CSCE 658: Randomized Algorithms

Lecture 4

Samson Zhou



Last Time: Expected Value

* The expected value of a random variable X over () is:

E[X] = zPr[X = x] - x

X €E)

* The “average value of the random variable"

* Linearity of expectation: E[X + Y| = E[X]| + E[Y]



Last Time: Markov’s Inequality

* Let X = 0 be a non-negative random variable. Then forany t > O:

1

Prix > ¢ - E[X]] < -

e Can rewrite as Pr[X > t] < @

* “Bounding the deviation of a random variable in terms of its average”



Limitations of Markov’s Inequality

* Let X be the outcome of a roll of a die. Then E[X]| = 3.5 = %

12 7
PriX > 6] =Pr|X >— <—~05833

* We know Pr|X = 6] === 0.167

N



Moments

* Forp > 0, the p-th moment of a random variable X over () is:

E[XP] = z PriX = x] - xP



Variance

 The variance of a random variable X over (1 is:
Var[X] = E[(X — E[X])?]

» Can rewrite Var[X] = E[X?] — (E[X])? since E|E[X]| = E[X]

* “On average, how far numbers are from the average”



Variance

» Can rewrite Var[X] = E[(X — E[X])?] since E|E[X]| = E[X]

E[(X — E[X])?] = E[X?* — 2X - E[X] + (E[X])*]
= E[X?] — 2E[X] - E|E[X]] + (E[X])?

E[X?] — 2E[X] - E[X] + (E[X])?

= E[X?] — 2(E[X]D* + (E[X])?

= E[X*] — (E[X])? = Var[X]




Variance

 The variance of a random variable X over (1 is:
Var[X] = E[X?*] — (E[X])*

e Linearity of variance for independent random variables: Var[X + Y| =
Var|X]| + Var|Y]



Variance and Standard Deviation

 The variance of a random variable X over (1 is:
0% = Var[X] = E[XZ] — (E[X])2

* The standard deviation std(X) of a
random variable X is o, and measures
how far apart the outcomes are

e Standard deviation is in the same unit
as the data set




Variance

e Suppose X takes the value 1 with probability % and takes the value —1
with probability%

* What is E[X]?

* What is Var[X|? What is std(X)?



Variance

e Suppose Y takes the value 100 with probability % and takes the value
— 100 with probability%

 What is E[Y]?

e What is Var[Y|? What is std(Y)?



Markov’s Inequality

* Let X = 0 be a non-negative random variable. Then forany t > O:

1

Prix > ¢ - E[X]] < -

e Can rewrite as Pr[X > t] < @



Markov’s Inequality

* Let X = 0 be a non-negative random variable. Then forany t > O:

1
t

PriX >t -E[X]] <

e Can rewrite as Pr[X > t] < @

e We have Pr[|X| > t] = Pr[X? > t?]



Using Markov’s Inequality

* We have Pr[|X| = t] = Pr[X? > t?]
E[X?]
tZ

Pr[|X| > t] = Pr[X? > t?] <

* Plugin X — E|X] for X

Pr(|X — E[X]| = t] <




Toward Chebyshev’s Inequality

E[(X — E[X])"]

Pr|X — E[X]| = t] < 5



Chebyshev’s Inequality

E[(X — E[X])"]
t2

Pr|X — E[X]| = t] <

e Recall that Var[X] = E[X?] — (E[X])? = E[(X — E[X])?]

Var[X]
tZ

- Pr{|X — E[X]]| = t] <



Chebyshev’s Inequality

* Let X be a random variable with expected value u := E[X] and
variance % = Var[X]

2
Var[ ! becomes Pr(|X —E[X]| = t] <<

= £2

* Pr{lX —E[X]| = t] <

1
Prl|X — u| = ko] < )

* “Bounding the deviation of a random variable in terms of its standard
deviation / variance”



Chebyshev’s Inequality

* Let X be a random variable with expected value i := E[X] and
variance 0% := Var[X]

1
Pr||X — u|l = ko] < =)

* Do not require assumptions about X /\




Chebyshev’s Inequality

* Let X be the outcome of a roll of a die. Then E|X]| = 3.5 = %and

Var[X] = % ~ 2.92sostd(X) = 1.71

Pr|[X = 6] = Pr|X — 3.5 > 2.5]

= Pr[X — 3.5 > 1.41 - 1.71]

1

< ~ 0.4667
— 1.41%

 Recall that Markov’s inequality bounded this by 0.5833



Law of Large Numbers

* Let X4, ..., X,, be random variables that are independent identically
distributed (i.i.d.) with mean u and variance o

. 1 .
* Consider the sample average X = ;ZiXi. How does it compare to u?

0.2
n

e Var[X] = %ZiVar[Xi] =

2
* By Chebyshev’s inequality, Pr[|S — u| = t] < 2

nt



Law of Large Numbers

2
» By Chebyshev’s inequality, Pr[|S — u| = t] < =

nt

e Law of Large Numbers: The sample average will always concentrate to
the mean, given enough samples



Use Case

* Suppose we design a randomized algorithm A to estimate a hidden
statistic ® of a dataset and we know 0 < 0 < 1000

e Suppose each time we use the algorithm 4, it outputs a number X
such that E[X] = ©® and Var[X] = 10007

 What can we say about A?

. Pr{|X — 0] > 300] < %and © < 1000 so Pr[|X — O] < 30,000] >

O |



Accuracy Boosting

* How can we use A to get additive error £7?



Accuracy Boosting

* How can we use A to get additive error £7?

12

10
* Repeat A a total of —;
&

times and take the average

X —ul 2kl <%

«Pr[|X — 0] > ¢] <

[|1X — 0] < €] >0.999



Accuracy Boosting

* Algorithmic consequence of Law of Large Numbers

* To improve the accuracy of your algorithm, run it many times
independently and take the average



Limitations

* Suppose we flip a fair coinn = 100 times and let H be the total
number of heads

« E|H| = 50 and Var|H| = 25

* Markov’s inequality: Pr|H = 60] < 0.833
* Chebyshev’s inequality: Pr[H = 60] < 0.25
* Truth: Pr|H = 60] =~ 0.0284



Intuition for Previous Inequalities

» Recall: We proved Markov’s inequality by looking at the first moment
of the random variable X

PriX >t - E[X]] < %

* Recall: We proved Chebyshev’s inequality by applying Markov to the
second moment of the random variable X — E[X]

V
- ar|X]|
S0

Pr[|X — E[X]| = t] = Pr[|X — E[X]|? = t?]



Generalizations

* Suppose we flip a fair coinn = 100 times and let H be the total
number of heads

* What if we consider higher moments?
 Looking at the 4™ moment: Pr[H = 60] < 0.186

e Markov’s inequality: Pr[H = 60] < 0.833
e Chebyshev’s inequality: Pr[H > 60] < 0.25
* Truth: Pr[H = 60] =~ 0.0284



Concentration Inequalities

 Looking at the k™ moment for sufficiently high k gives a number of
very strong (and useful!) concentration inequalities with exponential
tail bounds

* Chernoff bounds, Bernstein’s inequality, Hoeffding’s inequality, etc.



Bernstein’s Inequality

* Bernstein’s inequality: Let X4, ..., X,, € |—M, M| be independent
random variables and let X = X; + --- + X,, have mean u and
variance d*. Then for any t > 0:

t2
7}
Pr||X —u| = t] < 2e 20°+3Mt




Bernstein’s Inequality

* Bernstein’s inequality: Let X4, ..., X,, € |—M, M| be independent
random variables and let X = X; + --- + X,, have mean u and
variance d*. Then for any t > 0:

t2
7}
Pr||X —u| = t] < 2e 20°+3Mt

e Example: Suppose M = 1 and lett = ko. Then ,
k
Pr[|X — ul = ko] < 2exp (— Z)



Bernstein’s Inequality

e Suppose M = 1 andlett = ko. Then
k2

Pr||X — u| = ko] < 2exp (— Z)

 Compare to Chebyshev’s inequality:
1
Prl|X — u| = ko] < )

* Exponential improvement!



Bernstein’s Inequality

* Suppose we flip a fair coinn = 100 times and let H be the total
number of heads

* Markov’s inequality: Pr|[H = 60] < 0.833

e Chebyshev’s inequality: Pr[H > 60] < 0.25
« 4t moment: Pr[H = 60] < 0.186
 Bernstein’s inequality: Pr|H > 60] < 0.15
* Truth: Pr|H = 60] =~ 0.0284



Bernstein’s Inequality

e Suppose M = 1 andlett = ko. Then
k2
Pr||X —u| = ko] < 2exp (— Z)

* Plot across values of k looks like
normal random variable

* PDF of Gaussian N(0, g%) is // \

1 _x% /s
p(x) = e 20°
V2mo? / | |




Central Limit Theorem

e Stronger Central Limit Theorem: The distribution of the sum of n
bounded independent random variables converges to a Gaussian
(normal) distribution as n goes to infinity

* Why is the Gaussian distribution is so important in statistics, data
science, ML, etc.?

* Many random variables can be approximated as the sum of a large
number of small and roughly independent random effects. Thus, their
distribution looks Gaussian by CLT.
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