CSCE 658: Randomized Algorithms

Lecture 5

Samson Zhou

Recall: Moments

- For $p>0$, the p-th moment of a random variable X over Ω is:

$$
\mathrm{E}\left[X^{p}\right]=\sum_{x \in \Omega} \operatorname{Pr}[X=x] \cdot x^{p}
$$

Last Time: Chebyshev's Inequality

- Let X be a random variable with expected value $\mu:=\mathrm{E}[X]$ and variance $\sigma^{2}:=\operatorname{Var}[X]$
- $\operatorname{Pr}[|X-\mathrm{E}[X]| \geq t] \leq \frac{\operatorname{Var}[X]}{t^{2}}$ becomes $\operatorname{Pr}[|X-\mathrm{E}[X]| \geq t] \leq \frac{\sigma^{2}}{t^{2}}$

$$
\operatorname{Pr}[|X-\mu| \geq k \sigma] \leq \frac{1}{k^{2}}
$$

- "Bounding the deviation of a random variable in terms of its variance"

Last Time: Accuracy Boosting

- Algorithmic consequence of Law of Large Numbers
- To improve the accuracy of your algorithm, run it many times independently and take the average

Recall: Concentration Inequalities

- Concentration inequalities bound the probability that a random variable is "far away" from its expectation
- Looking at the $k^{\text {th }}$ moment for sufficiently high k gives a number of very strong (and useful!) concentration inequalities with exponential tail bounds
- Chernoff bounds, Bernstein's inequality, Hoeffding's inequality, etc.

Limitations

- Suppose we flip a fair coin $n=100$ times and let H be the total number of heads
- $\mathrm{E}[H]=50$ and $\operatorname{Var}[H]=25$
- Markov's inequality: $\operatorname{Pr}[H \geq 60] \leq 0.833$
- Chebyshev's inequality: $\operatorname{Pr}[H \geq 60] \leq 0.25$
- Truth: $\operatorname{Pr}[H \geq 60] \approx 0.0284$

Intuition for Previous Inequalities

- Recall: We proved Markov's inequality by looking at the first moment of the random variable X

$$
\operatorname{Pr}[X \geq t \cdot \mathrm{E}[X]] \leq \frac{1}{t}
$$

- Recall: We proved Chebyshev's inequality by applying Markov to the second moment of the random variable $X-\mathrm{E}[X]$

$$
\operatorname{Pr}[|X-\mathrm{E}[X]| \geq t]=\operatorname{Pr}\left[|X-\mathrm{E}[X]|^{2} \geq t^{2}\right] \leq \frac{\operatorname{Var}[X]}{t^{2}}
$$

Generalizations

- Suppose we flip a fair coin $n=100$ times and let H be the total number of heads
- What if we consider higher moments?
- Looking at the $4^{\text {th }}$ moment: $\operatorname{Pr}[H \geq 60] \leq 0.186$
- Markov's inequality: $\operatorname{Pr}[H \geq 60] \leq 0.833$
- Chebyshev's inequality: $\operatorname{Pr}[H \geq 60] \leq 0.25$
- Truth: $\operatorname{Pr}[H \geq 60] \approx 0.0284$

Concentration Inequalities

- Looking at the $k^{\text {th }}$ moment for sufficiently high k gives a number of very strong (and useful!) concentration inequalities with exponential tail bounds
- Chernoff bounds, Bernstein's inequality, Hoeffding's inequality, etc.

Bernstein's Inequality

- Bernstein's inequality: Let $X_{1}, \ldots, X_{n} \in[-M, M]$ be independent random variables and let $X=X_{1}+\cdots+X_{n}$ have mean μ and variance σ^{2}. Then for any $t \geq 0$:

$$
\operatorname{Pr}[|X-\mu| \geq t] \leq 2 e^{-\frac{t^{2}}{2 \sigma^{2}+\frac{4}{3} M t}}
$$

Bernstein's Inequality

- Bernstein's inequality: Let $X_{1}, \ldots, X_{n} \in[-M, M]$ be independent random variables and let $X=X_{1}+\cdots+X_{n}$ have mean μ and variance σ^{2}. Then for any $t \geq 0$:

$$
\operatorname{Pr}[|X-\mu| \geq t] \leq 2 e^{-\frac{t^{2}}{2 \sigma^{2}+\frac{4}{3} M t}}
$$

- Example: Suppose $M=1$ and let $t=k \sigma$. Then

$$
\operatorname{Pr}[|X-\mu| \geq k \sigma] \leq 2 \exp \left(-\frac{k^{2}}{4}\right)
$$

Bernstein's Inequality

- Suppose $M=1$ and let $t=k \sigma$. Then

$$
\operatorname{Pr}[|X-\mu| \geq k \sigma] \leq 2 \exp \left(-\frac{k^{2}}{4}\right)
$$

- Compare to Chebyshev's inequality:

$$
\operatorname{Pr}[|X-\mu| \geq k \sigma] \leq \frac{1}{k^{2}}
$$

- Exponential improvement!

Bernstein's Inequality

- Suppose we flip a fair coin $n=100$ times and let H be the total number of heads
- Markov's inequality: $\operatorname{Pr}[H \geq 60] \leq 0.833$
- Chebyshev's inequality: $\operatorname{Pr}[H \geq 60] \leq 0.25$
- $4^{\text {th }}$ moment: $\operatorname{Pr}[H \geq 60] \leq 0.186$
- Bernstein's inequality: $\operatorname{Pr}[H \geq 60] \leq 0.15$
- Truth: $\operatorname{Pr}[H \geq 60] \approx 0.0284$

Bernstein's Inequality

- Suppose $M=1$ and let $t=k \sigma$. Then

$$
\operatorname{Pr}[|X-\mu| \geq k \sigma] \leq 2 \exp \left(-\frac{k^{2}}{4}\right)
$$

- Plot across values of k looks like normal random variable
- PDF of Gaussian $\mathrm{N}\left(0, \sigma^{2}\right)$ is

$$
p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{x^{2}}{2 \sigma^{2}}}
$$

Central Limit Theorem

- Stronger Central Limit Theorem: The distribution of the sum of n bounded independent random variables converges to a Gaussian (normal) distribution as n goes to infinity
- Why is the Gaussian distribution is so important in statistics, data science, ML, etc.?
- Many random variables can be approximated as the sum of a large number of small and roughly independent random effects. Thus, their distribution looks Gaussian by CLT.

Trivia Question \#3 (Max Load)

- Suppose we have a fair n-sided die that we roll n times. "On average", what is the largest number of times any outcome is rolled? Example: $1,5,2,4,1,3,1$ for $n=7$
- $\Theta(1)$
- $\widetilde{\Theta}(\log n)$
- $\widetilde{\Theta}(\sqrt{n})$
- $\widetilde{\Theta}(n)$

Trivia Question \#4 (Coupon Collector)

- Suppose we have a fair n-sided die. "On average", how many times should we roll the die before we see all possible outcomes among the rolls? Example: 1, 5, 2, 4, 1, 3, 1, 6 for $n=6$
- $\Theta(n)$
- $\Theta(n \log n)$
- $\Theta(n \sqrt{n})$
- $\Theta\left(n^{2}\right)$

Chernoff Bounds

- Useful variant of Bernstein's inequality when the random variables are binary
- Chernoff bounds: Let $X_{1}, \ldots, X_{n} \in\{0,1\}$ be independent random variables and let $X=X_{1}+\cdots+X_{n}$ have mean μ. Then for any $\delta \geq 0$:

$$
\operatorname{Pr}[|X-\mu| \geq \delta \mu] \leq 2 \exp \left(-\frac{\delta^{2} \mu}{2+\delta}\right)
$$

Multiplicative Error Chernoff Bounds

- Chernoff bounds: Let $X_{1}, \ldots, X_{n} \in\{0,1\}$ be independent random variables and let $X=X_{1}+\cdots+X_{n}$ have mean μ. For $\delta \in(0,1)$:

$$
\begin{gathered}
\operatorname{Pr}[X \geq(1+\delta) \mu] \leq 2 \exp \left(-\frac{\delta^{2} \mu}{2+\delta}\right) \\
\operatorname{Pr}[X \leq(1-\delta) \mu] \leq \exp \left(-\frac{\delta^{2} \mu}{2}\right) \\
\operatorname{Pr}[|X-\mu| \geq \delta \mu] \leq 2 \exp \left(-\frac{\delta^{2} \mu}{3}\right)
\end{gathered}
$$

Use Case

- Suppose we design a randomized algorithm A that outputs a real number Z that is "correct" with probability $\frac{2}{3}$, e.g., $Z \in\{0,1\}$
- Suppose we want to be correct with probability 0.999 or $1-\frac{1}{n^{2}}$ or $1-\delta$
- What can we do?

Success Boosting

- Chernoff bounds: Run the algorithm A a total of $O\left(\log \frac{1}{\delta}\right)$ times and take the median. It will be correct with probability $1-\delta$

Median-of-Means Framework

- Suppose we design a randomized algorithm A to estimate a hidden statistic Θ of a dataset and we know $0<\Theta \leq 1000$.
- Suppose each time we use the algorithm A, it outputs a number X such that $\mathrm{E}[X]=\Theta$ and $\operatorname{Var}[X]=100 \Theta^{2}$
- Suppose we want to estimate Θ to accuracy ε, with probability $1-\delta$

Median-of-Means Framework

- Suppose we design a randomized algorithm A to estimate a hidden statistic Θ of a dataset and we know $0<\Theta \leq 1000$.
- Suppose each time we use the algorithm A, it outputs a number X such that $\mathrm{E}[X]=\Theta$ and $\operatorname{Var}[X]=100 \Theta^{2}$
- Suppose we want to estimate Θ to accuracy ε, with probability $1-\delta$
- Accuracy boosting: Repeat A a total of $\frac{10^{12}}{\varepsilon^{2}}$ times and take the mean
- Success boosting: Find the mean a total of $O\left(\log \frac{1}{\delta}\right)$ times and take the median, to be correct with probability $1-\delta$

Max Load

- Suppose we have a fair n-sided die that we roll n times. "On average", what is the largest number of times any outcome is rolled? Example: $1,5,2,4,1,3,1$ for $n=7$
- Fix a value $k \in[n]$
- Let $X_{i}=1$ if the i-th roll is k and $X_{i}=0$ otherwise
- $\mathrm{E}\left[X_{i}\right]=\frac{1}{n}$

Max Load

- The total number of rolls with value k is $X=X_{1}+\cdots+X_{n}$
- $\mathrm{E}[\mathrm{X}]=1$
- Recall Chernoff bounds:

$$
\operatorname{Pr}[X \geq(1+\delta) \mu] \leq 2 \exp \left(-\frac{\delta^{2} \mu}{2+\delta}\right)
$$

- $\operatorname{Pr}[X \geq 3 \log n] \leq \frac{1}{n^{2}}$

Max Load

- Recall we fixed a value $k \in[n]$
- $\operatorname{Pr}[X \geq 3 \log n] \leq \frac{1}{n^{2}}$ means that with probability at least $1-\frac{1}{n^{2}}$, we will get fewer than $3 \log n$ rolls with value k
- Union bound: With probability at least $1-\frac{1}{n}$, no outcome will be rolled more than $3 \log n$ times

Trivia Question \#3 (Max Load)

- Suppose we have a fair n-sided die that we roll n times. "On average", what is the largest number of times any outcome is rolled? Example: $1,5,2,4,1,3,1$ for $n=7$
- $\Theta(1)$
- $\widetilde{\Theta}(\log n)$
- $\widetilde{\Theta}(\sqrt{n})$
- $\widetilde{\Theta}(n)$

Coupon Collector

- Suppose we have a fair n-sided die. "On average", how many times should we roll the die before we see all possible outcomes among the rolls? Example: 1, 5, 2, 4, 1, 3, 1, 6 for $n=6$
- Consider r rolls
- Fix a specific outcome $k \in[n]$
- Let $X_{i}=1$ if the i-th roll is k and $X_{i}=0$ otherwise
- $\mathrm{E}\left[X_{i}\right]=\frac{1}{n}$

Coupon Collector

- The total number of rolls with value k is $X=X_{1}+\cdots+X_{r}$
- $\mathrm{E}[X]=\frac{r}{n}=6 \log n$ for $r=6 n \log n$
- Recall Chernoff bounds:

$$
\operatorname{Pr}[X \leq(1-\delta) \mu] \leq \exp \left(-\frac{\delta^{2} \mu}{2}\right)
$$

- $\operatorname{Pr}[X \leq \log n] \leq \frac{1}{n^{2}}$

Coupon Collector

- Recall we fixed a value $k \in[n]$
- $\operatorname{Pr}[X \leq \log n] \leq \frac{1}{n^{2}}$ means that with probability at least $1-\frac{1}{n^{2}}$, we will at least $\log n$ rolls with value k
- Union bound: With probability at least $1-\frac{1}{n}$, all outcomes will be rolled at least $\log n$ times

Trivia Question \#4 (Coupon Collector)

- Suppose we have a fair n-sided die. "On average", how many times should we roll the die before we see all possible outcomes among the rolls? Example: 1, 5, 2, 4, 1, 3, 1, 6 for $n=6$
- $\Theta(n)$
- $\Theta(n \log n)$
- $\Theta(n \sqrt{n})$
- $\Theta\left(n^{2}\right)$

