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Previously in the Streaming Model

• Reservoir sampling

• Heavy-hitters

• Misra-Gries

• CountMin

• CountSketch

• Moment estimation

• AMS algorithm



Sparse Recovery

• Suppose we have an insertion-deletion stream of length 𝑚 = Θ 𝑛  
and at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Goal: Recover the 𝑘 nonzero coordinates and their frequencies



Applications of Sparse Recovery

• Anomaly detection: Noiseless sparse recovery can be used to 
identify anomalies or outliers in streaming data

• By modeling normal behavior as a sparse signal, deviations from 
this model can be detected in real-time. This is valuable for 
cybersecurity, fraud detection, and monitoring network traffic for 
unusual patterns.



Applications of Sparse Recovery

• Network traffic analysis: Noiseless sparse recovery can be applied to 
analyze network traffic in real-time, identifying patterns and trends, 
and helping in network management, intrusion detection, and 
quality of service (QoS) optimization



Applications of Sparse Recovery

• Real-time compressive imaging: Compressive imaging techniques 
can be applied to streaming video or image data. By capturing and 
processing fewer measurements, noiseless sparse recovery can 
provide real-time reconstruction of high-resolution images or 
videos.



“Deep Orthogonal Transform 
Feature for Image Denoising”, 
Shin, et. al. [2020]



Applications of Sparse Recovery

• Online natural language processing (NLP): In real-time natural 
language processing tasks, noiseless sparse recovery can assist in 
extracting relevant features or patterns from streaming text data, 
making it useful for sentiment analysis, topic modeling, and 
summarization



Sparse Recovery

• Suppose we have an insertion-deletion stream of length 𝑚 = Θ 𝑛

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• How do we recover the vector?



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate has frequency 1



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate has frequency 1

𝑢1: “Increase 𝑓6”



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate has frequency 1

𝑢2: “Increase 𝑓5”



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate has frequency 1

𝑢3: “Increase 𝑓2”



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate has frequency 1

𝑢4: “Increase 𝑓7”



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate has frequency 1

𝑢5: “Increase 𝑓3”



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate has frequency 1

𝑢6: “Increase 𝑓3”



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate has frequency 1

𝑢7: “Increase 𝑓2”



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate has frequency 1

𝑢8: “Increase 𝑓8”



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate has frequency 1

𝑢9: “Decrease 𝑓3”



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate has frequency 1

𝑢10: “Decrease 𝑓5”



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate has frequency 1

𝑢11: “Increase 𝑓1”



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate has frequency 1

𝑢12: “Increase 𝑓7”



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate has frequency 1

𝑢13: “Decrease 𝑓6”



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate has frequency 1

𝑢14: “Decrease 𝑓8”



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate has frequency 1

𝑢15: “Decrease 𝑓1”



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate has frequency 1

𝑢16: “Decrease 𝑓7”



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate has frequency 1

𝑢17: “Decrease 𝑓3”



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate has frequency 1

𝑢18: “Decrease 𝑓2”



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate has frequency 1

𝑢19: “Decrease 𝑓7”



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate has frequency 1

• What is left?



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate has frequency 1

• What is left?

𝑓2 = 1



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate has frequency 1

• Algorithm: Keep running sum of all the coordinates



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate has frequency 1

• Algorithm: Keep running sum of all the coordinates

• Write each insertion to coordinate 𝑐𝑖 ∈ [𝑛] as 𝑢𝑖 ← 𝑠𝑖 = 1, 𝑐𝑖

• Write each deletion to coordinate 𝑐𝑖 ∈ [𝑛] as 𝑢𝑖 ← 𝑠𝑖 = −1, 𝑐𝑖



Sparse Recovery

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

• Algorithm: Keep running sum of all the coordinates

• Write each insertion to coordinate 𝑐𝑖 ∈ [𝑛] as 𝑢𝑖 ← 𝑠𝑖 = 1, 𝑐𝑖

• Write each deletion to coordinate 𝑐𝑖 ∈ [𝑛] as 𝑢𝑖 ← 𝑠𝑖 = −1, 𝑐𝑖

• Running sum of coordinates σ𝑖∈[𝑚] 𝑠𝑖𝑐𝑖 = 𝑗



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

• Algorithm: Keep running sum of all the coordinates?



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

• Algorithm: Keep running sum of all the coordinates AND a different 
linear combination of all the coordinates



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

• Algorithm: Keep running sum of all the coordinates AND a different 
linear combination of all the coordinates

• Keep σ𝑖∈[𝑚] 𝑠𝑖𝑐𝑖 and σ𝑖∈[𝑚] 𝑠𝑖𝑐𝑖
2



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

𝑢1: “Increase 𝑓6”



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

𝑢2: “Increase 𝑓5”



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

𝑢3: “Increase 𝑓2”



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

𝑢4: “Increase 𝑓7”



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

𝑢5: “Increase 𝑓3”



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

𝑢6: “Increase 𝑓3”



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

𝑢7: “Increase 𝑓2”



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

𝑢8: “Increase 𝑓8”



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

𝑢9: “Decrease 𝑓3”



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

𝑢10: “Decrease 𝑓5”



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

𝑢11: “Increase 𝑓1”



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

𝑢12: “Increase 𝑓7”



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

𝑢13: “Decrease 𝑓6”



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

𝑢14: “Decrease 𝑓8”



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

𝑢15: “Decrease 𝑓1”



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

𝑢16: “Decrease 𝑓7”



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

𝑢17: “Decrease 𝑓3”



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

𝑢18: “Decrease 𝑓7”



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

• What is the state of our algorithm?



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

• What is the state of our algorithm?

σ𝑖∈[𝑚] 𝑠𝑖𝑐𝑖 = 4 and σ𝑖∈[𝑚] 𝑠𝑖𝑐𝑖
2 = 8



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

• What is the state of our algorithm?

• We know σ𝑖∈[𝑚] 𝑠𝑖𝑐𝑖 = 𝑗 ⋅ 𝑓𝑗  and σ𝑖∈[𝑚] 𝑠𝑖𝑐𝑖
2 = 𝑗2 ⋅ 𝑓𝑗

σ𝑖∈[𝑚] 𝑠𝑖𝑐𝑖 = 4 and σ𝑖∈[𝑚] 𝑠𝑖𝑐𝑖
2 = 8



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

• What is the state of our algorithm?

• We know σ𝑖∈[𝑚] 𝑠𝑖𝑐𝑖 = 𝑗 ⋅ 𝑓𝑗  and σ𝑖∈[𝑚] 𝑠𝑖𝑐𝑖
2 = 𝑗 ⋅ 𝑓𝑗

2

• So 𝑓𝑗 = 2 and 𝑗 = 2 

σ𝑖∈[𝑚] 𝑠𝑖𝑐𝑖 = 4 and σ𝑖∈[𝑚] 𝑠𝑖𝑐𝑖
2 = 8



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

• What is the state of our algorithm?

• We know σ𝑖∈[𝑚] 𝑠𝑖𝑐𝑖 = 𝑗 ⋅ 𝑓𝑗  and σ𝑖∈[𝑚] 𝑠𝑖𝑐𝑖
2 = 𝑗 ⋅ 𝑓𝑗

2

• So 𝑓𝑗 = 2 and 𝑗 = 2 

σ𝑖∈[𝑚] 𝑠𝑖𝑐𝑖 = 4 and σ𝑖∈[𝑚] 𝑠𝑖𝑐𝑖
2 = 8

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7 

0 2 0 0 0 0 0



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Algorithm for 𝑘 = 1: Keep running sum of all the coordinates AND a 
different linear combination of all the coordinates



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Algorithm: Keep 2𝑘 running sum of different linear combinations of 
all the coordinates

• We have 2𝑘 equations and 2𝑘 unknown variables

• Correctness can be shown (not quite linear algebra)



Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Algorithm: Keep 2𝑘 running sum of different linear combinations of 
all the coordinates

• Space: 𝑂(𝑘) words of space



Distinct Elements (𝐹0 Estimation)

• Given a set 𝑆 of 𝑚 elements from [𝑛], let 𝑓𝑖 be the frequency of 
element 𝑖. (How often it appears)

• Let 𝐹0 be the frequency moment of the vector:

• Goal: Given a set 𝑆 of 𝑚 elements from [𝑛] and an accuracy 
parameter 𝜀, output a (1 + 𝜀)-approximation to 𝐹0

𝐹0 = |{𝑖 ∶ 𝑓𝑖 ≠ 0}|











































Distinct Elements (𝐹0 Estimation)

• How many different fruits left in fruit basket?



Distinct Elements (𝐹0 Estimation)

• How many different fruits left in fruit basket? 8



Distinct Elements (𝐹0 Estimation)

• Ad allocation: Distinct IP addresses clicking an ad



Distinct Elements (𝐹0 Estimation)

• Traffic monitoring: Distinct IP addresses visiting a site or number of 
unique search engine queries

3 billion 
monthly 
active users



Distinct Elements (𝐹0 Estimation)

• Computational biology: Counting number of distinct motifs in DNA 
sequencing

• Sequence motifs are short, recurring patterns in DNA that are 
presumed to have a biological function



Distinct Elements (𝐹0 Estimation)

• Let 𝑆 be a set of 𝑁 numbers

• Suppose we form set 𝑆′ by sampling each item of 𝑆 with probability 
1

2
 

• How many numbers are in 𝑆′?



Distinct Elements (𝐹0 Estimation)

• Let 𝑆 be a set of 𝑁 numbers

• Suppose we form set 𝑆′ by sampling each item of 𝑆 with probability 
1

2
 

• Can we use 𝑆′ to get a good estimate of 𝑁?



Distinct Elements (𝐹0 Estimation)

• Let 𝑆 be a set of 𝑁 numbers, suppose we form set 𝑆′ by sampling 

each item of 𝑆 with probability 
1

2
 

• We have E |𝑆′| =
𝑁

2
 and Var |𝑆′| ≤

𝑁

2



Distinct Elements (𝐹0 Estimation)

• What can we say about Pr 𝑆′ −
𝑁

2
≥ 𝑡 ?

• By Chebyshev’s inequality, we have Pr 𝑆′ −
𝑁

2
≥ 100 𝑁 ≤

1

10



Distinct Elements (𝐹0 Estimation)

• What can we say about Pr 𝑆′ −
𝑁

2
≥ 𝑡 ?

• By Chebyshev’s inequality, we have Pr 𝑆′ −
𝑁

2
≥ 100 𝑁 ≤

1

10

• With probability at least 
9

10
, 

𝑁

2
− 100 𝑁 ≤ 𝑆′ ≤

𝑁

2
+ 100 𝑁



Distinct Elements (𝐹0 Estimation)

• With probability at least 
9

10
, 

• Thus with probability at least 
9

10
, 

𝑁

2
− 100 𝑁 ≤ 𝑆′ ≤

𝑁

2
+ 100 𝑁

𝑁 − 200 𝑁 ≤ 2 𝑆′ ≤ 𝑁 + 200 𝑁



Distinct Elements (𝐹0 Estimation)

• With probability at least 
9

10
, 

• If 200 𝑁 ≤
𝑁

100
, then 𝑁 − 200 𝑁 ≤ 2 𝑆′ ≤ 𝑁 + 200 𝑁 implies

• Very good approximation to 𝑁

𝑁 − 200 𝑁 ≤ 2 𝑆′ ≤ 𝑁 + 200 𝑁

0.99𝑁 ≤ 2 𝑆′ ≤ 1.01𝑁



Distinct Elements (𝐹0 Estimation)

• What algorithm does this suggest?



Distinct Elements (𝐹0 Estimation)

• What algorithm does this suggest?

• Sample each item of the universe with probability 
1

2
, acquire new 

universe 𝑈′ 

• Let 𝑆′ be the items in the data stream that are in 𝑈′

• Output 2|𝑆′|



Distinct Elements (𝐹0 Estimation)

• Sample each item of the universe with probability 
1

2
, acquire new 

universe 𝑈′ 

• Let 𝑆′ be the items in the data stream that are in 𝑈′

• Output 2|𝑆′|

• What’s the problem with this approach?



Distinct Elements (𝐹0 Estimation)

• Let 𝑆 be a set of 𝑁 numbers

• Suppose we form set 𝑆′ by sampling each item of 𝑆 with probability 
1

2
 

• Can we use 𝑆′ to get a good estimate of 𝑁?



Distinct Elements (𝐹0 Estimation)

• Let 𝑆 be a set of 𝑁 numbers

• Suppose we form set 𝑆′ by sampling each item of 𝑆 with probability 𝑝

• Can we use 𝑆′ to get a good estimate of 𝑁?



Distinct Elements (𝐹0 Estimation)

• Let 𝑆 be a set of 𝑁 numbers, suppose we form set 𝑆′ by sampling 

each item of 𝑆 with probability 
1

2
 

• We have E |𝑆′| =
𝑁

2
 and Var |𝑆′| ≤

𝑁

2



Distinct Elements (𝐹0 Estimation)

• Let 𝑆 be a set of 𝑁 numbers, suppose we form set 𝑆′ by sampling 
each item of 𝑆 with probability 𝑝

• We have E |𝑆′| = 𝑝𝑁 and Var |𝑆′| ≤ 𝑝𝑁



Distinct Elements (𝐹0 Estimation)

• (𝑆′ is formed by sampling each item of 𝑆 with probability 
1

2
 ) With 

probability at least 
9

10
, 

• Thus with probability at least 
9

10
, 

𝑁

2
− 100 𝑁 ≤ 𝑆′ ≤

𝑁

2
+ 100 𝑁

𝑁 − 200 𝑁 ≤ 2 𝑆′ ≤ 𝑁 + 200 𝑁



Distinct Elements (𝐹0 Estimation)

• (𝑆′ is formed by sampling each item of 𝑆 with probability 𝑝) With 

probability at least 
9

10
, 

• Thus with probability at least 
9

10
, 

𝑝𝑁 − 100 𝑝𝑁 ≤ 𝑆′ ≤ 𝑝𝑁 + 100 𝑝𝑁

𝑁 −
100

𝑝
𝑁 ≤

1

𝑝
𝑆′ ≤ 𝑁 +

100

𝑝
𝑁



Distinct Elements (𝐹0 Estimation)

• (𝑆′ is formed by sampling each item of 𝑆 with probability 𝑝) With 

probability at least 
9

10
, 

• If 
100

𝑝
𝑁 ≤ 𝜀𝑁, then 𝑁 −

100

𝑝
𝑁 ≤

1

𝑝
𝑆′ ≤ 𝑁 +

100

𝑝
𝑁 implies

𝑁 −
100

𝑝
𝑁 ≤

1

𝑝
𝑆′ ≤ 𝑁 +

100

𝑝
𝑁

1 − 𝜀 𝑁 ≤
1

𝑝
𝑆′ ≤ 1 + 𝜀 𝑁



Distinct Elements (𝐹0 Estimation)

• In other words, with probability at least 
9

10
, we have that 

1

𝑝
𝑆′  is a 

1 + 𝜀 -approximation of 𝑁

• What is 𝑝?



Distinct Elements (𝐹0 Estimation)

• In other words, with probability at least 
9

10
, we have that 

1

𝑝
𝑆′  is a 

1 + 𝜀 -approximation of 𝑁

• What is 𝑝?

• Recall, we required 
100

𝑝
𝑁 ≤ 𝜀𝑁



Distinct Elements (𝐹0 Estimation)

• In other words, with probability at least 
9

10
, we have that 

1

𝑝
𝑆′  is a 

1 + 𝜀 -approximation of 𝑁

• What is 𝑝?

• Recall, we required 
100

𝑝
𝑁 ≤ 𝜀𝑁, so 𝑝 ≥

1000

𝜀2𝑁



Distinct Elements (𝐹0 Estimation)

• In other words, with probability at least 
9

10
, we have that 

1

𝑝
𝑆′  is a 

1 + 𝜀 -approximation of 𝑁

• What is 𝑝?

• Recall, we required 
100

𝑝
𝑁 ≤ 𝜀𝑁, so 𝑝 ≥

1000

𝜀2𝑁

• What is the problem here?



Distinct Elements (𝐹0 Estimation)

• In other words, with probability at least 
9

10
, we have that 

1

𝑝
𝑆′  is a 

1 + 𝜀 -approximation of 𝑁

• What is 𝑝?

• Recall, we required 
100

𝑝
𝑁 ≤ 𝜀𝑁, so 𝑝 ≥

1000

𝜀2𝑁

• What is the problem here?

Must know 𝑁 to set 𝑝, 
but the goal is to find 𝑁!



Distinct Elements (𝐹0 Estimation)

• Observation: We do not need 𝑝 =
1000

𝜀2𝑁
, it is also fine to have 𝑝 =

2000

𝜀2𝑁

• How do we find a “good” 𝑝?



Finding 𝑝

• Observation: We do not need 𝑝 =
1000

𝜀2𝑁
, it is also fine to have 𝑝 =

2000

𝜀2𝑁

• How do we find a “good” 𝑝?

• What is a “good” 𝑝?



Finding 𝑝

• What is a “good” 𝑝?

• Not too many samples, i.e., 𝑆′ is small, but enough to find a good 
approximation to 𝑁

• For 𝑝 = Θ
1

𝜀2𝑁
:

• 𝑝 is large enough to find a good approximation to 𝑁

• We have E 𝑆′ = 𝑝𝑁 = Θ
1

𝜀2



Finding 𝑝

• We want 𝑝 such that E 𝑆′ = 𝑝𝑁 = Θ
1

𝜀2

• Intuition: Try 𝑝 = 1,
1

2
,

1

4
,

1

8
,

1

16
, … , and see which one has

• With high probability, one of these guesses will have 
1000

𝜀2 ≤ 𝑆′ ≤
2000

𝜀2

1000

𝜀2
≤ 𝑆′ ≤

2000

𝜀2



Finding 𝑝

• Intuition: Try 𝑝 = 1,
1

2
,

1

4
,

1

8
,

1

16
, … , and see which one has

• However, the wrong guesses will have too many samples

1000

𝜀2
≤ 𝑆′ ≤

2000

𝜀2



Finding 𝑝

• Intuition: Try 𝑝 = 1,
1

2
,

1

4
,

1

8
,

1

16
, … , and see which one has

• However, the wrong guesses will have too many samples

• Fix: Dynamically changing guess for 𝑝 and subsampling

1000

𝜀2
≤ 𝑆′ ≤

2000

𝜀2



Finding 𝑝

• Algorithm: Set 𝑈0 = [𝑛] and for each 𝑖, sample each element of 𝑈𝑖−1 

into 𝑈𝑖 with probability 
1

2

• Start index 𝑖 = 0 and track the number |𝑆 ∩ 𝑈𝑖| of elements of 𝑆 in 𝑈𝑖

• If 𝑆 ∩ 𝑈𝑖 >
2000

𝜀2 log 𝑛, then increment 𝑖 = 𝑖 + 1

• At the end of the stream, output 2𝑖 ⋅ 𝑆 ∩ 𝑈𝑖



Finding 𝑝

• Algorithm: Set 𝑈0 = [𝑛] and for each 𝑖, sample each element of 𝑈𝑖−1 

into 𝑈𝑖 with probability 
1

2

• Start index 𝑖 = 0 and track the number |𝑆 ∩ 𝑈𝑖| of elements of 𝑆 in 𝑈𝑖

• If 𝑆 ∩ 𝑈𝑖 >
2000

𝜀2 log 𝑛, then increment 𝑖 = 𝑖 + 1

• At the end of the stream, output 2𝑖 ⋅ 𝑆 ∩ 𝑈𝑖

1

𝑝

𝑆′  



Finding 𝑝

• Recall that 
1

𝑝
𝑆′  is a 1 + 𝜀 -approximation of 𝑁

• 2𝑖 ⋅ 𝑆 ∩ 𝑈𝑖  is a 1 + 𝜀 -approximation of 𝑁

• At the end of the stream, output 2𝑖 ⋅ 𝑆 ∩ 𝑈𝑖

1

𝑝

𝑆′  



Distinct Elements (𝐹0 Estimation)

• Summary: Algorithm stores at most 
2000

𝜀2 log 𝑛 elements from the 

stream, uses Θ
1

𝜀2 log 𝑛  words of space
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