
Lecture 23

Samson Zhou

CSCE 658: Randomized Algorithms

Previously in the Streaming Model

• Reservoir sampling

• Heavy-hitters

• Misra-Gries

• CountMin

• CountSketch

• Moment estimation

• AMS algorithm

Sparse Recovery

• Suppose we have an insertion-deletion stream of length 𝑚 = Θ 𝑛
and at the end we are promised there are at most 𝑘 nonzero
coordinates

• Goal: Recover the 𝑘 nonzero coordinates and their frequencies

Applications of Sparse Recovery

• Anomaly detection: Noiseless sparse recovery can be used to
identify anomalies or outliers in streaming data

• By modeling normal behavior as a sparse signal, deviations from
this model can be detected in real-time. This is valuable for
cybersecurity, fraud detection, and monitoring network traffic for
unusual patterns.

Applications of Sparse Recovery

• Network traffic analysis: Noiseless sparse recovery can be applied to
analyze network traffic in real-time, identifying patterns and trends,
and helping in network management, intrusion detection, and
quality of service (QoS) optimization

Applications of Sparse Recovery

• Real-time compressive imaging: Compressive imaging techniques
can be applied to streaming video or image data. By capturing and
processing fewer measurements, noiseless sparse recovery can
provide real-time reconstruction of high-resolution images or
videos.

“Deep Orthogonal Transform
Feature for Image Denoising”,
Shin, et. al. [2020]

Applications of Sparse Recovery

• Online natural language processing (NLP): In real-time natural
language processing tasks, noiseless sparse recovery can assist in
extracting relevant features or patterns from streaming text data,
making it useful for sentiment analysis, topic modeling, and
summarization

Sparse Recovery

• Suppose we have an insertion-deletion stream of length 𝑚 = Θ 𝑛

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• How do we recover the vector?

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate has frequency 1

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate has frequency 1

𝑢1: “Increase 𝑓6”

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate has frequency 1

𝑢2: “Increase 𝑓5”

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate has frequency 1

𝑢3: “Increase 𝑓2”

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate has frequency 1

𝑢4: “Increase 𝑓7”

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate has frequency 1

𝑢5: “Increase 𝑓3”

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate has frequency 1

𝑢6: “Increase 𝑓3”

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate has frequency 1

𝑢7: “Increase 𝑓2”

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate has frequency 1

𝑢8: “Increase 𝑓8”

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate has frequency 1

𝑢9: “Decrease 𝑓3”

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate has frequency 1

𝑢10: “Decrease 𝑓5”

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate has frequency 1

𝑢11: “Increase 𝑓1”

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate has frequency 1

𝑢12: “Increase 𝑓7”

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate has frequency 1

𝑢13: “Decrease 𝑓6”

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate has frequency 1

𝑢14: “Decrease 𝑓8”

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate has frequency 1

𝑢15: “Decrease 𝑓1”

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate has frequency 1

𝑢16: “Decrease 𝑓7”

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate has frequency 1

𝑢17: “Decrease 𝑓3”

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate has frequency 1

𝑢18: “Decrease 𝑓2”

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate has frequency 1

𝑢19: “Decrease 𝑓7”

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate has frequency 1

• What is left?

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate has frequency 1

• What is left?

𝑓2 = 1

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate has frequency 1

• Algorithm: Keep running sum of all the coordinates

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate has frequency 1

• Algorithm: Keep running sum of all the coordinates

• Write each insertion to coordinate 𝑐𝑖 ∈ [𝑛] as 𝑢𝑖 ← 𝑠𝑖 = 1, 𝑐𝑖

• Write each deletion to coordinate 𝑐𝑖 ∈ [𝑛] as 𝑢𝑖 ← 𝑠𝑖 = −1, 𝑐𝑖

Sparse Recovery

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

• Algorithm: Keep running sum of all the coordinates

• Write each insertion to coordinate 𝑐𝑖 ∈ [𝑛] as 𝑢𝑖 ← 𝑠𝑖 = 1, 𝑐𝑖

• Write each deletion to coordinate 𝑐𝑖 ∈ [𝑛] as 𝑢𝑖 ← 𝑠𝑖 = −1, 𝑐𝑖

• Running sum of coordinates σ𝑖∈[𝑚] 𝑠𝑖𝑐𝑖 = 𝑗

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

• Algorithm: Keep running sum of all the coordinates?

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

• Algorithm: Keep running sum of all the coordinates AND a different
linear combination of all the coordinates

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

• Algorithm: Keep running sum of all the coordinates AND a different
linear combination of all the coordinates

• Keep σ𝑖∈[𝑚] 𝑠𝑖𝑐𝑖 and σ𝑖∈[𝑚] 𝑠𝑖𝑐𝑖
2

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

𝑢1: “Increase 𝑓6”

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

𝑢2: “Increase 𝑓5”

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

𝑢3: “Increase 𝑓2”

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

𝑢4: “Increase 𝑓7”

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

𝑢5: “Increase 𝑓3”

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

𝑢6: “Increase 𝑓3”

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

𝑢7: “Increase 𝑓2”

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

𝑢8: “Increase 𝑓8”

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

𝑢9: “Decrease 𝑓3”

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

𝑢10: “Decrease 𝑓5”

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

𝑢11: “Increase 𝑓1”

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

𝑢12: “Increase 𝑓7”

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

𝑢13: “Decrease 𝑓6”

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

𝑢14: “Decrease 𝑓8”

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

𝑢15: “Decrease 𝑓1”

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

𝑢16: “Decrease 𝑓7”

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

𝑢17: “Decrease 𝑓3”

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

𝑢18: “Decrease 𝑓7”

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

• What is the state of our algorithm?

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

• What is the state of our algorithm?

σ𝑖∈[𝑚] 𝑠𝑖𝑐𝑖 = 4 and σ𝑖∈[𝑚] 𝑠𝑖𝑐𝑖
2 = 8

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

• What is the state of our algorithm?

• We know σ𝑖∈[𝑚] 𝑠𝑖𝑐𝑖 = 𝑗 ⋅ 𝑓𝑗 and σ𝑖∈[𝑚] 𝑠𝑖𝑐𝑖
2 = 𝑗2 ⋅ 𝑓𝑗

σ𝑖∈[𝑚] 𝑠𝑖𝑐𝑖 = 4 and σ𝑖∈[𝑚] 𝑠𝑖𝑐𝑖
2 = 8

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

• What is the state of our algorithm?

• We know σ𝑖∈[𝑚] 𝑠𝑖𝑐𝑖 = 𝑗 ⋅ 𝑓𝑗 and σ𝑖∈[𝑚] 𝑠𝑖𝑐𝑖
2 = 𝑗 ⋅ 𝑓𝑗

2

• So 𝑓𝑗 = 2 and 𝑗 = 2

σ𝑖∈[𝑚] 𝑠𝑖𝑐𝑖 = 4 and σ𝑖∈[𝑚] 𝑠𝑖𝑐𝑖
2 = 8

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Suppose 𝑘 = 1 and we are promised the coordinate 𝑗 has frequency 1

• What is the state of our algorithm?

• We know σ𝑖∈[𝑚] 𝑠𝑖𝑐𝑖 = 𝑗 ⋅ 𝑓𝑗 and σ𝑖∈[𝑚] 𝑠𝑖𝑐𝑖
2 = 𝑗 ⋅ 𝑓𝑗

2

• So 𝑓𝑗 = 2 and 𝑗 = 2

σ𝑖∈[𝑚] 𝑠𝑖𝑐𝑖 = 4 and σ𝑖∈[𝑚] 𝑠𝑖𝑐𝑖
2 = 8

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7

0 2 0 0 0 0 0

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Algorithm for 𝑘 = 1: Keep running sum of all the coordinates AND a
different linear combination of all the coordinates

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Algorithm: Keep 2𝑘 running sum of different linear combinations of
all the coordinates

• We have 2𝑘 equations and 2𝑘 unknown variables

• Correctness can be shown (not quite linear algebra)

Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero
coordinates

• Algorithm: Keep 2𝑘 running sum of different linear combinations of
all the coordinates

• Space: 𝑂(𝑘) words of space

Distinct Elements (𝐹0 Estimation)

• Given a set 𝑆 of 𝑚 elements from [𝑛], let 𝑓𝑖 be the frequency of
element 𝑖. (How often it appears)

• Let 𝐹0 be the frequency moment of the vector:

• Goal: Given a set 𝑆 of 𝑚 elements from [𝑛] and an accuracy
parameter 𝜀, output a (1 + 𝜀)-approximation to 𝐹0

𝐹0 = |{𝑖 ∶ 𝑓𝑖 ≠ 0}|

Distinct Elements (𝐹0 Estimation)

• How many different fruits left in fruit basket?

Distinct Elements (𝐹0 Estimation)

• How many different fruits left in fruit basket? 8

Distinct Elements (𝐹0 Estimation)

• Ad allocation: Distinct IP addresses clicking an ad

Distinct Elements (𝐹0 Estimation)

• Traffic monitoring: Distinct IP addresses visiting a site or number of
unique search engine queries

3 billion
monthly
active users

Distinct Elements (𝐹0 Estimation)

• Computational biology: Counting number of distinct motifs in DNA
sequencing

• Sequence motifs are short, recurring patterns in DNA that are
presumed to have a biological function

Distinct Elements (𝐹0 Estimation)

• Let 𝑆 be a set of 𝑁 numbers

• Suppose we form set 𝑆′ by sampling each item of 𝑆 with probability
1

2

• How many numbers are in 𝑆′?

Distinct Elements (𝐹0 Estimation)

• Let 𝑆 be a set of 𝑁 numbers

• Suppose we form set 𝑆′ by sampling each item of 𝑆 with probability
1

2

• Can we use 𝑆′ to get a good estimate of 𝑁?

Distinct Elements (𝐹0 Estimation)

• Let 𝑆 be a set of 𝑁 numbers, suppose we form set 𝑆′ by sampling

each item of 𝑆 with probability
1

2

• We have E |𝑆′| =
𝑁

2
 and Var |𝑆′| ≤

𝑁

2

Distinct Elements (𝐹0 Estimation)

• What can we say about Pr 𝑆′ −
𝑁

2
≥ 𝑡 ?

• By Chebyshev’s inequality, we have Pr 𝑆′ −
𝑁

2
≥ 100 𝑁 ≤

1

10

Distinct Elements (𝐹0 Estimation)

• What can we say about Pr 𝑆′ −
𝑁

2
≥ 𝑡 ?

• By Chebyshev’s inequality, we have Pr 𝑆′ −
𝑁

2
≥ 100 𝑁 ≤

1

10

• With probability at least
9

10
,

𝑁

2
− 100 𝑁 ≤ 𝑆′ ≤

𝑁

2
+ 100 𝑁

Distinct Elements (𝐹0 Estimation)

• With probability at least
9

10
,

• Thus with probability at least
9

10
,

𝑁

2
− 100 𝑁 ≤ 𝑆′ ≤

𝑁

2
+ 100 𝑁

𝑁 − 200 𝑁 ≤ 2 𝑆′ ≤ 𝑁 + 200 𝑁

Distinct Elements (𝐹0 Estimation)

• With probability at least
9

10
,

• If 200 𝑁 ≤
𝑁

100
, then 𝑁 − 200 𝑁 ≤ 2 𝑆′ ≤ 𝑁 + 200 𝑁 implies

• Very good approximation to 𝑁

𝑁 − 200 𝑁 ≤ 2 𝑆′ ≤ 𝑁 + 200 𝑁

0.99𝑁 ≤ 2 𝑆′ ≤ 1.01𝑁

Distinct Elements (𝐹0 Estimation)

• What algorithm does this suggest?

Distinct Elements (𝐹0 Estimation)

• What algorithm does this suggest?

• Sample each item of the universe with probability
1

2
, acquire new

universe 𝑈′

• Let 𝑆′ be the items in the data stream that are in 𝑈′

• Output 2|𝑆′|

Distinct Elements (𝐹0 Estimation)

• Sample each item of the universe with probability
1

2
, acquire new

universe 𝑈′

• Let 𝑆′ be the items in the data stream that are in 𝑈′

• Output 2|𝑆′|

• What’s the problem with this approach?

Distinct Elements (𝐹0 Estimation)

• Let 𝑆 be a set of 𝑁 numbers

• Suppose we form set 𝑆′ by sampling each item of 𝑆 with probability
1

2

• Can we use 𝑆′ to get a good estimate of 𝑁?

Distinct Elements (𝐹0 Estimation)

• Let 𝑆 be a set of 𝑁 numbers

• Suppose we form set 𝑆′ by sampling each item of 𝑆 with probability 𝑝

• Can we use 𝑆′ to get a good estimate of 𝑁?

Distinct Elements (𝐹0 Estimation)

• Let 𝑆 be a set of 𝑁 numbers, suppose we form set 𝑆′ by sampling

each item of 𝑆 with probability
1

2

• We have E |𝑆′| =
𝑁

2
 and Var |𝑆′| ≤

𝑁

2

Distinct Elements (𝐹0 Estimation)

• Let 𝑆 be a set of 𝑁 numbers, suppose we form set 𝑆′ by sampling
each item of 𝑆 with probability 𝑝

• We have E |𝑆′| = 𝑝𝑁 and Var |𝑆′| ≤ 𝑝𝑁

Distinct Elements (𝐹0 Estimation)

• (𝑆′ is formed by sampling each item of 𝑆 with probability
1

2
) With

probability at least
9

10
,

• Thus with probability at least
9

10
,

𝑁

2
− 100 𝑁 ≤ 𝑆′ ≤

𝑁

2
+ 100 𝑁

𝑁 − 200 𝑁 ≤ 2 𝑆′ ≤ 𝑁 + 200 𝑁

Distinct Elements (𝐹0 Estimation)

• (𝑆′ is formed by sampling each item of 𝑆 with probability 𝑝) With

probability at least
9

10
,

• Thus with probability at least
9

10
,

𝑝𝑁 − 100 𝑝𝑁 ≤ 𝑆′ ≤ 𝑝𝑁 + 100 𝑝𝑁

𝑁 −
100

𝑝
𝑁 ≤

1

𝑝
𝑆′ ≤ 𝑁 +

100

𝑝
𝑁

Distinct Elements (𝐹0 Estimation)

• (𝑆′ is formed by sampling each item of 𝑆 with probability 𝑝) With

probability at least
9

10
,

• If
100

𝑝
𝑁 ≤ 𝜀𝑁, then 𝑁 −

100

𝑝
𝑁 ≤

1

𝑝
𝑆′ ≤ 𝑁 +

100

𝑝
𝑁 implies

𝑁 −
100

𝑝
𝑁 ≤

1

𝑝
𝑆′ ≤ 𝑁 +

100

𝑝
𝑁

1 − 𝜀 𝑁 ≤
1

𝑝
𝑆′ ≤ 1 + 𝜀 𝑁

Distinct Elements (𝐹0 Estimation)

• In other words, with probability at least
9

10
, we have that

1

𝑝
𝑆′ is a

1 + 𝜀 -approximation of 𝑁

• What is 𝑝?

Distinct Elements (𝐹0 Estimation)

• In other words, with probability at least
9

10
, we have that

1

𝑝
𝑆′ is a

1 + 𝜀 -approximation of 𝑁

• What is 𝑝?

• Recall, we required
100

𝑝
𝑁 ≤ 𝜀𝑁

Distinct Elements (𝐹0 Estimation)

• In other words, with probability at least
9

10
, we have that

1

𝑝
𝑆′ is a

1 + 𝜀 -approximation of 𝑁

• What is 𝑝?

• Recall, we required
100

𝑝
𝑁 ≤ 𝜀𝑁, so 𝑝 ≥

1000

𝜀2𝑁

Distinct Elements (𝐹0 Estimation)

• In other words, with probability at least
9

10
, we have that

1

𝑝
𝑆′ is a

1 + 𝜀 -approximation of 𝑁

• What is 𝑝?

• Recall, we required
100

𝑝
𝑁 ≤ 𝜀𝑁, so 𝑝 ≥

1000

𝜀2𝑁

• What is the problem here?

Distinct Elements (𝐹0 Estimation)

• In other words, with probability at least
9

10
, we have that

1

𝑝
𝑆′ is a

1 + 𝜀 -approximation of 𝑁

• What is 𝑝?

• Recall, we required
100

𝑝
𝑁 ≤ 𝜀𝑁, so 𝑝 ≥

1000

𝜀2𝑁

• What is the problem here?

Must know 𝑁 to set 𝑝,
but the goal is to find 𝑁!

Distinct Elements (𝐹0 Estimation)

• Observation: We do not need 𝑝 =
1000

𝜀2𝑁
, it is also fine to have 𝑝 =

2000

𝜀2𝑁

• How do we find a “good” 𝑝?

Finding 𝑝

• Observation: We do not need 𝑝 =
1000

𝜀2𝑁
, it is also fine to have 𝑝 =

2000

𝜀2𝑁

• How do we find a “good” 𝑝?

• What is a “good” 𝑝?

Finding 𝑝

• What is a “good” 𝑝?

• Not too many samples, i.e., 𝑆′ is small, but enough to find a good
approximation to 𝑁

• For 𝑝 = Θ
1

𝜀2𝑁
:

• 𝑝 is large enough to find a good approximation to 𝑁

• We have E 𝑆′ = 𝑝𝑁 = Θ
1

𝜀2

Finding 𝑝

• We want 𝑝 such that E 𝑆′ = 𝑝𝑁 = Θ
1

𝜀2

• Intuition: Try 𝑝 = 1,
1

2
,

1

4
,

1

8
,

1

16
, … , and see which one has

• With high probability, one of these guesses will have
1000

𝜀2 ≤ 𝑆′ ≤
2000

𝜀2

1000

𝜀2
≤ 𝑆′ ≤

2000

𝜀2

Finding 𝑝

• Intuition: Try 𝑝 = 1,
1

2
,

1

4
,

1

8
,

1

16
, … , and see which one has

• However, the wrong guesses will have too many samples

1000

𝜀2
≤ 𝑆′ ≤

2000

𝜀2

Finding 𝑝

• Intuition: Try 𝑝 = 1,
1

2
,

1

4
,

1

8
,

1

16
, … , and see which one has

• However, the wrong guesses will have too many samples

• Fix: Dynamically changing guess for 𝑝 and subsampling

1000

𝜀2
≤ 𝑆′ ≤

2000

𝜀2

Finding 𝑝

• Algorithm: Set 𝑈0 = [𝑛] and for each 𝑖, sample each element of 𝑈𝑖−1

into 𝑈𝑖 with probability
1

2

• Start index 𝑖 = 0 and track the number |𝑆 ∩ 𝑈𝑖| of elements of 𝑆 in 𝑈𝑖

• If 𝑆 ∩ 𝑈𝑖 >
2000

𝜀2 log 𝑛, then increment 𝑖 = 𝑖 + 1

• At the end of the stream, output 2𝑖 ⋅ 𝑆 ∩ 𝑈𝑖

Finding 𝑝

• Algorithm: Set 𝑈0 = [𝑛] and for each 𝑖, sample each element of 𝑈𝑖−1

into 𝑈𝑖 with probability
1

2

• Start index 𝑖 = 0 and track the number |𝑆 ∩ 𝑈𝑖| of elements of 𝑆 in 𝑈𝑖

• If 𝑆 ∩ 𝑈𝑖 >
2000

𝜀2 log 𝑛, then increment 𝑖 = 𝑖 + 1

• At the end of the stream, output 2𝑖 ⋅ 𝑆 ∩ 𝑈𝑖

1

𝑝

𝑆′

Finding 𝑝

• Recall that
1

𝑝
𝑆′ is a 1 + 𝜀 -approximation of 𝑁

• 2𝑖 ⋅ 𝑆 ∩ 𝑈𝑖 is a 1 + 𝜀 -approximation of 𝑁

• At the end of the stream, output 2𝑖 ⋅ 𝑆 ∩ 𝑈𝑖

1

𝑝

𝑆′

Distinct Elements (𝐹0 Estimation)

• Summary: Algorithm stores at most
2000

𝜀2 log 𝑛 elements from the

stream, uses Θ
1

𝜀2 log 𝑛 words of space

	Slide 1
	Slide 2: Previously in the Streaming Model
	Slide 3: Sparse Recovery
	Slide 4: Applications of Sparse Recovery
	Slide 5: Applications of Sparse Recovery
	Slide 6: Applications of Sparse Recovery
	Slide 7
	Slide 8: Applications of Sparse Recovery
	Slide 9: Sparse Recovery
	Slide 10: Sparse Recovery
	Slide 11: Sparse Recovery
	Slide 12: Sparse Recovery
	Slide 13: Sparse Recovery
	Slide 14: Sparse Recovery
	Slide 15: Sparse Recovery
	Slide 16: Sparse Recovery
	Slide 17: Sparse Recovery
	Slide 18: Sparse Recovery
	Slide 19: Sparse Recovery
	Slide 20: Sparse Recovery
	Slide 21: Sparse Recovery
	Slide 22: Sparse Recovery
	Slide 23: Sparse Recovery
	Slide 24: Sparse Recovery
	Slide 25: Sparse Recovery
	Slide 26: Sparse Recovery
	Slide 27: Sparse Recovery
	Slide 28: Sparse Recovery
	Slide 29: Sparse Recovery
	Slide 30: Sparse Recovery
	Slide 31: Sparse Recovery
	Slide 32: Sparse Recovery
	Slide 33: Sparse Recovery
	Slide 34: Sparse Recovery
	Slide 35: Sparse Recovery
	Slide 36: Sparse Recovery
	Slide 37: Sparse Recovery
	Slide 38: Sparse Recovery
	Slide 39: Sparse Recovery
	Slide 40: Sparse Recovery
	Slide 41: Sparse Recovery
	Slide 42: Sparse Recovery
	Slide 43: Sparse Recovery
	Slide 44: Sparse Recovery
	Slide 45: Sparse Recovery
	Slide 46: Sparse Recovery
	Slide 47: Sparse Recovery
	Slide 48: Sparse Recovery
	Slide 49: Sparse Recovery
	Slide 50: Sparse Recovery
	Slide 51: Sparse Recovery
	Slide 52: Sparse Recovery
	Slide 53: Sparse Recovery
	Slide 54: Sparse Recovery
	Slide 55: Sparse Recovery
	Slide 56: Sparse Recovery
	Slide 57: Sparse Recovery
	Slide 58: Sparse Recovery
	Slide 59: Sparse Recovery
	Slide 60: Sparse Recovery
	Slide 61: Sparse Recovery
	Slide 62: Sparse Recovery
	Slide 63: Sparse Recovery
	Slide 64: Distinct Elements (cap F sub 0 Estimation)
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83
	Slide 84
	Slide 85: Distinct Elements (cap F sub 0 Estimation)
	Slide 86: Distinct Elements (cap F sub 0 Estimation)
	Slide 87: Distinct Elements (cap F sub 0 Estimation)
	Slide 88: Distinct Elements (cap F sub 0 Estimation)
	Slide 89: Distinct Elements (cap F sub 0 Estimation)
	Slide 90: Distinct Elements (cap F sub 0 Estimation)
	Slide 91: Distinct Elements (cap F sub 0 Estimation)
	Slide 92: Distinct Elements (cap F sub 0 Estimation)
	Slide 93: Distinct Elements (cap F sub 0 Estimation)
	Slide 94: Distinct Elements (cap F sub 0 Estimation)
	Slide 95: Distinct Elements (cap F sub 0 Estimation)
	Slide 96: Distinct Elements (cap F sub 0 Estimation)
	Slide 97: Distinct Elements (cap F sub 0 Estimation)
	Slide 98: Distinct Elements (cap F sub 0 Estimation)
	Slide 99: Distinct Elements (cap F sub 0 Estimation)
	Slide 100: Distinct Elements (cap F sub 0 Estimation)
	Slide 101: Distinct Elements (cap F sub 0 Estimation)
	Slide 102: Distinct Elements (cap F sub 0 Estimation)
	Slide 103: Distinct Elements (cap F sub 0 Estimation)
	Slide 104: Distinct Elements (cap F sub 0 Estimation)
	Slide 105: Distinct Elements (cap F sub 0 Estimation)
	Slide 106: Distinct Elements (cap F sub 0 Estimation)
	Slide 107: Distinct Elements (cap F sub 0 Estimation)
	Slide 108: Distinct Elements (cap F sub 0 Estimation)
	Slide 109: Distinct Elements (cap F sub 0 Estimation)
	Slide 110: Distinct Elements (cap F sub 0 Estimation)
	Slide 111: Distinct Elements (cap F sub 0 Estimation)
	Slide 112: Distinct Elements (cap F sub 0 Estimation)
	Slide 113: Finding p
	Slide 114: Finding p
	Slide 115: Finding p
	Slide 116: Finding p
	Slide 117: Finding p
	Slide 118: Finding p
	Slide 119: Finding p
	Slide 120: Finding p
	Slide 121: Distinct Elements (cap F sub 0 Estimation)

