CSCE 658: Randomized Algorithms

Lecture 4

Samson Zhou

Last Time: Expected Value

- The expected value of a random variable X over Ω is:

$$
\mathrm{E}[X]=\sum_{x \in \Omega} \operatorname{Pr}[X=x] \cdot x
$$

- The "average value of the random variable"
- Linearity of expectation: $\mathrm{E}[X+Y]=\mathrm{E}[X]+\mathrm{E}[Y]$

Last Time: Markov's Inequality

- Let $X \geq 0$ be a non-negative random variable. Then for any $t>0$:

$$
\operatorname{Pr}[X \geq t \cdot \mathrm{E}[X]] \leq \frac{1}{t}
$$

- Can rewrite as $\operatorname{Pr}[X \geq t] \leq \frac{\mathrm{E}[X]}{t}$
- "Bounding the deviation of a random variable in terms of its average"

Limitations of Markov's Inequality

- Let X be the outcome of a roll of a die. Then $\mathrm{E}[X]=3.5=\frac{7}{2}$

$$
\operatorname{Pr}[X \geq 6]=\operatorname{Pr}\left[X \geq \frac{12}{7} \cdot \frac{7}{2}\right] \leq \frac{7}{12} \approx 0.5833
$$

- We know $\operatorname{Pr}[X \geq 6]=\frac{1}{6} \approx 0.167$

Moments

- For $p>0$, the p-th moment of a random variable X over Ω is:

$$
\mathrm{E}\left[X^{p}\right]=\sum_{x \in \Omega} \operatorname{Pr}[X=x] \cdot x^{p}
$$

Variance

- The variance of a random variable X over Ω is:

$$
\operatorname{Var}[X]=\mathrm{E}\left[(X-\mathrm{E}[X])^{2}\right]
$$

- Can rewrite $\operatorname{Var}[X]=\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2}$ since $\mathrm{E}[\mathrm{E}[X]]=\mathrm{E}[X]$
- "On average, how far numbers are from the average"

Variance

- Can rewrite $\operatorname{Var}[X]=\mathrm{E}\left[(X-\mathrm{E}[X])^{2}\right]$ since $\mathrm{E}[\mathrm{E}[X]]=\mathrm{E}[X]$

$$
\begin{aligned}
\mathrm{E}\left[(X-\mathrm{E}[X])^{2}\right] & =\mathrm{E}\left[X^{2}-2 X \cdot \mathrm{E}[X]+(\mathrm{E}[X])^{2}\right] \\
& =\mathrm{E}\left[X^{2}\right]-2 \mathrm{E}[X] \cdot \mathrm{E}[\mathrm{E}[X]]+(\mathrm{E}[X])^{2} \\
& =\mathrm{E}\left[X^{2}\right]-2 \mathrm{E}[X] \cdot \mathrm{E}[X]+(\mathrm{E}[X])^{2} \\
& =\mathrm{E}\left[X^{2}\right]-2(\mathrm{E}[X])^{2}+(\mathrm{E}[X])^{2} \\
& =\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2}=\operatorname{Var}[X]
\end{aligned}
$$

Variance

- The variance of a random variable X over Ω is:

$$
\operatorname{Var}[X]=\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2}
$$

- Linearity of variance for independent random variables: $\operatorname{Var}[X+Y]=$ $\operatorname{Var}[X]+\operatorname{Var}[Y]$

Variance and Standard Deviation

- The variance of a random variable X over Ω is:

$$
\sigma^{2}=\operatorname{Var}[X]=\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2}
$$

- The standard deviation $\operatorname{std}(X)$ of a random variable X is σ, and measures how far apart the outcomes are

Small standard deviation

Variance

- Suppose X takes the value 1 with probability $\frac{1}{2}$ and takes the value -1 with probability $\frac{1}{2}$
- What is $\mathrm{E}[X]$?
- What is $\operatorname{Var}[X]$? What is $\operatorname{std}(X)$?

Variance

- Suppose Y takes the value 100 with probability $\frac{1}{2}$ and takes the value
-100 with probability $\frac{1}{2}$
- What is $\mathrm{E}[Y]$?
- What is $\operatorname{Var}[Y]$? What is $\operatorname{std}(Y)$?

Markov's Inequality

- Let $X \geq 0$ be a non-negative random variable. Then for any $t>0$:

$$
\operatorname{Pr}[X \geq t \cdot \mathrm{E}[X]] \leq \frac{1}{t}
$$

- Can rewrite as $\operatorname{Pr}[X \geq t] \leq \frac{\mathrm{E}[X]}{t}$

Markov's Inequality

- Let $X \geq 0$ be a non-negative random variable. Then for any $t>0$:

$$
\operatorname{Pr}[X \geq t \cdot \mathrm{E}[X]] \leq \frac{1}{t}
$$

- Can rewrite as $\operatorname{Pr}[X \geq t] \leq \frac{\mathrm{E}[X]}{t}$
- We have $\operatorname{Pr}[|X| \geq t]=\operatorname{Pr}\left[X^{2} \geq t^{2}\right]$

Using Markov's Inequality

- We have $\operatorname{Pr}[|X| \geq t]=\operatorname{Pr}\left[X^{2} \geq t^{2}\right]$

$$
\operatorname{Pr}[|X| \geq t]=\operatorname{Pr}\left[X^{2} \geq t^{2}\right] \leq \frac{E\left[X^{2}\right]}{t^{2}}
$$

- Plug in $X-\mathrm{E}[X]$ for X

$$
\operatorname{Pr}[|X-\mathrm{E}[X]| \geq t] \leq \frac{\mathrm{E}\left[(X-\mathrm{E}[X])^{2}\right]}{t^{2}}
$$

Toward Chebyshev's Inequality

$$
\operatorname{Pr}[|X-\mathrm{E}[X]| \geq t] \leq \frac{\mathrm{E}\left[(X-\mathrm{E}[X])^{2}\right]}{t^{2}}
$$

Chebyshev's Inequality

$$
\operatorname{Pr}[|X-\mathrm{E}[X]| \geq t] \leq \frac{\mathrm{E}\left[(X-\mathrm{E}[X])^{2}\right]}{t^{2}}
$$

- Recall that $\operatorname{Var}[X]=\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2}=\mathrm{E}\left[(X-\mathrm{E}[X])^{2}\right]$
- $\operatorname{Pr}[|X-\mathrm{E}[X]| \geq t] \leq \frac{\operatorname{Var}[X]}{t^{2}}$

Chebyshev's Inequality

- Let X be a random variable with expected value $\mu:=\mathrm{E}[X]$ and variance $\sigma^{2}:=\operatorname{Var}[X]$
- $\operatorname{Pr}[|X-\mathrm{E}[X]| \geq t] \leq \frac{\operatorname{Var}[X]}{t^{2}}$ becomes $\operatorname{Pr}[|X-\mathrm{E}[X]| \geq t] \leq \frac{\sigma^{2}}{t^{2}}$

$$
\operatorname{Pr}[|X-\mu| \geq k \sigma] \leq \frac{1}{k^{2}}
$$

- "Bounding the deviation of a random variable in terms of its standard deviation / variance"

Chebyshev's Inequality

- Let X be a random variable with expected value $\mu:=\mathrm{E}[X]$ and variance $\sigma^{2}:=\operatorname{Var}[X]$

$$
\operatorname{Pr}[|X-\mu| \geq k \sigma] \leq \frac{1}{k^{2}}
$$

- Do not require assumptions about X

Chebyshev's Inequality

- Let X be the outcome of a roll of a die. Then $\mathrm{E}[X]=3.5=\frac{7}{2}$ and $\operatorname{Var}[X]=\frac{35}{12} \approx 2.92$ so $\operatorname{std}(X) \approx 1.71$

$$
\begin{aligned}
\operatorname{Pr}[X \geq 6] & =\operatorname{Pr}[X-3.5 \geq 2.5] \\
& =\operatorname{Pr}[X-3.5 \geq 1.41 \cdot 1.71] \\
& \leq \frac{1}{1.41^{2}} \approx 0.4667
\end{aligned}
$$

- Recall that Markov's inequality bounded this by 0.5833

Law of Large Numbers

- Let X_{1}, \ldots, X_{n} be random variables that are independent identically distributed (i.i.d.) with mean μ and variance σ^{2}
- Consider the sample average $X=\frac{1}{n} \sum_{i} X_{i}$. How does it compare to μ ?
- $\operatorname{Var}[X]=\frac{1}{n^{2}} \sum_{i} \operatorname{Var}\left[X_{i}\right]=\frac{\sigma^{2}}{n}$
- By Chebyshev's inequality, $\operatorname{Pr}[|S-\mu| \geq t] \leq \frac{\sigma^{2}}{n t}$

Law of Large Numbers

- By Chebyshev's inequality, $\operatorname{Pr}[|S-\mu| \geq t] \leq \frac{\sigma^{2}}{n t}$
- Law of Large Numbers: The sample average will always concentrate to the mean, given enough samples

Use Case

- Suppose we design a randomized algorithm A to estimate a hidden statistic Θ of a dataset and we know $0<\Theta \leq 1000$
- Suppose each time we use the algorithm A, it outputs a number X such that $\mathrm{E}[X]=\Theta$ and $\operatorname{Var}[X]=100 \Theta^{2}$
- What can we say about A ?
- $\operatorname{Pr}[|X-\Theta| \geq 30 \Theta] \leq \frac{1}{9}$ and $\Theta \leq 1000$ so $\operatorname{Pr}[|X-\Theta|<30,000]>\frac{8}{9}$

Accuracy Boosting

- How can we use A to get additive error ε ?

Accuracy Boosting

- How can we use A to get additive error ε ?
- Repeat A a total of $\frac{10^{12}}{\varepsilon^{2}}$ times and take the average
- The variance of the average is $\frac{\varepsilon^{2}}{10^{10}} \Theta$ and $\operatorname{Pr}[|X-\mu| \geq k] \leq \frac{\sigma^{2}}{k^{2}}$
- $\operatorname{Pr}[|X-\Theta| \geq \varepsilon] \leq \frac{\Theta}{10^{10}}$ and $\Theta \leq 1000$ so $\operatorname{Pr}[|X-\Theta|<\varepsilon]>0.999$

Accuracy Boosting

- Algorithmic consequence of Law of Large Numbers
- To improve the accuracy of your algorithm, run it many times independently and take the average

Limitations

- Suppose we flip a fair coin $n=100$ times and let H be the total number of heads
- $\mathrm{E}[H]=50$ and $\operatorname{Var}[H]=25$
- Markov's inequality: $\operatorname{Pr}[H \geq 60] \leq 0.833$
- Chebyshev's inequality: $\operatorname{Pr}[H \geq 60] \leq 0.25$
- Truth: $\operatorname{Pr}[H \geq 60] \approx 0.0284$

Intuition for Previous Inequalities

- Recall: We proved Markov's inequality by looking at the first moment of the random variable X

$$
\operatorname{Pr}[X \geq t \cdot \mathrm{E}[X]] \leq \frac{1}{t}
$$

- Recall: We proved Chebyshev's inequality by applying Markov to the second moment of the random variable $X-\mathrm{E}[X]$

$$
\operatorname{Pr}[|X-\mathrm{E}[X]| \geq t]=\operatorname{Pr}\left[|X-\mathrm{E}[X]|^{2} \geq t^{2}\right] \leq \frac{\operatorname{Var}[X]}{t^{2}}
$$

Generalizations

- Suppose we flip a fair coin $n=100$ times and let H be the total number of heads
- What if we consider higher moments?
- Looking at the $4^{\text {th }}$ moment: $\operatorname{Pr}[H \geq 60] \leq 0.186$
- Markov's inequality: $\operatorname{Pr}[H \geq 60] \leq 0.833$
- Chebyshev's inequality: $\operatorname{Pr}[H \geq 60] \leq 0.25$
- Truth: $\operatorname{Pr}[H \geq 60] \approx 0.0284$

Concentration Inequalities

- Looking at the $k^{\text {th }}$ moment for sufficiently high k gives a number of very strong (and useful!) concentration inequalities with exponential tail bounds
- Chernoff bounds, Bernstein's inequality, Hoeffding's inequality, etc.

Bernstein's Inequality

- Bernstein's inequality: Let $X_{1}, \ldots, X_{n} \in[-M, M]$ be independent random variables and let $X=X_{1}+\cdots+X_{n}$ have mean μ and variance σ^{2}. Then for any $t \geq 0$:

$$
\operatorname{Pr}[|X-\mu| \geq t] \leq 2 e^{-\frac{t^{2}}{2 \sigma^{2}+\frac{4}{3} M t}}
$$

Bernstein's Inequality

- Bernstein's inequality: Let $X_{1}, \ldots, X_{n} \in[-M, M]$ be independent random variables and let $X=X_{1}+\cdots+X_{n}$ have mean μ and variance σ^{2}. Then for any $t \geq 0$:

$$
\operatorname{Pr}[|X-\mu| \geq t] \leq 2 e^{-\frac{t^{2}}{2 \sigma^{2}+\frac{4}{3} M t}}
$$

- Example: Suppose $M=1$ and let $t=k \sigma$. Then

$$
\operatorname{Pr}[|X-\mu| \geq k \sigma] \leq 2 \exp \left(-\frac{k^{2}}{4}\right)
$$

Bernstein's Inequality

- Suppose $M=1$ and let $t=k \sigma$. Then

$$
\operatorname{Pr}[|X-\mu| \geq k \sigma] \leq 2 \exp \left(-\frac{k^{2}}{4}\right)
$$

- Compare to Chebyshev's inequality:

$$
\operatorname{Pr}[|X-\mu| \geq k \sigma] \leq \frac{1}{k^{2}}
$$

- Exponential improvement!

Bernstein's Inequality

- Suppose we flip a fair coin $n=100$ times and let H be the total number of heads
- Markov's inequality: $\operatorname{Pr}[H \geq 60] \leq 0.833$
- Chebyshev's inequality: $\operatorname{Pr}[H \geq 60] \leq 0.25$
- $4^{\text {th }}$ moment: $\operatorname{Pr}[H \geq 60] \leq 0.186$
- Bernstein's inequality: $\operatorname{Pr}[H \geq 60] \leq 0.15$
- Truth: $\operatorname{Pr}[H \geq 60] \approx 0.0284$

Bernstein's Inequality

- Suppose $M=1$ and let $t=k \sigma$. Then

$$
\operatorname{Pr}[|X-\mu| \geq k \sigma] \leq 2 \exp \left(-\frac{k^{2}}{4}\right)
$$

- Plot across values of k looks like normal random variable
- PDF of Gaussian $\mathrm{N}\left(0, \sigma^{2}\right)$ is

$$
p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{x^{2}}{2 \sigma^{2}}}
$$

Central Limit Theorem

- Stronger Central Limit Theorem: The distribution of the sum of n bounded independent random variables converges to a Gaussian (normal) distribution as n goes to infinity
- Why is the Gaussian distribution is so important in statistics, data science, ML, etc.?
- Many random variables can be approximated as the sum of a large number of small and roughly independent random effects. Thus, their distribution looks Gaussian by CLT.

