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Last Time: Expected Value

• The expected value of a random variable 𝑋 over Ω is:

• The “average value of the random variable"

• Linearity of expectation: E 𝑋 + 𝑌 = E 𝑋 + E 𝑌

E 𝑋 = ෍

𝑥∈Ω

Pr 𝑋 = 𝑥 ⋅ 𝑥



Last Time: Markov’s Inequality

• Let 𝑋 ≥ 0 be a non-negative random variable. Then for any 𝑡 > 0:

• Can rewrite as Pr 𝑋 ≥ 𝑡 ≤
E[𝑋]

𝑡

• “Bounding the deviation of a random variable in terms of its average”

Pr 𝑋 ≥ 𝑡 ⋅ E[𝑋] ≤
1

𝑡



Limitations of Markov’s Inequality

• Let 𝑋 be the outcome of a roll of a die. Then E 𝑋 = 3.5 =
7

2

• We know Pr 𝑋 ≥ 6 =
1

6
≈ 0.167

Pr 𝑋 ≥ 6 = Pr 𝑋 ≥
12

7
⋅
7

2
≤

7

12
≈ 0.5833



Moments

• For 𝑝 > 0, the 𝑝-th moment of a random variable 𝑋 over Ω is:

E 𝑋𝑝 = ෍

𝑥∈Ω

Pr 𝑋 = 𝑥 ⋅ 𝑥𝑝



Variance

• The variance of a random variable 𝑋 over Ω is:

• Can rewrite Var 𝑋 = E 𝑋2 − E 𝑋 2 since E E 𝑋 = E[𝑋]

• “On average, how far numbers are from the average”

Var 𝑋 = E 𝑋 − E 𝑋 2



Variance

• Can rewrite Var 𝑋 = E 𝑋 − E 𝑋 2 since E E 𝑋 = E[𝑋]

E 𝑋 − E 𝑋 2 = E 𝑋2 − 2𝑋 ⋅ E 𝑋 + E[𝑋] 2

= E 𝑋2 − 2E 𝑋 ⋅ E E 𝑋 + E 𝑋 2

= E 𝑋2 − 2E 𝑋 ⋅ E 𝑋 + E 𝑋 2

= E 𝑋2 − 2 E 𝑋 2 + E 𝑋 2

= E 𝑋2 − E 𝑋 2 = Var 𝑋



Variance

• The variance of a random variable 𝑋 over Ω is:

• Linearity of variance for independent random variables: Var 𝑋 + 𝑌 =
Var 𝑋 + Var 𝑌

Var 𝑋 = E 𝑋2 − E 𝑋 2



Variance and Standard Deviation

• The variance of a random variable 𝑋 over Ω is:

𝜎2 = Var 𝑋 = E 𝑋2 − E 𝑋 2

• The standard deviation std(𝑋) of a 
random variable 𝑋 is 𝜎, and measures 
how far apart the outcomes are

• Standard deviation is in the same unit 
as the data set



Variance

• Suppose 𝑋 takes the value 1 with probability 
1

2
and takes the value −1

with probability 
1

2

• What is E 𝑋 ?

• What is Var 𝑋 ? What is std(𝑋)?



Variance

• Suppose 𝑌 takes the value 100 with probability 
1

2
and takes the value 

− 100 with probability 
1

2

• What is E 𝑌 ?

• What is Var 𝑌 ? What is std(𝑌)?



Markov’s Inequality

• Let 𝑋 ≥ 0 be a non-negative random variable. Then for any 𝑡 > 0:

• Can rewrite as Pr 𝑋 ≥ 𝑡 ≤
E[𝑋]

𝑡

Pr 𝑋 ≥ 𝑡 ⋅ E[𝑋] ≤
1

𝑡



Markov’s Inequality

• Let 𝑋 ≥ 0 be a non-negative random variable. Then for any 𝑡 > 0:

• Can rewrite as Pr 𝑋 ≥ 𝑡 ≤
E[𝑋]

𝑡

• We have Pr 𝑋 ≥ 𝑡 = Pr 𝑋2 ≥ 𝑡2

Pr 𝑋 ≥ 𝑡 ⋅ E[𝑋] ≤
1

𝑡



Using Markov’s Inequality

• We have Pr 𝑋 ≥ 𝑡 = Pr 𝑋2 ≥ 𝑡2

• Plug in 𝑋 − E[𝑋] for 𝑋

Pr 𝑋 ≥ 𝑡 = Pr 𝑋2 ≥ 𝑡2 ≤
𝐸[𝑋2]

𝑡2

Pr 𝑋 − E[𝑋] ≥ 𝑡 ≤
E[(𝑋 − E 𝑋 )2]

𝑡2



Toward Chebyshev’s Inequality

Pr 𝑋 − E[𝑋] ≥ 𝑡 ≤
E[(𝑋 − E 𝑋 )2]

𝑡2



Chebyshev’s Inequality

• Recall that Var 𝑋 = E 𝑋2 − E 𝑋 2 = E 𝑋 − E 𝑋 2

• Pr 𝑋 − E[𝑋] ≥ 𝑡 ≤
Var[𝑋]

𝑡2

Pr 𝑋 − E[𝑋] ≥ 𝑡 ≤
E[(𝑋 − E 𝑋 )2]

𝑡2



Chebyshev’s Inequality

• Let 𝑋 be a random variable with expected value 𝜇 ≔ E[𝑋] and 
variance 𝜎2 ≔ Var 𝑋

• Pr 𝑋 − E[𝑋] ≥ 𝑡 ≤
Var[𝑋]

𝑡2
becomes Pr 𝑋 − E[𝑋] ≥ 𝑡 ≤

𝜎2

𝑡2

• “Bounding the deviation of a random variable in terms of its standard 
deviation / variance”

Pr 𝑋 − 𝜇 ≥ 𝑘𝜎 ≤
1

𝑘2



Chebyshev’s Inequality

• Let 𝑋 be a random variable with expected value 𝜇 ≔ E[𝑋] and 
variance 𝜎2 ≔ Var 𝑋

• Do not require assumptions about 𝑋

Pr 𝑋 − 𝜇 ≥ 𝑘𝜎 ≤
1

𝑘2



Chebyshev’s Inequality

• Let 𝑋 be the outcome of a roll of a die. Then E 𝑋 = 3.5 =
7

2
and 

Var 𝑋 =
35

12
≈ 2.92 so std(𝑋) ≈ 1.71

• Recall that Markov’s inequality bounded this by 0.5833

Pr 𝑋 ≥ 6 = Pr 𝑋 − 3.5 ≥ 2.5

= Pr 𝑋 − 3.5 ≥ 1.41 ⋅ 1.71

≤
1

1.412
≈ 0.4667



Law of Large Numbers

• Let 𝑋1, … , 𝑋𝑛 be random variables that are independent identically 
distributed (i.i.d.) with mean 𝜇 and variance 𝜎2

• Consider the sample average 𝑋 =
1

𝑛
σ𝑖 𝑋𝑖. How does it compare to 𝜇?

• Var 𝑋 =
1

𝑛2
σ𝑖 Var 𝑋𝑖 =

𝜎2

𝑛

• By Chebyshev’s inequality, Pr 𝑆 − 𝜇 ≥ 𝑡 ≤
𝜎2

𝑛𝑡



Law of Large Numbers

• By Chebyshev’s inequality, Pr 𝑆 − 𝜇 ≥ 𝑡 ≤
𝜎2

𝑛𝑡

• Law of Large Numbers: The sample average will always concentrate to 
the mean, given enough samples



Use Case

• Suppose we design a randomized algorithm 𝐴 to estimate a hidden 
statistic Θ of a dataset and we know 0 < Θ ≤ 1000

• Suppose each time we use the algorithm 𝐴, it outputs a number 𝑋
such that E 𝑋 = Θ and Var 𝑋 = 100Θ2

• What can we say about 𝐴? 

• Pr 𝑋 − Θ ≥ 30Θ ≤
1

9
and Θ ≤ 1000 so Pr 𝑋 − Θ < 30,000 >

8

9



Accuracy Boosting

• How can we use 𝐴 to get additive error 𝜀?



Accuracy Boosting

• How can we use 𝐴 to get additive error 𝜀?

• Repeat 𝐴 a total of 
1012

𝜀2
times and take the average

• The variance of the average is 
𝜀2

1010
Θ and Pr 𝑋 − 𝜇 ≥ 𝑘 ≤

𝜎2

𝑘2

• Pr 𝑋 − Θ ≥ 𝜀 ≤
Θ

1010
and Θ ≤ 1000 so Pr 𝑋 − Θ < 𝜀 > 0.999



Accuracy Boosting

• Algorithmic consequence of Law of Large Numbers

• To improve the accuracy of your algorithm, run it many times 
independently and take the average



Limitations

• Suppose we flip a fair coin 𝑛 = 100 times and let 𝐻 be the total 
number of heads

• E 𝐻 = 50 and Var 𝐻 = 25

• Markov’s inequality: Pr 𝐻 ≥ 60 ≤ 0.833

• Chebyshev’s inequality: Pr 𝐻 ≥ 60 ≤ 0.25

• Truth: Pr 𝐻 ≥ 60 ≈ 0.0284



Intuition for Previous Inequalities

• Recall: We proved Markov’s inequality by looking at the first moment 
of the random variable 𝑋

• Recall: We proved Chebyshev’s inequality by applying Markov to the 
second moment of the random variable 𝑋 − E[𝑋]

Pr 𝑋 − E[𝑋] ≥ 𝑡 = Pr 𝑋 − E 𝑋 2 ≥ 𝑡2 ≤
Var[𝑋]

𝑡2

Pr 𝑋 ≥ 𝑡 ⋅ E[𝑋] ≤
1

𝑡



Generalizations

• Suppose we flip a fair coin 𝑛 = 100 times and let 𝐻 be the total 
number of heads

• What if we consider higher moments?

• Looking at the 4th moment: Pr 𝐻 ≥ 60 ≤ 0.186

• Markov’s inequality: Pr 𝐻 ≥ 60 ≤ 0.833

• Chebyshev’s inequality: Pr 𝐻 ≥ 60 ≤ 0.25

• Truth: Pr 𝐻 ≥ 60 ≈ 0.0284



Concentration Inequalities

• Looking at the 𝑘th moment for sufficiently high 𝑘 gives a number of 
very strong (and useful!) concentration inequalities with exponential 
tail bounds

• Chernoff bounds, Bernstein’s inequality, Hoeffding’s inequality, etc. 



Bernstein’s Inequality

• Bernstein’s inequality: Let 𝑋1, … , 𝑋𝑛 ∈ [−𝑀,𝑀] be independent 
random variables and let 𝑋 = 𝑋1 +⋯+ 𝑋𝑛 have mean 𝜇 and 
variance 𝜎2. Then for any 𝑡 ≥ 0:

Pr 𝑋 − 𝜇 ≥ 𝑡 ≤ 2𝑒
−

𝑡2

2𝜎2+
4
3
𝑀𝑡



Bernstein’s Inequality

• Bernstein’s inequality: Let 𝑋1, … , 𝑋𝑛 ∈ [−𝑀,𝑀] be independent 
random variables and let 𝑋 = 𝑋1 +⋯+ 𝑋𝑛 have mean 𝜇 and 
variance 𝜎2. Then for any 𝑡 ≥ 0:

• Example: Suppose 𝑀 = 1 and let 𝑡 = 𝑘𝜎. Then

Pr 𝑋 − 𝜇 ≥ 𝑘𝜎 ≤ 2exp −
𝑘2

4

Pr 𝑋 − 𝜇 ≥ 𝑡 ≤ 2𝑒
−

𝑡2

2𝜎2+
4
3
𝑀𝑡



Bernstein’s Inequality

• Suppose 𝑀 = 1 and let 𝑡 = 𝑘𝜎. Then

• Compare to Chebyshev’s inequality:

• Exponential improvement!

Pr 𝑋 − 𝜇 ≥ 𝑘𝜎 ≤ 2exp −
𝑘2

4

Pr 𝑋 − 𝜇 ≥ 𝑘𝜎 ≤
1

𝑘2



Bernstein’s Inequality

• Suppose we flip a fair coin 𝑛 = 100 times and let 𝐻 be the total 
number of heads

• Markov’s inequality: Pr 𝐻 ≥ 60 ≤ 0.833

• Chebyshev’s inequality: Pr 𝐻 ≥ 60 ≤ 0.25

• 4th moment: Pr 𝐻 ≥ 60 ≤ 0.186

• Bernstein’s inequality: Pr 𝐻 ≥ 60 ≤ 0.15

• Truth: Pr 𝐻 ≥ 60 ≈ 0.0284



Bernstein’s Inequality

• Suppose 𝑀 = 1 and let 𝑡 = 𝑘𝜎. Then

Pr 𝑋 − 𝜇 ≥ 𝑘𝜎 ≤ 2exp −
𝑘2

4
• Plot across values of 𝑘 looks like 

normal random variable

• PDF of Gaussian N 0, 𝜎2  is

𝑝 𝑥 =
1

2𝜋𝜎2
𝑒
−
𝑥2

2𝜎2



Central Limit Theorem

• Stronger Central Limit Theorem: The distribution of the sum of 𝑛
bounded independent random variables converges to a Gaussian 
(normal) distribution as 𝑛 goes to infinity

• Why is the Gaussian distribution is so important in statistics, data 
science, ML, etc.?

• Many random variables can be approximated as the sum of a large 
number of small and roughly independent random effects. Thus, their 
distribution looks Gaussian by CLT.
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