CSCE 658: Randomized Algorithms

Lecture 4

Samson Zhou

Last Time: Expected Value

• The expected value of a random variable X over Ω is:

$$E[X] = \sum_{x \in \Omega} \Pr[X = x] \cdot x$$

The "average value of the random variable"

• Linearity of expectation: E[X + Y] = E[X] + E[Y]

Last Time: Markov's Inequality

• Let $X \ge 0$ be a non-negative random variable. Then for any t > 0:

$$\Pr[X \ge t \cdot \mathrm{E}[X]] \le \frac{1}{t}$$

• Can rewrite as $\Pr[X \ge t] \le \frac{E[X]}{t}$

• "Bounding the deviation of a random variable in terms of its average"

Limitations of Markov's Inequality

• Let X be the outcome of a roll of a die. Then $E[X] = 3.5 = \frac{7}{2}$

$$\Pr[X \ge 6] = \Pr\left[X \ge \frac{12}{7} \cdot \frac{7}{2}\right] \le \frac{7}{12} \approx 0.5833$$

• We know $\Pr[X \ge 6] = \frac{1}{6} \approx 0.167$

Moments

• For p > 0, the p-th moment of a random variable X over Ω is:

$$E[X^p] = \sum_{x \in \Omega} \Pr[X = x] \cdot x^p$$

• The variance of a random variable X over Ω is:

$$Var[X] = E[(X - E[X])^2]$$

• Can rewrite $Var[X] = E[X^2] - (E[X])^2$ since E[E[X]] = E[X]

• "On average, how far numbers are from the average"

• Can rewrite $Var[X] = E[(X - E[X])^2]$ since E[E[X]] = E[X] $E[(X - E[X])^2] = E[X^2 - 2X \cdot E[X] + (E[X])^2]$ $= E[X^2] - 2E[X] \cdot E[E[X]] + (E[X])^2$ $= E[X^2] - 2E[X] \cdot E[X] + (E[X])^2$ $= E[X^2] - 2(E[X])^2 + (E[X])^2$ $= E[X^2] - (E[X])^2 = Var[X]$

• The variance of a random variable X over Ω is:

$$Var[X] = E[X^2] - (E[X])^2$$

• Linearity of variance for *independent* random variables: Var[X + Y] = Var[X] + Var[Y]

Variance and Standard Deviation

• The variance of a random variable X over Ω is:

$$\sigma^2 = Var[X] = E[X^2] - (E[X])^2$$

• The standard deviation $\operatorname{std}(X)$ of a random variable X is σ , and measures how far apart the outcomes are

 Standard deviation is in the same unit as the data set

• Suppose X takes the value 1 with probability $\frac{1}{2}$ and takes the value -1 with probability $\frac{1}{2}$

• What is **E**[*X*]?

• What is Var[X]? What is std(X)?

- Suppose Y takes the value $\frac{100}{2}$ with probability $\frac{1}{2}$ and takes the value
 - -100 with probability $\frac{1}{2}$
- What is E[Y]?

What is Var[Y]? What is std(Y)?

Markov's Inequality

• Let $X \ge 0$ be a non-negative random variable. Then for any t > 0:

$$\Pr[X \ge t \cdot \mathrm{E}[X]] \le \frac{1}{t}$$

• Can rewrite as $\Pr[X \ge t] \le \frac{E[X]}{t}$

Markov's Inequality

• Let $X \ge 0$ be a non-negative random variable. Then for any t > 0:

$$\Pr[X \ge t \cdot \mathrm{E}[X]] \le \frac{1}{t}$$

- Can rewrite as $\Pr[X \ge t] \le \frac{E[X]}{t}$
- We have $\Pr[|X| \ge t] = \Pr[X^2 \ge t^2]$

Using Markov's Inequality

• We have $\Pr[|X| \ge t] = \Pr[X^2 \ge t^2]$

$$\Pr[|X| \ge t] = \Pr[X^2 \ge t^2] \le \frac{E[X^2]}{t^2}$$

• Plug in X - E[X] for X

$$\Pr[|X - E[X]| \ge t] \le \frac{E[(X - E[X])^2]}{t^2}$$

Toward Chebyshev's Inequality

$$\Pr[|X - E[X]| \ge t] \le \frac{E[(X - E[X])^2]}{t^2}$$

$$\Pr[|X - E[X]| \ge t] \le \frac{E[(X - E[X])^2]}{t^2}$$

• Recall that $Var[X] = E[X^2] - (E[X])^2 = E[(X - E[X])^2]$

•
$$\Pr[|X - E[X]| \ge t] \le \frac{\operatorname{Var}[X]}{t^2}$$

• Let X be a random variable with expected value $\mu \coloneqq E[X]$ and variance $\sigma^2 \coloneqq Var[X]$

•
$$\Pr[|X - E[X]| \ge t] \le \frac{\operatorname{Var}[X]}{t^2}$$
 becomes $\Pr[|X - E[X]| \ge t] \le \frac{\sigma^2}{t^2}$

$$\Pr[|X - \mu| \ge k\sigma] \le \frac{1}{k^2}$$

 "Bounding the deviation of a random variable in terms of its standard deviation / variance"

• Let X be a random variable with expected value $\mu \coloneqq E[X]$ and variance $\sigma^2 \coloneqq Var[X]$

$$\Pr[|X - \mu| \ge k\sigma] \le \frac{1}{k^2}$$

Do not require assumptions about X

• Let X be the outcome of a roll of a die. Then $E[X] = 3.5 = \frac{7}{2}$ and $Var[X] = \frac{35}{12} \approx 2.92$ so $std(X) \approx 1.71$

$$Pr[X \ge 6] = Pr[X - 3.5 \ge 2.5]$$

$$= Pr[X - 3.5 \ge 1.41 \cdot 1.71]$$

$$\leq \frac{1}{1.41^2} \approx 0.4667$$

• Recall that Markov's inequality bounded this by 0.5833

Law of Large Numbers

• Let $X_1, ..., X_n$ be random variables that are independent identically distributed (i.i.d.) with mean μ and variance σ^2

• Consider the sample average $X = \frac{1}{n} \sum_{i} X_{i}$. How does it compare to μ ?

•
$$Var[X] = \frac{1}{n^2} \sum_i Var[X_i] = \frac{\sigma^2}{n}$$

• By Chebyshev's inequality, $\Pr[|S - \mu| \ge t] \le \frac{\sigma^2}{nt}$

Law of Large Numbers

• By Chebyshev's inequality, $\Pr[|S - \mu| \ge t] \le \frac{\sigma^2}{nt}$

• Law of Large Numbers: The sample average will always concentrate to the mean, given enough samples

Use Case

• Suppose we design a randomized algorithm A to estimate a hidden statistic Θ of a dataset and we know $0 < \Theta \le 1000$

• Suppose each time we use the algorithm A, it outputs a number X such that $E[X] = \Theta$ and $Var[X] = 100\Theta^2$

• What can we say about A?

•
$$\Pr[|X - \Theta| \ge 30\Theta] \le \frac{1}{9}$$
 and $\Theta \le 1000$ so $\Pr[|X - \Theta| < 30,000] > \frac{8}{9}$

Accuracy Boosting

• How can we use A to get additive error ε ?

Accuracy Boosting

• How can we use A to get additive error ε ?

• Repeat A a total of $\frac{10^{12}}{\epsilon^2}$ times and take the average

• The variance of the average is $\frac{\varepsilon^2}{10^{10}}\Theta$ and $\Pr[|X-\mu| \geq k] \leq \frac{\sigma^2}{k^2}$

• $\Pr[|X - \Theta| \ge \varepsilon] \le \frac{\Theta}{10^{10}}$ and $\Theta \le 1000$ so $\Pr[|X - \Theta| < \varepsilon] > 0.999$

Accuracy Boosting

Algorithmic consequence of Law of Large Numbers

 To improve the accuracy of your algorithm, run it many times independently and take the average

Limitations

- Suppose we flip a fair coin n = 100 times and let H be the total number of heads
- E[H] = 50 and Var[H] = 25

- Markov's inequality: $Pr[H \ge 60] \le 0.833$
- Chebyshev's inequality: $Pr[H \ge 60] \le 0.25$
- Truth: $Pr[H \ge 60] \approx 0.0284$

Intuition for Previous Inequalities

 Recall: We proved Markov's inequality by looking at the first moment of the random variable X

$$\Pr[X \ge t \cdot \mathrm{E}[X]] \le \frac{1}{t}$$

• Recall: We proved Chebyshev's inequality by applying Markov to the second moment of the random variable X - E[X]

$$\Pr[|X - E[X]| \ge t] = \Pr[|X - E[X]|^2 \ge t^2] \le \frac{\text{Var}[X]}{t^2}$$

Generalizations

• Suppose we flip a fair coin n = 100 times and let H be the total number of heads

- What if we consider higher moments?
- Looking at the 4th moment: $Pr[H \ge 60] \le 0.186$
- Markov's inequality: $Pr[H \ge 60] \le 0.833$
- Chebyshev's inequality: $Pr[H \ge 60] \le 0.25$
- Truth: $Pr[H \ge 60] \approx 0.0284$

Concentration Inequalities

• Looking at the $k^{\rm th}$ moment for sufficiently high k gives a number of very strong (and useful!) concentration inequalities with exponential tail bounds

• Chernoff bounds, Bernstein's inequality, Hoeffding's inequality, etc.

• Bernstein's inequality: Let $X_1, ..., X_n \in [-M, M]$ be independent random variables and let $X = X_1 + \cdots + X_n$ have mean μ and variance σ^2 . Then for any $t \ge 0$:

$$\Pr[|X - \mu| \ge t] \le 2e^{-\frac{t^2}{2\sigma^2 + \frac{4}{3}Mt}}$$

• Bernstein's inequality: Let $X_1, ..., X_n \in [-M, M]$ be independent random variables and let $X = X_1 + \cdots + X_n$ have mean μ and variance σ^2 . Then for any $t \ge 0$:

$$\Pr[|X - \mu| \ge t] \le 2e^{-\frac{t^2}{2\sigma^2 + \frac{4}{3}Mt}}$$

• Example: Suppose M=1 and let $t=k\sigma$. Then k^2

$$\Pr[|X - \mu| \ge k\sigma] \le 2\exp\left(-\frac{k^2}{4}\right)$$

• Suppose M=1 and let $t=k\sigma$. Then

$$\Pr[|X - \mu| \ge k\sigma] \le 2\exp\left(-\frac{k^2}{4}\right)$$

Compare to Chebyshev's inequality:

$$\Pr[|X - \mu| \ge k\sigma] \le \frac{1}{k^2}$$

• Exponential improvement!

• Suppose we flip a fair coin n = 100 times and let H be the total number of heads

- Markov's inequality: $Pr[H \ge 60] \le 0.833$
- Chebyshev's inequality: $Pr[H \ge 60] \le 0.25$
- 4th moment: $Pr[H \ge 60] \le 0.186$
- Bernstein's inequality: $Pr[H \ge 60] \le 0.15$
- Truth: $Pr[H \ge 60] \approx 0.0284$

• Suppose M=1 and let $t=k\sigma$. Then

$$\Pr[|X - \mu| \ge k\sigma] \le 2\exp\left(-\frac{k^2}{4}\right)$$

 Plot across values of k looks like normal random variable

• PDF of Gaussian $N(0, \sigma^2)$ is

$$p(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{x^2}{2\sigma^2}}$$

Central Limit Theorem

• Stronger Central Limit Theorem: The distribution of the sum of n bounded independent random variables converges to a Gaussian (normal) distribution as n goes to infinity

 Why is the Gaussian distribution is so important in statistics, data science, ML, etc.?

 Many random variables can be approximated as the sum of a large number of small and roughly independent random effects. Thus, their distribution looks Gaussian by CLT.