CSCE 658: Randomized Algorithms

Lecture 22

Samson Zhou

Relevant Supplementary Material

 Chapter 3-4 of "The Algorithmic Foundations of Differential Privacy", by Cynthia Dwork and Aaron Roth (https://www.cis.upenn.edu/~aaroth/Papers/privacybook.pd f)

Previously: Differential Privacy

• [DMNS06] Given $\varepsilon > 0$ and $\delta \in (0,1)$, a randomized algorithm $A: U^* \to Y$ is (ε, δ) -differentially private if, for every neighboring pair D and D' of datasets, and for all $E \subseteq Y$, $\Pr[A(D) \in E] \le e^{\varepsilon} \cdot \Pr[A(D') \in E] + \delta$

Previously: Laplace Mechanism

- Output: Algorithm computes f(x) and releases f(x) + Z, where $Z \sim$ $Lap\left(\frac{\sigma_f}{\varepsilon}\right)$
- Laplacian distribution: Probability density function for Lap(b) is $p(x) = \frac{1}{2b} \exp\left(-\frac{|x|}{b}\right) = \frac{1}{2b} e^{\left(-\frac{|x|}{b}\right)}$

Previously: Exponential Mechanism

• Choose a score function $S: (X^n, Y) \rightarrow \mathbb{R}$ and global sensitivity σ

• Sample $y \in Y$ with probability proportional to $\exp\left(\frac{\varepsilon}{2\sigma}S(x,y)\right)$

Mechanisms: Exponential vs. Laplace

- Laplace mechanism: Output y = z + x with probability proportional to $\frac{\varepsilon}{2\sigma_f} e^{\left(-\frac{\varepsilon|x|}{\sigma_f}\right)}$
- Exponential mechanism: Output y = z + x with probability proportional to $e^{\left(-\frac{\varepsilon|x|}{\sigma_f}\right)}$
- Recovers the Laplace mechanism!

Exponential Mechanism Drawbacks

• Sampling process may be inefficient

• Error can be large

Counting Queries

- How many people in this class have pets?
- How many people in this class were at Kyle Field last weekend?

- Suppose we have a set *Q* of *q* queries on a database *D*
- How do we privately answer the queries?

- Let **D** be a database for **d** features on **n** users
- Let $f \in \mathbb{R}^d$ be the corresponding frequency vector, so that $|f_i| \le n$ for all $i \in [d]$
- A linear query is $\ell(f) = \frac{1}{n} \sum_{i=1}^{d} a_i f_i = \frac{1}{n} (a_1 f_1 + \dots + a_d f_d)$
- Suppose we have a set Q of q queries on a database D
- How do we privately answer the queries?

Counting Queries

- How many people in this class have pets?
- How many people in this class besides the instructor have pets?

 Intuition: we do not need to use additional privacy budget to answer the second query

- Let **D** be a database for **d** features on **n** users
- A linear query is $\ell(f) = \frac{1}{n} \sum_{i=1}^{d} a_i f_i = \frac{1}{n} (a_1 f_1 + \dots + a_d f_d)$
- Suppose we have a set Q of q queries on a database D

• How might we answer the queries *non-privately*, say with target additive error α ?

- A linear query is $\ell(f) = \frac{1}{n} \sum_{i=1}^{d} a_i f_i = \frac{1}{n} (a_1 f_1 + \dots + a_d f_d)$
- Let's normalize, so that $a_i, f_i \in [0,1]$ for all $i \in [d]$
- Suppose we have a set Q of q queries on a database D
- How might we answer the queries *non-privately*, say with target additive error α ?

• Suppose we sample $O\left(\frac{1}{\alpha^2}\right)$ items of the database D into a database \widetilde{D} and answer $\ell(\widetilde{f}) = \frac{1}{|D'|} \sum_{i=1}^d a_i \widetilde{f_i}$, where \widetilde{f} is the frequency vector for \widetilde{D}

• Suppose we sample $O\left(\frac{1}{\alpha^2}\right)$ items of the database D into a database \widetilde{D} and answer $\ell(\widetilde{f}) = \frac{1}{|D'|} \sum_{i=1}^{d} a_i \widetilde{f}_i$, where \widetilde{f} is the frequency vector for \widetilde{D}

• We have $E[\ell(\tilde{f})] = \ell(f)$

Additive Chernoff Bound

• Additive Chernoff bound: Let $X_1, ..., X_n \in [0,1]$ be independent random variables and let $X = X_1 + \cdots + X_n$ have expected value μ . Then for any $t \ge 0$:

$$\Pr[|X - \mu| \ge t] \le 2e^{-2nt^2}$$

• Suppose we sample $O\left(\frac{1}{\alpha^2}\right)$ items of the database D into a database \widetilde{D} and answer $\ell(\widetilde{f}) = \frac{1}{|D'|} \sum_{i=1}^{d} a_i \widetilde{f}_i$, where \widetilde{f} is the frequency vector for \widetilde{D}

• We have $E[\ell(\tilde{f})] = \ell(f)$ and thus by additive Chernoff bound, $|\ell(\tilde{f}) - \ell(f)| < \alpha$ with probability 0.99

• This gives correctness for a single query

• How to handle a set *Q* of *q* queries?

• Sample
$$O\left(\frac{\log q}{\alpha^2}\right)$$
 items of the database and do median-of-means

SmallDB Algorithm

- Let V be the set of vectors v with $\|v\|_1 = O\left(\frac{\log q}{\sigma^2}\right)$
- Define $S(f, v) = -\max_{\ell \in Q} |\ell(f) \ell(v)|$
- Sample and output $v \in V$ with the exponential mechanism with score function S(f, v)

SmallDB Summary

• The SmallDB mechanism is $(\varepsilon, 0)$ -differentially private

 For the vector v output by the SmallDB algorithm (if f is sufficiently "large"), we have

 $\max_{\ell \in Q} |\ell(f) - \ell(v)| \le \alpha$

• Example of synthetic dataset

Approximate DP

• [DMNS06] Given $\varepsilon > 0$ and $\delta \in (0,1)$, a randomized algorithm $A: U^* \to Y$ is (ε, δ) -differentially private if, for every neighboring pair D and D' of datasets, and for all $E \subseteq Y$, $\Pr[A(D) \in E] \le e^{\varepsilon} \cdot \Pr[A(D') \in E] + \delta$

Approximate DP

• δ denotes is an additive term between two probability distributions

• Interpretation: Outside of probability δ , the algorithm must satisfy Pure DP

• Rephrasing: Privacy may fail with probability δ

Approximate DP

• Can enable better utility

- Gaussian mechanism: Algorithm computes f(x) and releases f(x) + Z, where $Z \sim \mathcal{N}\left(\frac{\sigma_f^2}{\varepsilon}\right)$, where σ_f is the L_2 sensitivity of f $\sigma_f = \max_{\text{neighbors } x, x'} \|f(x) - f(x')\|_2$
- Can result in smaller error, but only approximate DP

Laplace Mechanism

- Output: Algorithm computes f(x) and releases f(x) + Z, where $Z \sim$ $Lap\left(\frac{\sigma_f}{\varepsilon}\right)$
- Laplacian distribution: Probability density function for Lap(b) is $p(x) = \frac{1}{2b} \exp\left(-\frac{|x|}{b}\right) = \frac{1}{2b} e^{\left(-\frac{|x|}{b}\right)}$

Catastrophic Mechanism

• Output: Algorithm computes f(x)

- With probability δ , release f(x)
- With probability 1δ , release f(x) + Z, where $Z \sim \text{Lap}\left(\frac{\sigma_f}{c}\right)$

Catastrophic Mechanism

- Catastrophic mechanism is (ε, δ) -DP
- Can release the entire dataset in the clear!

• Fortunately, most (ε, δ) -DP mechanisms do not fail catastrophically

 Concentration inequalities when the random variables are not independent

• Azuma, Doob, etc.

Semester Review: Why Randomized Algorithms?

Polynomial identity testing

• Karger's min-cut algorithm

Semester Review: Why Randomized Algorithms?

 Relevant study material: Randomized Algorithms and Probabilistic Analysis, by Greg Valiant (<u>http://web.stanford.edu/class/cs265/</u>)

• Relevant study material: Chapter 1, Randomized Algorithms, by Rajeev Motwani and Prabhakar Raghavan

Semester Review: Probability Unit

• Basic probability (conditional probability, joint probability)

• Expectation, variance, moments

• Concentration inequalities (Markov, Chebyshev, exponential tail bounds, e.g., Chernoff, Bernstein)

Trivia Question #1 (Birthday Paradox)

- Suppose we have a fair *n*-sided die. How many times should we roll the die before the probability we see a repeated outcome among the rolls is at least $\frac{1}{2}$? Example: 1, 5, 2, 4, 5
- $\Theta(1)$
- $\Theta(\log n)$
- $\Theta(\sqrt{n})$
- **Θ**(*n*)

Trivia Question #3 (Max Load)

- Suppose we have a fair *n*-sided die that we roll *n* times. "On average", what is the largest number of times any outcome is rolled? Example: 1, 5, 2, 4, 1, 3, 1 for *n* = 7
- $\Theta(1)$
- $\widetilde{\Theta}(\log n)$
- $\widetilde{\Theta}(\sqrt{n})$
- $\widetilde{\Theta}(n)$

Trivia Question #4 (Coupon Collector)

- Suppose we have a fair *n*-sided die. "On average", how many times should we roll the die before we see all possible outcomes among the rolls? Example: 1, 5, 2, 4, 1, 3, 1, 6 for *n* = 6
- **Θ**(*n*)
- $\Theta(n \log n)$
- $\Theta(n\sqrt{n})$
- $\Theta(n^2)$

Semester Review: Probability Unit

 Relevant study material: Randomized Algorithms and Probabilistic Analysis, by Greg Valiant (<u>http://web.stanford.edu/class/cs265/</u>)

• Relevant study material: Chapters 3-4, Randomized Algorithms, by Rajeev Motwani and Prabhakar Raghavan

Semester Review: Big Data Unit

- Dimensionality reduction (Johnson-Lindenstrauss, coresets)
- Streaming algorithms (insertion, insertion-deletion)
 - Reservoir Sampling
 - Heavy-Hitters (Misra-Gries, CountMin, CountSketch)
 - Norm estimation (AMS)
 - Information theory, lower bounds
 - Clustering

Semester Review: Big Data Unit

 Relevant study material: Data Stream Algorithms, by Amit Chakrabarti (https://www.cs.dartmouth.edu/~ac/Teach/CS35-Fall23/)

• Relevant study material: Chapters 3-4, Data Streams: Algorithms and Applications, by S. Muthukrishnan

Semester Review: Probabilistic Method

- Suppose we want to argue the existence of a certain desirable object
- Existential argument, non-constructive
- If there is an algorithm that can find it, it must exist!
- A random variable cannot always be less than its expected value
- A random variable cannot always be more than its expected value

Semester Review: Probabilistic Method

• Relevant study material: Chapter 5, Randomized Algorithms, by Rajeev Motwani and Prabhakar Raghavan

Semester Review: LLL

• Approach to argue the existence of something that satisfies a large number of constraints

• Probabilistic method (existence, not constructive)

Semester Review: LLL

• Relevant study material: Chapter 5, Randomized Algorithms, by Rajeev Motwani and Prabhakar Raghavan

Semester Review: Linear Programming

• Formulating LPs

• Duality

• Integer linear programs and rounding

Semester Review: Linear Programming

 Chapter 29 in "Introduction to Algorithms", by Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein

• Chapters 5.1-5.5 in "The Design of Approximation Algorithms", by David P. Williamson and David B. Shmoys

Semester Review: Online Learning

- Weighted majority
- Randomized weighted majority
- Multiplicative weights

• Hedge

Semester Review: Online Learning

 Lecture 13 of "Advanced Algorithms" Course Notes (http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15 850-f20/www/notes/lec14.pdf), by Anupam Gupta

 Lecture 14 of "Advanced Algorithms" Course Notes (http://www.cs.cmu.edu/afs/cs.cmu.edu/academic/class/15 850-f20/www/notes/lec15.pdf), by Anupam Gupta

Semester Review: Differential Privacy

• Randomized response

• Basic properties of DP (composition, post-processing)

• Laplace mechanism

• Exponential mechanism

Semester Review: Differential Privacy

 Chapters 3-4 of "The Algorithmic Foundations of Differential Privacy", by Cynthia Dwork and Aaron Roth (https://www.cis.upenn.edu/~aaroth/Papers/privacybook.pd f)