CSCE 658: Randomized Algorithms

Lecture 23

Samson Zhou

Previously in the Streaming Model

- Reservoir sampling
- Heavy-hitters
- Misra-Gries
- CountMin
- CountSketch
- Moment estimation
- AMS algorithm

Sparse Recovery

- Suppose we have an insertion-deletion stream of length $m=\Theta(n)$ and at the end we are promised there are at most k nonzero coordinates
- Goal: Recover the k nonzero coordinates and their frequencies

Applications of Sparse Recovery

- Anomaly detection: Noiseless sparse recovery can be used to identify anomalies or outliers in streaming data
- By modeling normal behavior as a sparse signal, deviations from this model can be detected in real-time. This is valuable for cybersecurity, fraud detection, and monitoring network traffic for unusual patterns.

Applications of Sparse Recovery

- Network traffic analysis: Noiseless sparse recovery can be applied to analyze network traffic in real-time, identifying patterns and trends, and helping in network management, intrusion detection, and quality of service (QoS) optimization

Applications of Sparse Recovery

- Real-time compressive imaging: Compressive imaging techniques can be applied to streaming video or image data. By capturing and processing fewer measurements, noiseless sparse recovery can provide real-time reconstruction of high-resolution images or videos.

"Deep Orthogonal Transform Feature for Image Denoising", Shin, et. al. [2020]

Applications of Sparse Recovery

- Online natural language processing (NLP): In real-time natural language processing tasks, noiseless sparse recovery can assist in extracting relevant features or patterns from streaming text data, making it useful for sentiment analysis, topic modeling, and summarization

Sparse Recovery

- Suppose we have an insertion-deletion stream of length $m=\Theta(n)$
- Suppose at the end we are promised there are at most k nonzero coordinates
- How do we recover the vector?

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate has frequency 1

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate has frequency 1
u_{1} : "Increase f_{6} "

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate has frequency 1
u_{2} : "Increase f_{5} "

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate has frequency 1

$$
u_{3}: \text { "Increase } f_{2} \text { " }
$$

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate has frequency 1

```
\(u_{4}\) : "Increase \(f_{7}\) "
```


Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate has frequency 1
u_{5} : "Increase $f_{3}{ }^{\prime \prime}$

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate has frequency 1

```
u6: "Increase f }\mp@subsup{f}{3}{}\mp@subsup{}{}{\prime
```


Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate has frequency 1

u_{7} : "Increase f_{2} "

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate has frequency 1

```
u8: "Increase f }\mp@subsup{f}{8}{\prime
```


Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate has frequency 1
u_{9} : "Decrease f_{3} "

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate has frequency 1

$$
u_{10} \text { : "Decrease } f_{5} \text { " }
$$

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate has frequency 1
u_{11} : "Increase $f_{1} "$

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate has frequency 1

u_{12} : "Increase f_{7} "

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate has frequency 1

u_{13} : "Decrease f_{6} "

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate has frequency 1

u_{14} : "Decrease f_{8} "

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate has frequency 1

u_{15} : "Decrease f_{1} "

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate has frequency 1

$$
u_{16}: \text { "Decrease } f_{7} "
$$

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate has frequency 1

u_{17} : "Decrease f_{3} "

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate has frequency 1

u_{18} : "Decrease $f_{2} "$

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate has frequency 1

$$
u_{19} \text { : "Decrease } f_{7} \text { " }
$$

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate has frequency 1
- What is left?

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate has frequency 1
- What is left?

$$
f_{2}=1
$$

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate has frequency 1
- Algorithm: Keep running sum of all the coordinates

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate has frequency 1
- Algorithm: Keep running sum of all the coordinates
- Write each insertion to coordinate $c_{i} \in[n]$ as $u_{i} \leftarrow\left(s_{i}=1, c_{i}\right)$
- Write each deletion to coordinate $c_{i} \in[n]$ as $u_{i} \leftarrow\left(s_{i}=-1, c_{i}\right)$

Sparse Recovery

- Suppose $k=1$ and we are promised the coordinate j has frequency 1
- Algorithm: Keep running sum of all the coordinates
- Write each insertion to coordinate $c_{i} \in[n]$ as $u_{i} \leftarrow\left(s_{i}=1, c_{i}\right)$
- Write each deletion to coordinate $c_{i} \in[n]$ as $u_{i} \leftarrow\left(s_{i}=-1, c_{i}\right)$
- Running sum of coordinates $\sum_{i \in[m]} s_{i} c_{i}=j$

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate j has frequency 1
- Algorithm: Keep running sum of all the coordinates?

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate j has frequency 1
- Algorithm: Keep running sum of all the coordinates AND a different linear combination of all the coordinates

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate j has frequency 1
- Algorithm: Keep running sum of all the coordinates AND a different linear combination of all the coordinates
- Keep $\sum_{i \in[m]} s_{i} c_{i}$ and $\sum_{i \in[m]} s_{i} c_{i}^{2}$

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate j has frequency 1
u_{1} : "Increase f_{6} "

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate j has frequency 1
u_{2} : "Increase f_{5} "

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate j has frequency 1

u_{3} : "Increase f_{2} "

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate j has frequency 1

u_{4} : "Increase f_{7} "

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate j has frequency 1
u_{5} : "Increase $f_{3}{ }^{\prime \prime}$

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate j has frequency 1
u_{6} : "Increase $f_{3}{ }^{\prime \prime}$

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate j has frequency 1

u_{7} : "Increase f_{2} "

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate j has frequency 1
u_{8} : "Increase $f_{8}{ }^{\prime \prime}$

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate j has frequency 1
u_{9} : "Decrease f_{3} "

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate j has frequency 1

u_{10} : "Decrease f_{5} "

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate j has frequency 1
u_{11} : "Increase $f_{1} "$

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate j has frequency 1

u_{12} : "Increase f_{7} "

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate j has frequency 1

u_{13} : "Decrease f_{6} "

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate j has frequency 1

u_{14} : "Decrease f_{8} "

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate j has frequency 1

u_{15} : "Decrease f_{1} "

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate j has frequency 1

$$
u_{16}: \text { "Decrease } f_{7} "
$$

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate j has frequency 1

u_{17} : "Decrease f_{3} "

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate j has frequency 1

u_{18} : "Decrease f_{7} "

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate j has frequency 1
- What is the state of our algorithm?

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate j has frequency 1
- What is the state of our algorithm?

$$
\sum_{i \in[m]} s_{i} c_{i}=4 \text { and } \sum_{i \in[m]} s_{i} c_{i}^{2}=8
$$

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate j has frequency 1
- What is the state of our algorithm?

$$
\sum_{i \in[m]} s_{i} c_{i}=4 \text { and } \sum_{i \in[m]} S_{i} c_{i}^{2}=8
$$

- We know $\sum_{i \in[m]} s_{i} c_{i}=j \cdot f_{j}$ and $\sum_{i \in[m]} s_{i} c_{i}^{2}=j^{2} \cdot f_{j}$

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate j has frequency 1
- What is the state of our algorithm?

$$
\sum_{i \in[m]} s_{i} c_{i}=4 \text { and } \sum_{i \in[m]} s_{i} c_{i}^{2}=8
$$

- We know $\sum_{i \in[m]} s_{i} c_{i}=j \cdot f_{j}$ and $\sum_{i \in[m]} s_{i} c_{i}^{2}=j \cdot f_{j}^{2}$
- So $f_{j}=2$ and $j=2$

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Suppose $k=1$ and we are promised the coordinate j has frequency 1
- What is the state of our algorithm?

$$
\sum_{i \in[m]} s_{i} c_{i}=4 \text { and } \sum_{i \in[m]} s_{i} c_{i}^{2}=8
$$

- We know $\sum_{i \in[m]} s_{i} c_{i}=j \cdot f_{j}$ and $\sum_{i \in[m]} s_{i} c_{i}^{2}=j \cdot f_{j}^{2}$
- So $f_{j}=2$ and $j=2$

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
0	2	0	0	0	0	0

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Algorithm for $k=1$: Keep running sum of all the coordinates AND a different linear combination of all the coordinates

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Algorithm: Keep $2 k$ running sum of different linear combinations of all the coordinates
- We have $2 k$ equations and $2 k$ unknown variables
- Correctness can be shown (not quite linear algebra)

Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Algorithm: Keep $2 k$ running sum of different linear combinations of all the coordinates
- Space: $O(k)$ words of space

Distinct Elements (F_{0} Estimation)

- Given a set S of m elements from [n], let f_{i} be the frequency of element i. (How often it appears)
- Let F_{0} be the frequency moment of the vector:

$$
F_{0}=\left|\left\{i: f_{i} \neq 0\right\}\right|
$$

- Goal: Given a set S of m elements from [n] and an accuracy parameter ε, output a $(1+\varepsilon)$-approximation to F_{0}

$$
\forall
$$

$$
2
$$

$$
0
$$

$$
\forall
$$

$$
0
$$

$$
0
$$

Distinct Elements (F_{0} Estimation)

- How many different fruits left in fruit basket?

Distinct Elements (F_{0} Estimation)

- How many different fruits left in fruit basket? 8

Distinct Elements (F_{0} Estimation)

- Ad allocation: Distinct IP addresses clicking an ad

Distinct Elements (F_{0} Estimation)

- Traffic monitoring: Distinct IP addresses visiting a site or number of unique search engine queries

Distinct Elements (F_{0} Estimation)

- Computational biology: Counting number of distinct motifs in DNA sequencing

- Sequence motifs are short, recurring patterns in DNA that are presumed to have a biological function

Distinct Elements (F_{0} Estimation)

- Let S be a set of N numbers
- Suppose we form set S^{\prime} by sampling each item of S with probability $\frac{1}{2}$
- How many numbers are in S^{\prime} ?

Distinct Elements (F_{0} Estimation)

- Let S be a set of N numbers
- Suppose we form set S^{\prime} by sampling each item of S with probability $\frac{1}{2}$
- Can we use S^{\prime} to get a good estimate of N ?

Distinct Elements (F_{0} Estimation)

- Let S be a set of N numbers, suppose we form set S^{\prime} by sampling each item of S with probability $\frac{1}{2}$
- We have $\mathrm{E}\left[\left|S^{\prime}\right|\right]=\frac{N}{2}$ and $\operatorname{Var}\left[\left|S^{\prime}\right|\right] \leq \frac{N}{2}$

Distinct Elements (F_{0} Estimation)

- What can we say about $\operatorname{Pr}\left[\left|\left|S^{\prime}\right|-\frac{N}{2}\right| \geq t\right]$?
- By Chebyshev's inequality, we have $\operatorname{Pr}\left[\left|\left|S^{\prime}\right|-\frac{N}{2}\right| \geq 100 \sqrt{N}\right] \leq \frac{1}{10}$

Distinct Elements (F_{0} Estimation)

- What can we say about $\operatorname{Pr}\left[\left|\left|S^{\prime}\right|-\frac{N}{2}\right| \geq t\right]$?
- By Chebyshev's inequality, we have $\operatorname{Pr}\left[\left|\left|S^{\prime}\right|-\frac{N}{2}\right| \geq 100 \sqrt{N}\right] \leq \frac{1}{10}$
- With probability at least $\frac{9}{10}$,

$$
\frac{N}{2}-100 \sqrt{N} \leq\left|S^{\prime}\right| \leq \frac{N}{2}+100 \sqrt{N}
$$

Distinct Elements (F_{0} Estimation)

- With probability at least $\frac{9}{10}$,

$$
\frac{N}{2}-100 \sqrt{N} \leq\left|S^{\prime}\right| \leq \frac{N}{2}+100 \sqrt{N}
$$

- Thus with probability at least $\frac{9}{10}$,

$$
N-200 \sqrt{N} \leq 2\left|S^{\prime}\right| \leq N+200 \sqrt{N}
$$

Distinct Elements (F_{0} Estimation)

- With probability at least $\frac{9}{10}$,

$$
N-200 \sqrt{N} \leq 2\left|S^{\prime}\right| \leq N+200 \sqrt{N}
$$

- If $200 \sqrt{N} \leq \frac{N}{100}$, then $N-200 \sqrt{N} \leq 2\left|S^{\prime}\right| \leq N+200 \sqrt{N}$ implies

$$
0.99 N \leq 2\left|S^{\prime}\right| \leq 1.01 N
$$

- Very good approximation to N

Distinct Elements (F_{0} Estimation)

- What algorithm does this suggest?

Distinct Elements (F_{0} Estimation)

- What algorithm does this suggest?
- Sample each item of the universe with probability $\frac{1}{2}$, acquire new universe U^{\prime}
- Let S^{\prime} be the items in the data stream that are in U^{\prime}
- Output $2\left|S^{\prime}\right|$

Distinct Elements (F_{0} Estimation)

- Sample each item of the universe with probability $\frac{1}{2}$, acquire new universe U^{\prime}
- Let S^{\prime} be the items in the data stream that are in U^{\prime}
- Output $2\left|S^{\prime}\right|$
- What's the problem with this approach?

Distinct Elements (F_{0} Estimation)

- Let S be a set of N numbers
- Suppose we form set S^{\prime} by sampling each item of S with probability $\frac{1}{2}$
- Can we use S^{\prime} to get a good estimate of N ?

Distinct Elements (F_{0} Estimation)

- Let S be a set of N numbers
- Suppose we form set S^{\prime} by sampling each item of S with probabilit P
- Can we use S^{\prime} to get a good estimate of N ?

Distinct Elements (F_{0} Estimation)

- Let S be a set of N numbers, suppose we form set S^{\prime} by sampling each item of S with probability $\frac{1}{2}$
- We have $\mathrm{E}\left[\left|S^{\prime}\right|\right]=\frac{N}{2}$ and $\operatorname{Var}\left[\left|S^{\prime}\right|\right] \leq \frac{N}{2}$

Distinct Elements (F_{0} Estimation)

- Let S be a set of N numbers, suppose we form set S^{\prime} by sampling each item of S with probability p
- We have $\mathrm{E}\left[\left|S^{\prime}\right|\right]=p N$ and $\operatorname{Var}\left[\left|S^{\prime}\right|\right] \leq p N$

Distinct Elements (F_{0} Estimation)

- (S^{\prime} is formed by sampling each item of S with probability $\frac{1}{2}$) With probability at least $\frac{9}{10}$,

$$
\frac{N}{2}-100 \sqrt{N} \leq\left|S^{\prime}\right| \leq \frac{N}{2}+100 \sqrt{N}
$$

- Thus with probability at least $\frac{9}{10}$,

$$
N-200 \sqrt{N} \leq 2\left|S^{\prime}\right| \leq N+200 \sqrt{N}
$$

Distinct Elements (F_{0} Estimation)

- $\left(S^{\prime}\right.$ is formed by sampling each item of S with probability $\left.p\right)$ With probability at least $\frac{9}{10}$,

$$
p N-100 \sqrt{p N} \leq\left|S^{\prime}\right| \leq p N+100 \sqrt{p N}
$$

- Thus with probability at least $\frac{9}{10}$,

$$
N-\frac{100}{\sqrt{p}} \sqrt{N} \leq \frac{1}{p}\left|S^{\prime}\right| \leq N+\frac{100}{\sqrt{p}} \sqrt{N}
$$

Distinct Elements (F_{0} Estimation)

- (S^{\prime} is formed by sampling each item of S with probability p) With probability at least $\frac{9}{10}$,

$$
N-\frac{100}{\sqrt{p}} \sqrt{N} \leq \frac{1}{p}\left|S^{\prime}\right| \leq N+\frac{100}{\sqrt{p}} \sqrt{N}
$$

- If $\frac{100}{\sqrt{p}} \sqrt{N} \leq \varepsilon N$, then $N-\frac{100}{\sqrt{p}} \sqrt{N} \leq \frac{1}{p}\left|S^{\prime}\right| \leq N+\frac{100}{\sqrt{p}} \sqrt{N}$ implies

$$
(1-\varepsilon) N \leq \frac{1}{p}\left|S^{\prime}\right| \leq(1+\varepsilon) N
$$

Distinct Elements (F_{0} Estimation)

- In other words, with probability at least $\frac{9}{10^{\prime}}$, we have that $\frac{1}{p}\left|S^{\prime}\right|$ is a $(1+\varepsilon)$-approximation of N
- What is p ?

Distinct Elements (F_{0} Estimation)

- In other words, with probability at least $\frac{9}{10}$, we have that $\frac{1}{p}\left|S^{\prime}\right|$ is a $(1+\varepsilon)$-approximation of N
- What is p ?
- Recall, we required $\frac{100}{\sqrt{p}} \sqrt{N} \leq \varepsilon N$

Distinct Elements (F_{0} Estimation)

- In other words, with probability at least $\frac{9}{10^{\prime}}$, we have that $\frac{1}{p}\left|S^{\prime}\right|$ is a $(1+\varepsilon)$-approximation of N
- What is p ?
- Recall, we required $\frac{100}{\sqrt{p}} \sqrt{N} \leq \varepsilon N$, so $p \geq \frac{1000}{\varepsilon^{2} N}$

Distinct Elements (F_{0} Estimation)

- In other words, with probability at least $\frac{9}{10^{\prime}}$, we have that $\frac{1}{p}\left|S^{\prime}\right|$ is a $(1+\varepsilon)$-approximation of N
- What is p ?
- Recall, we required $\frac{100}{\sqrt{p}} \sqrt{N} \leq \varepsilon N$, so $p \geq \frac{1000}{\varepsilon^{2} N}$
- What is the problem here?

Distinct Elements (F_{0} Estimation)

- In other words, with probability at least $\frac{9}{10}$, we have that $\frac{1}{p}\left|S^{\prime}\right|$ is a $(1+\varepsilon)$-approximation of N
- What is p ?
- Recall, we required $\frac{100}{\sqrt{p}} \sqrt{N} \leq \varepsilon N$, so $p \geq \frac{1000}{\varepsilon^{2} N}$

Must know N to set p, but the goal is to find N !
-What is the problem here?

Distinct Elements (F_{0} Estimation)

- Observation: We do not need $p=\frac{1000}{\varepsilon^{2} N}$, it is also fine to have $p=\frac{2000}{\varepsilon^{2} N}$
- How do we find a "good" p ?

Finding p

- Observation: We do not need $p=\frac{1000}{\varepsilon^{2} N}$, it is also fine to have $p=\frac{2000}{\varepsilon^{2} N}$
- How do we find a "good" p ?
- What is a "good" p ?

Finding p

- What is a "good" p ?
- Not too many samples, i.e., S^{\prime} is small, but enough to find a good approximation to N
- For $p=\Theta\left(\frac{1}{\varepsilon^{2} N}\right)$:
- p is large enough to find a good approximation to N
- We have $\mathrm{E}\left[\left|S^{\prime}\right|\right]=p N=\Theta\left(\frac{1}{\varepsilon^{2}}\right)$

Finding p

- We want p such that $\mathrm{E}\left[\left|S^{\prime}\right|\right]=p N=\Theta\left(\frac{1}{\varepsilon^{2}}\right)$
- Intuition: $\operatorname{Try} p=1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots$, and see which one has

$$
\frac{1000}{\varepsilon^{2}} \leq\left|S^{\prime}\right| \leq \frac{2000}{\varepsilon^{2}}
$$

- With high probability, one of these guesses will have $\frac{1000}{\varepsilon^{2}} \leq\left|S^{\prime}\right| \leq$ $\frac{2000}{\varepsilon^{2}}$

Finding p

- Intuition: $\operatorname{Try} p=1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots$, and see which one has

$$
\frac{1000}{\varepsilon^{2}} \leq\left|S^{\prime}\right| \leq \frac{2000}{\varepsilon^{2}}
$$

- However, the wrong guesses will have too many samples

Finding p

- Intuition: $\operatorname{Try} p=1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots$, and see which one has

$$
\frac{1000}{\varepsilon^{2}} \leq\left|S^{\prime}\right| \leq \frac{2000}{\varepsilon^{2}}
$$

- However, the wrong guesses will have too many samples
- Fix: Dynamically changing guess for p and subsampling

Finding p

- Algorithm: Set $U_{0}=[n]$ and for each i, sample each element of U_{i-1} into U_{i} with probability $\frac{1}{2}$
- Start index $i=0$ and track the number $\left|S \cap U_{i}\right|$ of elements of S in U_{i}
- If $\left|S \cap U_{i}\right|>\frac{2000}{\varepsilon^{2}} \log n$, then increment $i=i+1$
- At the end of the stream, output $2^{i} \cdot\left|S \cap U_{i}\right|$

Finding p

- Algorithm: Set $U_{0}=[n]$ and for each i, sample each element of U_{i-1} into U_{i} with probability $\frac{1}{2}$
- Start index $i=0$ and track the number $\left|S \cap U_{i}\right|$ of elements of S in U_{i}
- If $\left|S \cap U_{i}\right|>\frac{2000}{\varepsilon^{2}} \log n$, then increment $i=i+1\left(\frac{1}{p}\right)$
- At the end of the stream, output $2^{i} \cdot\left|S \cap U_{i}\right|$

Finding p

- Recall that $\frac{1}{p}\left|S^{\prime}\right|$ is a $(1+\varepsilon)$-approximation of N
- $2^{i} \cdot\left|S \cap U_{i}\right|$ is a $(1+\varepsilon)$-approximation of N
- At the end of the stream, output $2^{i} \cdot\left|S \cap U_{i}\right|$

Distinct Elements (F_{0} Estimation)

- Summary: Algorithm stores at most $\frac{2000}{\varepsilon^{2}} \log n$ elements from the stream, uses $\Theta\left(\frac{1}{\varepsilon^{2}} \log n\right)$ words of space

