n}$

- After *i* steps, the number of vertices left is n i, so the probability that we DO NOT contract an edge of *C* is at least $\frac{n-i-2}{n-i}$
- Probability of success is at least:

$$\frac{n-2}{n} \times \frac{n-3}{n-1} \times \frac{n-4}{n-2} \times \dots \times \frac{1}{3} \ge \frac{2}{n(n-1)}$$

• Probability of success is at least $\frac{2}{n^2}$

• Will succeed with probability 0.99 if we repeat $O(n^2)$ times