CSCE 658: Randomized Algorithms

Lecture 20

Samson Zhou

Relevant Supplementary Material

 Chapter 1-3 of "The Algorithmic Foundations of Differential Privacy", by Cynthia Dwork and Aaron Roth (https://www.cis.upenn.edu/~aaroth/Papers/privacybook.pd f)

Last Time: Differential Privacy

• [DMNS06] Given $\varepsilon > 0$ and $\delta \in (0,1)$, a randomized algorithm $A: U^* \to Y$ is (ε, δ) -differentially private if, for every neighboring pair D and D' of datasets, and for all $E \subseteq Y$, $\Pr[A(D) \in E] \le e^{\varepsilon} \cdot \Pr[A(D') \in E] + \delta$

Last Time: Differential Privacy

• [DMNS06] Given $\varepsilon > 0$ and $\delta \in (0,1)$, a randomized algorithm $A: U^* \to Y$ is (ε, δ) -differentially private if, for every neighboring pair D and D' of datasets, and for all $E \subseteq Y$, $\Pr[A(D) \in E] \le e^{\varepsilon} \cdot \Pr[A(D') \in E] + \delta$

Last Time: Differential Privacy

• [DMNS06] Given $\varepsilon > 0$ and $\delta \in (0,1)$, a randomized algorithm $A: U^* \to Y$ is (ε, δ) -differentially private if, for every neighboring pair D and D' of datasets, and for all $E \subseteq Y$, $\Pr[A(D) \in E] \le e^{\varepsilon} \cdot \Pr[A(D') \in E] + \delta$

• Implication: Deterministic algorithms cannot be differentially private unless they are a constant function

Last Time: Local Differential Privacy (LDP)

• [KLNRS08] Given $\varepsilon > 0$ and $\delta \in (0,1)$, a randomized algorithm $A: U^* \to Y$ is (ε, δ) -differentially private if, for every pairs of users' possible data x and x' and for all $E \subseteq Y$, $\Pr[A(x) \in E] \leq e^{\varepsilon} \cdot \Pr[A(x') \in E] + \delta$

- Algorithm takes a single user's data
- Compared to previous definition of DP, where algorithm takes all users' data

• How many people in this class have a pet?

- Generate a random integer:
 - If it is even, answer truthfully
 - Otherwise, proceed below
- Generate another random integer:
 - If it is even, answer YES
 - Otherwise if it is odd, answer NO

•
$$\Pr[Y_i = X_i] = \frac{3}{4} \text{ and } \Pr[Y_i = 1 - X_i] = \frac{1}{4}$$

• $\operatorname{E}[Y_i] = \frac{3}{4} \cdot X_i + \frac{1}{4} \cdot (1 - X_i) = \frac{X_i}{2} + \frac{1}{4}$
• Let $Y = \frac{Y_1 + \dots + Y_n}{n}$ and $X = \frac{X_1 + \dots + X_n}{n}$

•
$$E[Y] = \frac{X}{2} + \frac{1}{4}$$

• Report $2\left(Y - \frac{1}{4}\right)$ for true fraction

- Answer is correct in expectation, but what is its variance?
- Each answer is incorrect with probability $\frac{1}{4}$
- The variance is O(n)

- Answer is correct in expectation, but what is its variance?
- Each answer is incorrect with probability $\frac{1}{4}$
- The variance is O(n)

- By Chebyshev, we have additive error $O(\sqrt{n})$ with probability 0.99
- By anti-concentration, error is $\Omega(\sqrt{n})$

Proving Differential Privacy

- For pure DP, we want to show that for all for all E, $\Pr[A(D) \in E] \leq e^{\varepsilon} \cdot \Pr[A(D') \in E]$
- We have $\Pr[A(D) \in E] = \sum_{Z \in E} \Pr[A(D) = Z]$
- It suffices to show that for all Z in the support of E, $\Pr[A(D) = Z] \le e^{\varepsilon} \cdot \Pr[A(D') = Z]$

Differential Privacy Properties

• What properties would we like from a rigorous definition of privacy?

Post-processing of Differential Privacy

- Ability to handle post-processing
 - If mechanism A has privacy loss ε and we release g(A(D)), then we have privacy loss ε

Post-processing of Differential Privacy

- For a fixed W, want to show $\Pr[g(A(D)) = W] \le e^{\varepsilon} \cdot \Pr[g(A(D')) = W]$
- Suppose mechanism A has privacy loss E
- Consider all possible Z such that $g(Z) \rightarrow W$ (under some randomness)
- Then for neighboring datasets D and D', we have $\Pr[A(D) = Z] \le e^{\varepsilon} \cdot \Pr[A(D') = Z]$ for all Z

Composition of Differential Privacy

- Ability to compose multiple private mechanisms
- Privacy loss measure ε accumulates across multiple computations and datasets
 - If mechanism M_1 has privacy loss ε_1 and mechanism M_2 has privacy loss ε_2 , then releasing the results of both M_1 and M_2 has privacy loss $\varepsilon_1 + \varepsilon_2$

Composition of Differential Privacy

- Let $g(\cdot, \cdot)$ be a composition function
- Suppose g(X, Y) = Z, so that $g(M_1(D), M_2(D)) = Z$ if $M_1(D) = X$ and $M_2(D) = Y$
- What is $\Pr[g(M_1(D) = X]]$? What is $\Pr[M_2(D) = Y]$?
- What is $\Pr[g(M_1(D') = X]]$? What is $\Pr[M_2(D') = Y]$?

Composition of Differential Privacy

• We have:

$$\frac{\Pr[g(M_1(D) = X] \cdot \Pr[M_2(D) = Y]]}{\Pr[g(M_1(D') = X] \cdot \Pr[M_2(D') = Y]]} \le e^{\varepsilon_1} \cdot e^{\varepsilon_2}$$

• So:

 $\Pr[g(M_1(D), M_2(D)) = Z] \le e^{\varepsilon_1 + \varepsilon_2} \cdot \Pr[g(M_1(D), M_2(D)) = Z]$

Basic Composition of Differential Privacy

• If mechanisms $M_1, ..., M_k$ are $(\varepsilon_1, \delta_1), ..., (\varepsilon_k, \delta_k)$ -DP, then for any function g, then the composition mechanism $g(M_1, ..., M_k)$ is $(\varepsilon_1 + \cdots + \varepsilon_k, \delta_1 + \cdots + \delta_k)$ -DP

Differential Privacy Properties

- Ability to handle post-processing
 - If mechanism A has privacy loss ε and we release g(A(D)), then we have privacy loss ε
- Privacy loss measure *ɛ* accumulates across multiple computations and datasets
 - If mechanisms $M_1, ..., M_k$ are $(\varepsilon_1, \delta_1), ..., (\varepsilon_k, \delta_k)$ -DP, then for any function g, then the composition mechanism $g(M_1, ..., M_k)$ is $(\varepsilon_1 + \cdots + \varepsilon_k, \delta_1 + \cdots + \delta_k)$ -DP

Towards Differential Privacy

• Suppose everyone has an integer from [1, 10]

- How to privately compute the max of the integers?
- How to privately compute the sum of the integers?
- How to privately release a histogram of the integers?

Privacy and Noise

- Goal: release private approximation to f(x)
- Intuition: f(x) can be released accurately if the function f is not sensitive to changes by any of the individuals $x = x_1, \dots, x_n$

• Sensitivity:
$$\sigma_f = \max_{\text{neighbors } x, x'} \|f(x) - f(x')\|_1$$

Sensitivity

- Sensitivity: $\sigma_f = \max_{\text{neighbors } x, x'} \|f(x) f(x')\|_1$
- Suppose a study is conducted that measures the height of individuals, ranging from 1 to 300 centimeters

- What is the sensitivity of the maximum height query?
- What is the sensitivity of the average height query?

- Goal: Algorithm computes f(x) and releases f(x) + Z, where $Z \sim$ $Lap\left(\frac{\sigma_f}{\varepsilon}\right)$
- Laplacian distribution: Probability density function for Lap(b) is $p(x) = \frac{1}{2b} \exp\left(-\frac{|x|}{b}\right) = \frac{1}{2b} e^{\left(-\frac{|x|}{b}\right)}$

• What does the Laplace mechanism do in the following cases?

• Suppose a study is conducted that measures the height of individuals, ranging from 1 to 300 centimeters

- What is the sensitivity of the maximum height query?
- What is the sensitivity of the average height query?

• Theorem: Laplace mechanism is *e*-differentially private (pure DP)

Suppose the "answer" for dataset D is z and the "answer" for dataset D is z'

• Let
$$y = z + \operatorname{Lap}\left(\frac{\sigma_f}{\varepsilon}\right)$$
 and let $y' = z' + \operatorname{Lap}\left(\frac{\sigma_f}{\varepsilon}\right)$

• Want to show that for any fixed x, $\Pr[y = x] \le e^{\varepsilon} \cdot \Pr[y' = x]$

- Want to show that for any fixed x, $\frac{\Pr[y=x]}{\Pr[y'=x]} \le e^{\varepsilon}$
- Let Z be a draw from a Laplace distribution
- $\Pr[y = x] = \Pr[Z = x z]$
- $\Pr[y' = x] = \Pr[Z = x z']$

•
$$\Pr[y = x] = \Pr[Z = x - z]$$

• $\Pr[y' = x] = \Pr[Z = x - z']$
• $p(x) = \frac{\varepsilon}{2\sigma_f} \exp\left(-\frac{\varepsilon|x|}{\sigma_f}\right) = \frac{\varepsilon}{2\sigma_f} e^{\left(-\frac{\varepsilon|x|}{\sigma_f}\right)}$ for a Laplace distribution with scale parameter $\frac{\sigma_f}{\sigma_f}$
• $\frac{\Pr[Z=x-z]}{\Pr[Z=x-z']} = e^{\left(-\frac{\varepsilon|x-z|}{\sigma_f}\right)} / e^{\left(-\frac{\varepsilon|x-z'|}{\sigma_f}\right)^{\varepsilon}} \le e^{\left(-\frac{\varepsilon|z-z'|}{\sigma_f}\right)}$

Differential Privacy from Laplace Mechanism

• Suppose everyone has an integer from [1, 10]

- How to privately compute the max of the integers?
- How to privately compute the sum of the integers?
- How to privately release a histogram of the integers?

Laplace Mechanism for Vectors

- Given a function $f: U \to \mathbb{R}^n$, the Laplace mechanism is defined by f(D) + v, where each entry of v is drawn from $Lap\left(\frac{\sigma_f}{\varepsilon}\right)$
- Theorem: Laplace mechanism is *e*-differentially private (pure DP)
- Proof follows by generalizing the previous proof, decomposing along the coordinates