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Recall: Moments

* Forp > 0, the p-th moment of a random variable X over () is:

E[XP] = z PriX = x] - xP



Last Time: Chebyshev’s Inequality

* Let X be a random variable with expected value u := E[X] and
variance % = Var[X]

2
Var[ ! becomes Pr(|X —E[X]| = t] <<

= £2

* Pr{lX —E[X]| = t] <

1
Pr[|X — u| = ko] < )

* “Bounding the deviation of a random variable in terms of its variance”



Last Time: Accuracy Boosting

* Algorithmic consequence of Law of Large Numbers

* To improve the accuracy of your algorithm, run it many times
independently and take the average



Recall: Concentration Inequalities

* Concentration inequalities bound the probability that a random
variable is “far away” from its expectation

 Looking at the k™ moment for sufficiently high k gives a number of
very strong (and useful!) concentration inequalities with exponential
tail bounds

* Chernoff bounds, Bernstein’s inequality, Hoeffding’s inequality, etc.



Limitations

* Suppose we flip a fair coinn = 100 times and let H be the total
number of heads

« E|H| = 50 and Var|H| = 25

* Markov’s inequality: Pr|H = 60] < 0.833
* Chebyshev’s inequality: Pr[H = 60] < 0.25
* Truth: Pr|H = 60] =~ 0.0284



Intuition for Previous Inequalities

» Recall: We proved Markov’s inequality by looking at the first moment
of the random variable X

PriX >t - E[X]] < %

* Recall: We proved Chebyshev’s inequality by applying Markov to the
second moment of the random variable X — E[X]

V
- ar|X]|
S0

Pr[|X — E[X]| = t] = Pr[|X — E[X]|? = t?]



Generalizations

* Suppose we flip a fair coinn = 100 times and let H be the total
number of heads

* What if we consider higher moments?
 Looking at the 4™ moment: Pr[H = 60] < 0.186

e Markov’s inequality: Pr[H = 60] < 0.833
e Chebyshev’s inequality: Pr[H > 60] < 0.25
* Truth: Pr[H = 60] =~ 0.0284



Concentration Inequalities

 Looking at the k™ moment for sufficiently high k gives a number of
very strong (and useful!) concentration inequalities with exponential
tail bounds

* Chernoff bounds, Bernstein’s inequality, Hoeffding’s inequality, etc.



Bernstein’s Inequality

* Bernstein’s inequality: Let X4, ..., X,, € |—M, M| be independent
random variables and let X = X; + --- + X,, have mean u and
variance d*. Then for any t > 0:

t2
7}
Pr||X —u| = t] < 2e 20°+3Mt




Bernstein’s Inequality

* Bernstein’s inequality: Let X4, ..., X,, € |—M, M| be independent
random variables and let X = X; + --- + X,, have mean u and
variance d*. Then for any t > 0:

t2
7}
Pr||X —u| = t] < 2e 20°+3Mt

e Example: Suppose M = 1 and lett = ko. Then ,
k
Pr[|X — ul = ko] < 2exp (— Z)



Bernstein’s Inequality

e Suppose M = 1 andlett = ko. Then
k2

Pr||X — u| = ko] < 2exp (— Z)

 Compare to Chebyshev’s inequality:
1
Prl|X — u| = ko] < )

* Exponential improvement!



Bernstein’s Inequality

* Suppose we flip a fair coinn = 100 times and let H be the total
number of heads

* Markov’s inequality: Pr|[H = 60] < 0.833

e Chebyshev’s inequality: Pr[H > 60] < 0.25
« 4t moment: Pr[H = 60] < 0.186
 Bernstein’s inequality: Pr|H > 60] < 0.15
* Truth: Pr|H = 60] =~ 0.0284



Bernstein’s Inequality

e Suppose M = 1 andlett = ko. Then
k2
Pr||X —u| = ko] < 2exp (— Z)

* Plot across values of k looks like
normal random variable

* PDF of Gaussian N(0, g%) is // \

1 _x% /s
p(x) = e 20°
V2mo? / | |




Central Limit Theorem

e Stronger Central Limit Theorem: The distribution of the sum of n
bounded independent random variables converges to a Gaussian
(normal) distribution as n goes to infinity

* Why is the Gaussian distribution is so important in statistics, data
science, ML, etc.?

* Many random variables can be approximated as the sum of a large
number of small and roughly independent random effects. Thus, their
distribution looks Gaussian by CLT.



Trivia Question #3 (Max Load)

e Suppose we have a fair n-sided die that we roll n times. “On average”,

what is the largest number of times any outcome is rolled? Example:
1,5,2,4,1,3,1forn=7

. (1)
* O(logn)

* O(Vn)
* O(n)



Trivia Question #4 (Coupon Collector)

e Suppose we have a fair n-sided die. “On average”, how many times

should we roll the die before we see all possible outcomes among the
rolls? Example: 1,5,2,4,1,3,1,6forn =6

* O(n)
* O(nlogn)



Chernoff Bounds

e Useful variant of Bernstein’s inequality when the random variables
are binary

* Chernoff bounds: Let X, ..., X,, € {0, 1} be independent random
variables and let X = X; + --- + X,, have mean u. Then for any 6 = 0:

5% u
Pri|X —u|l = du] < 2exp 5



Multiplicative Error Chernoft Bounds

* Chernoff bounds: Let X, ..., X,, € {0, 1} be independent random
variables and let X = X; + :-- + X,, have mean u. For § € (0,1):

(-575)
PriX = (1+6)u] < 2exp

PriI X< (1-96)u] < exp( 52#)

5% u
Pri|X —u|l = déu] < 2exp g



Use Case

e Suppose we design a randomized algorithm A that outputs a real
number Z that is “correct” with probability %, e.g., Z €{0,1}

* Suppose we want to be correct with probability 0.999 or 1 — —~ or

n2
1—-0

e What can we do?



Success Boosting

* Chernoff bounds: Run the algorithm A a total of O (log %) times and
take the median. It will be correct with probability 1 — 6



Median-of-Means Framework

* Suppose we design a randomized algorithm A to estimate a hidden
statistic ® of a dataset and we know 0 < 0 < 1000.

e Suppose each time we use the algorithm A4, it outputs a number X
such that E[X] = © and Var[X] = 100072

e Suppose we want to estimate 0 to accuracy &, with probability 1 — 6



Median-of-Means Framework

* Suppose we design a randomized algorithm A to estimate a hidden
statistic ® of a dataset and we know 0 < 0 < 1000.

e Suppose each time we use the algorithm A4, it outputs a number X
such that E[X] = © and Var[X] = 100072

e Suppose we want to estimate 0 to accuracy &, with probability 1 — 6

112

* Accuracy boosting: Repeat A a total of times and take the mean

c2
* Success boosting: Find the mean a total of O (log%) times and take

the median, to be correct with probability 1 — 6



Max Load

e Suppose we have a fair n-sided die that we roll n times. “On average”,

what is the largest number of times any outcome is rolled? Example:
1,5,2,4,1,3,1forn =7

* Fixavalue k € |n]
* Let X; = 1 if the i-throllis k and X; = 0 otherwise

+ BLX;] =~



Max Load

* The total number of rolls withvalue kis X = X; + --- + X,
c E|X] =1
* Recall Chernoff bounds:

5% u
PriX > (1+6)u] < 2exp S

* Pr[X = 3logn] < —

n2



Max Load

* Recall we fixed a value k € |n]

* Pr[X = 3logn| < % means that with probability at least 1 — %, we
will get fewer than 3 log n rolls with value k

* Union bound: With probability at least 1 — %, no outcome will be
rolled more than 3 logn times



Trivia Question #3 (Max Load)

e Suppose we have a fair n-sided die that we roll n times. “On average”,

what is the largest number of times any outcome is rolled? Example:
1,5,2,4,1,3,1forn=7

. (1)
* O(logn)

* O(Vn)
* O(n)



Coupon Collector

e Suppose we have a fair n-sided die. “On average”, how many times
should we roll the die before we see all possible outcomes among the
rolls? Example: 1,5,2,4,1,3,1,6forn =6

* Consider 7 rolls
* Fix a specific outcome k € |n]

* Let X; = 1 ifthe i-throllis k and X; = 0 otherwise

+ BLX;] =~

n



Coupon Collector

* The total number of rolls withvalue kis X = X; + --- + X,
r

* E[X] =—-=6lognforr = 6nlogn

n
e Recall Chernoff bounds:

PriX<(1-96)u] < exp( 62#)

2

* Pr[X <logn|] <=



Coupon Collector

* Recall we fixed a value k € |n]

1 . . 1
* Pr|X < logn] < — means that with probability at least 1 — —;, we
n n
will at least log n rolls with value k

* Union bound: With probability at least 1 — 1, all outcomes will be

n
rolled at least log n times



Trivia Question #4 (Coupon Collector)

e Suppose we have a fair n-sided die. “On average”, how many times

should we roll the die before we see all possible outcomes among the
rolls? Example: 1,5,2,4,1,3,1,6forn =6

* O(n)
* O(nlogn)
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