CSCE 658: Randomized Algorithms

Lecture 6

Samson Zhou

Class Logistics

- MUST e-mail me to set up research meeting by next week if you're interested in doing final project
- Everyone else will be opting into the final exam

Recall: Concentration Inequalities

- Concentration inequalities bound the probability that a random variable is "far away" from its expectation
- Looking at the $k^{\text {th }}$ moment for sufficiently high k gives a number of very strong (and useful!) concentration inequalities with exponential tail bounds
- Chernoff bounds, Bernstein's inequality, Hoeffding's inequality, etc.

Recall: Concentration Inequalities

- Suppose we flip a fair coin $n=100$ times and let H be the total number of heads
- Markov's inequality: $\operatorname{Pr}[H \geq 60] \leq 0.833$
- Chebyshev's inequality: $\operatorname{Pr}[H \geq 60] \leq 0.25$
- $4^{\text {th }}$ moment: $\operatorname{Pr}[H \geq 60] \leq 0.186$
- Bernstein's inequality: $\operatorname{Pr}[H \geq 60] \leq 0.15$
- Truth: $\operatorname{Pr}[H \geq 60] \approx 0.0284$

Last Time: Chernoff Bounds

- Useful variant of Bernstein's inequality when the random variables are binary
- Chernoff bounds: Let $X_{1}, \ldots, X_{n} \in\{0,1\}$ be independent random variables and let $X=X_{1}+\cdots+X_{n}$ have mean μ. Then for any $\delta \geq 0$:

$$
\operatorname{Pr}[|X-\mu| \geq \delta \mu] \leq 2 \exp \left(-\frac{\delta^{2} \mu}{2+\delta}\right)
$$

Last Time: Median-of-Means Framework

- Suppose we design a randomized algorithm A to estimate a hidden statistic Θ of a dataset and we know $0<\Theta \leq 1000$.
- Suppose each time we use the algorithm A, it outputs a number X such that $\mathrm{E}[X]=\Theta$ and $\operatorname{Var}[X]=100 \Theta^{2}$
- Suppose we want to estimate Θ to accuracy ε, with probability $1-\delta$
- Accuracy boosting: Repeat A a total of $\frac{10^{12}}{\varepsilon^{2}}$ times and take the mean
- Success boosting: Find the mean a total of $O\left(\log \frac{1}{\delta}\right)$ times and take the median, to be correct with probability $1-\delta$

Trivia Question \#3 (Max Load)

- Suppose we have a fair n-sided die that we roll n times. "On average", what is the largest number of times any outcome is rolled? Example: $1,5,2,4,1,3,1$ for $n=7$
- $\Theta(1)$
- $\widetilde{\Theta}(\log n)$
- $\widetilde{\Theta}(\sqrt{n})$
- $\widetilde{\Theta}(n)$

Last Time: Max Load

- Recall we fixed a value $k \in[n]$
- $\operatorname{Pr}[X \geq 3 \log n] \leq \frac{1}{n^{2}}$ means that with probability at least $1-\frac{1}{n^{2}}$, we will get fewer than $3 \log n$ rolls with value k
- Union bound: With probability at least $1-\frac{1}{n^{\prime}}$, no outcome will be rolled more than $3 \log n$ times

Hashing

- Suppose we have a number of files, how do we consistently store them in memory?
- If we hash n items, we require $\Theta\left(n^{2}\right)$ slots to avoid collisions

Dealing with Collisions

- Suppose we store multiple items in the same location as a linked list

- If the maximum number of collisions in a location is c, then could traverse a linked list of size c for a query
- Query runtime: $O(c)$

Collisions and Max Load

- With probability at least $1-\frac{1}{n}$, no outcome will be rolled more than $3 \log n$ times
- Worst case query time: $O(\log n)$

Hashing

- For O (1) query time, use $\Theta\left(n^{2}\right)$ slots to avoid collisions
- For $O(\log n)$ query time, use $\Theta(n)$ slots with linked lists

End of Probability Unit

Dimensionality Reduction

Many images from:
Cameron Musco's
COMPSCI 514: Algorithms for Data Science

Big Data

- Not only many data points, but also many measurements per data point, i.e., very high dimensional data

Big Data

- Not only many data points, but also many measurements per data point, i.e., very high dimensional data
- Twitter has 450 million active monthly users (as of 2022), records (tens of) thousands of measurements per user: who they follow, who follows them, when they last visited the site, timestamps for specific interactions, how many tweets they have sent, the text of those tweets, etc...

Big Data

- Not only many data points, but also many measurements per data point, i.e., very high dimensional data
- A 3 minute Youtube clip with a resolution of 500×500 pixels at 15 frames/second with 3 color channels is a recording of 2 billion pixel values. Even a 500×500 pixel color image has 750,000 pixel values

Big Data

- Not only many data points, but also many measurements per data point, i.e., very high dimensional data
- The human genome contains 3 billion+ base pairs. Genetic datasets often contain information on 100s of thousands+ mutations and genetic markers

Visualizing Big Data

- Data points are interpreted as high dimensional vectors, with real valued entries: $x_{1}, \ldots, x_{n} \in R^{d}$
- Dataset is interpreted as a matrix: $X \in R^{n \times d}$ with k-th row x_{k}

Dimensionality Reduction

- Dimensionality Reduction: Transform the data points so that they have much smaller dimension

$$
x_{1}, \ldots, x_{n} \in R^{d} \longrightarrow y_{1}, \ldots, y_{n} \in R^{m} \quad \text { for } \quad m \ll d
$$

$5 \longrightarrow x_{i}=(0,1,0,0,1,0,1,1) \longrightarrow y_{i}=(-1,2,1)$

- Transformation should still capture the key aspects of x_{1}, \ldots, x_{n}

Low Distortion Embedding

- Given $x_{1}, \ldots, x_{n} \in R^{d}$, a distance function D, and an accuracy parameter $\varepsilon \in(0,1)$, a low-distortion embedding of x_{1}, \ldots, x_{n} is a set of points y_{1}, \ldots, y_{n}, and a distance function D^{\prime} such that for all $i, j \in$ [n]

$$
(1-\varepsilon) D\left(x_{i}, x_{j}\right) \leq D^{\prime}\left(y_{i}, y_{j}\right) \leq(1+\varepsilon) D\left(x_{i}, x_{j}\right)
$$

Euclidean Space

- For $z \in R^{d}$, the ℓ_{2} norm of z is denoted by $\|z\|_{2}$ and defined as:

$$
\|z\|_{2}=\sqrt{z_{1}^{2}+z_{2}^{2}+\cdots+z_{d}^{2}}
$$

Euclidean Space

- For $z \in R^{d}$, the ℓ_{2} norm of z is denoted by $\|z\|_{2}$ and defined as:

$$
\|z\|_{2}=\sqrt{z_{1}^{2}+z_{2}^{2}+\cdots+z_{d}^{2}}
$$

- For $x, y \in R^{d}$, the distance function D is denoted by $\|\cdot\|_{2}$ and defined as $\|x-y\|_{2}$

Low Distortion Embedding for Euclidean Space

- Given $x_{1}, \ldots, x_{n} \in R^{d}$ and an accuracy parameter $\varepsilon \in(0,1)$, a lowdistortion embedding of x_{1}, \ldots, x_{n} is a set of points y_{1}, \ldots, y_{n} such that for all $i, j \in[n]$

$$
(1-\varepsilon)\left\|x_{i}-x_{j}\right\|_{2} \leq\left\|y_{i}-y_{j}\right\|_{2} \leq(1+\varepsilon)\left\|x_{i}-x_{j}\right\|_{2}
$$

Examples: Embeddings for Euclidean Space

- Suppose $x_{1}, \ldots, x_{n} \in R^{d}$ all lie on the $1^{\text {st }}$ - axis
- Take $m=1$ and y_{i} to be the first coordinate of x_{i}
- Then $\left\|y_{i}-y_{j}\right\|_{2}=\left\|x_{i}-x_{j}\right\|_{2}$ for all $i, j \in[n]$
- Embedding has no distortion

Examples: Embeddings for Euclidean Space

- Suppose $x_{1}, \ldots, x_{n} \in R^{d}$ all lie on some line in R^{d}
- Rotate to line to be the $1^{\text {st }}$ - axis and proceed as before
- Require $m=1$ for embedding with no distortion

Examples: Embeddings for Euclidean Space

- Suppose $x_{1}, \ldots, x_{n} \in R^{d}$ lie in some k-dimensional subspace V of R^{d}

- Rotate V to coincide with the k - axes of R^{d} and set $m=k$

Embeddings for Euclidean Space

- Given $x_{1}, \ldots, x_{n} \in R^{d}$ that lie in general position, does there exist an embedding with no distortion?

Embeddings for Euclidean Space

- Given $x_{1}, \ldots, x_{n} \in R^{d}$ that lie in general position, does there exist an embedding with no distortion? NO!
- Given $x_{1}, \ldots, x_{n} \in R^{d}$ that lie in general position, does there exist an embedding with ε distortion?

Embeddings for Euclidean Space

- Given $x_{1}, \ldots, x_{n} \in R^{d}$ that lie in general position, does there exist an embedding with no distortion? NO!
- Given $x_{1}, \ldots, x_{n} \in R^{d}$ that lie in general position, does there exist an embedding with ε distortion? YES!
- Johnson-Lindenstrauss Lemma

Johnson-Lindenstrauss Lemma

- Johnson-Lindenstrauss Lemma: Given $x_{1}, \ldots, x_{n} \in R^{d}$ and an accuracy parameter $\varepsilon \in(0,1)$, there exists a linear map $\Pi: R^{d} \rightarrow R^{m}$ with $m=O\left(\frac{\log n}{\varepsilon^{2}}\right)$ so that if $y_{i}=\Pi x_{i}$, then for all $i, j \in[n]$:

$$
(1-\varepsilon)\left\|x_{i}-x_{j}\right\|_{2} \leq\left\|y_{i}-y_{j}\right\|_{2} \leq(1+\varepsilon)\left\|x_{i}-x_{j}\right\|_{2}
$$

Johnson-Lindenstrauss Lemma

- Johnson-Lindenstrauss Lemma: Given $x_{1}, \ldots, x_{n} \in R^{d}$ and an accuracy parameter $\varepsilon \in(0,1)$, there exists a linear map $\Pi: R^{d} \rightarrow R^{m}$ with $m=O\left(\frac{\log n}{\varepsilon^{2}}\right)$ so that if $y_{i}=\Pi x_{i}$, then for all $i, j \in[n]$:

$$
(1-\varepsilon)\left\|x_{i}-x_{j}\right\|_{2} \leq\left\|y_{i}-y_{j}\right\|_{2} \leq(1+\varepsilon)\left\|x_{i}-x_{j}\right\|_{2}
$$

- For $d=10^{12}, n=10^{5}$, and $\varepsilon=0.5$, only requires $m \approx 6600$

Johnson-Lindenstrauss Lemma

- Johnson-Lindenstrauss Lemma: Given $x_{1}, \ldots, x_{n} \in R^{d}$ and an accuracy parameter $\varepsilon \in(0,1)$, there exists a linear map $\Pi: R^{d} \rightarrow R^{m}$ with $m=O\left(\frac{\log n}{\varepsilon^{2}}\right)$ so that if $y_{i}=\Pi x_{i}$, then for all $i, j \in[n]$:

$$
(1-\varepsilon)\left\|x_{i}-x_{j}\right\|_{2} \leq\left\|y_{i}-y_{j}\right\|_{2} \leq(1+\varepsilon)\left\|x_{i}-x_{j}\right\|_{2}
$$

- Moreover, if each entry of Π is drawn from $\frac{1}{\sqrt{m}} N(0,1)$, then Π satisfies the guarantee with high probability

Johnson-Lindenstrauss Lemma

- Given $x_{1}, \ldots, x_{n} \in R^{d}$ and $\Pi \in R^{m \times d}$ with $m=O\left(\frac{\log n}{\varepsilon^{2}}\right)$ and each entry drawn from $\frac{1}{\sqrt{m}} N(0,1)$ and setting

$R^{m \times d}$	R^{d}
$.01-1.2$.34 .67 .10 -.45 .7 R^{m} .14 .18	
	Π

$$
m=O\left(\frac{\log n}{\varepsilon^{2}}\right)
$$

$(1-\varepsilon)\left\|x_{i}-x_{j}\right\|_{2} \leq\left\|y_{i}-y_{j}\right\|_{2} \leq(1+\varepsilon)\left\|x_{i}-x_{j}\right\|_{2}$

- Π is called a random projection

Johnson-Lindenstrauss Lemma

- Johnson-Lindenstrauss Lemma: Given $x_{1}, \ldots, x_{n} \in R^{d}$ and $\Pi \in R^{m \times d}$ with $m=O\left(\frac{\log n}{\varepsilon^{2}}\right)$ and each entry drawn from $\frac{1}{\sqrt{m}} N(0,1)$ and setting $y_{i}=\Pi x_{i}$, then with high probability, for all $i, j \in[n]$:

$$
(1-\varepsilon)\left\|x_{i}-x_{j}\right\|_{2} \leq\left\|y_{i}-y_{j}\right\|_{2} \leq(1+\varepsilon)\left\|x_{i}-x_{j}\right\|_{2}
$$

- "Applying a simple random linear transformation to a set of points approximately preserves all pairwise distances"

Johnson-Lindenstrauss Lemma

- Distributional Johnson-Lindenstrauss Lemma: Given $\Pi \in R^{m \times d}$ with $m=O\left(\frac{\log 1 / \delta}{\varepsilon^{2}}\right)$ and each entry drawn from $\frac{1}{\sqrt{m}} N(0,1)$, then for any $x \in R^{d}$ and setting $y=\Pi x$, then with probability at least $1-\delta$

$$
(1-\varepsilon)\|x\|_{2} \leq\|y\|_{2} \leq(1+\varepsilon)\|x\|_{2}
$$

Johnson-Lindenstrauss Lemma

- Johnson-Lindenstrauss Lemma: Given $x_{1}, \ldots, x_{n} \in R^{d}$ and $\Pi \in R^{m \times d}$ with $m=O\left(\frac{\log n}{\varepsilon^{2}}\right)$ and each entry drawn from $\frac{1}{\sqrt{m}} N(0,1)$ and setting $y_{i}=\Pi x_{i}$, then with high probability, for all $i, j \in[n]$:

$$
(1-\varepsilon)\left\|x_{i}-x_{j}\right\|_{2} \leq\left\|y_{i}-y_{j}\right\|_{2} \leq(1+\varepsilon)\left\|x_{i}-x_{j}\right\|_{2}
$$

- Distributional Johnson-Lindenstrauss Lemma: Given $\Pi \in R^{m \times d}$ with $m=O\left(\frac{\log 1 / \delta}{\varepsilon^{2}}\right)$ and each entry drawn from $\frac{1}{\sqrt{m}} N(0,1)$, then for any $x \in R^{d}$ and setting $y=\Pi x$, then with probability at least $1-\delta$

$$
(1-\varepsilon)\|x\|_{2} \leq\|y\|_{2} \leq(1+\varepsilon)\|x\|_{2}
$$

Johnson-Lindenstrauss Lemma

- JL says that the random projection Π preserves all pairwise distances of n points $x_{1}, \ldots, x_{n} \in R^{d}$
- Distributional JL shows that the random projection Π preserves the norm of any $x \in R^{d}$
- Take $x_{1}, \ldots, x_{n} \in R^{d}$ and define $z_{i, j}=x_{i}-x_{j} \in R^{d}$ for all $i, j \in[n]$
- $\binom{n}{2}$ total vectors

Johnson-Lindenstrauss Lemma

- Take $x_{1}, \ldots, x_{n} \in R^{d}$ and define $z_{i, j}=x_{i}-x_{j} \in R^{d}$ for all $i, j \in[n]$
- $\binom{n}{2}$ total vectors

Johnson-Lindenstrauss Lemma

- Distributional Johnson-Lindenstrauss Lemma: Given $\Pi \in R^{m \times d}$ with $m=O\left(\frac{\log 1 / \delta}{\varepsilon^{2}}\right)$ and each entry drawn from $\frac{1}{\sqrt{m}} N(0,1)$, then for any $x \in R^{d}$ and setting $y=\Pi x$, then with probability at least $1-\delta$

$$
(1-\varepsilon)\|x\|_{2} \leq\|y\|_{2} \leq(1+\varepsilon)\|x\|_{2}
$$

- What happens when we set $\delta=\frac{1}{n^{3}}$?

Johnson-Lindenstrauss Lemma

- Distributional Johnson-Lindenstrauss Lemma: Given $\Pi \in R^{m \times d}$ with $m=O\left(\frac{\log 1 / \delta}{\varepsilon^{2}}\right)$ and each entry drawn from $\frac{1}{\sqrt{m}} N(0,1)$, then for any $x \in R^{d}$ and setting $y=\Pi x$, then with probability at least $1-\delta$

$$
(1-\varepsilon)\|x\|_{2} \leq\|y\|_{2} \leq(1+\varepsilon)\|x\|_{2}
$$

- What happens when we set $\delta=\frac{1}{n^{3}}$?
- Union bound

Johnson-Lindenstrauss Lemma

- Distributional Johnson-Lindenstrauss Lemma: Given $\Pi \in R^{m \times d}$ with $m=O\left(\frac{\log 1 / \delta}{\varepsilon^{2}}\right)$ and each entry drawn from $\frac{1}{\sqrt{m}} N(0,1)$, then for any $x \in R^{d}$ and setting $y=\Pi x$, then with probability at least $1-\delta$

$$
(1-\varepsilon)\|x\|_{2} \leq\|y\|_{2} \leq(1+\varepsilon)\|x\|_{2}
$$

Johnson-Lindenstrauss Lemma

- Distributional Johnson-Lindenstrauss Lemma: Given $\Pi \in R^{m \times d}$ with $m=O\left(\frac{\log 1 / \delta}{\varepsilon^{2}}\right)$ and each entry drawn from $\frac{1}{\sqrt{m}} N(0,1)$, then for any $x \in R^{d}$ and setting $y=\Pi x$, then with probability at least $1-\delta$

$$
(1-\varepsilon)\|x\|_{2} \leq\|y\|_{2} \leq(1+\varepsilon)\|x\|_{2}
$$

(Here x_{1} is the first coordinate of x)

Trivia Question \#5 (Gaussian Behavior)

- Let $x \sim N\left(\mu, \sigma^{2}\right)$. What is $\mathrm{E}[x]$ and what is $\mathrm{E}\left[|x-\mu|^{2}\right]$?
- $(0,1)$
$\cdot(0, \sigma)$
PDF of Gaussian $N\left(\mu, \sigma^{2}\right)$ is $p(x)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}$
- (μ, σ)
- $\left(\mu, \sigma^{2}\right)$

Trivia Question \#6 (Gaussian Stability)

- For independent $a \sim N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $b \sim N\left(\mu_{2}, \sigma_{2}^{2}\right)$. What is the distribution of $a+b$?
- $N\left(\frac{\mu_{1}+\mu_{2}}{2}, \frac{\sigma_{1}+\sigma_{2}}{2}\right)$
- $N\left(\mu_{1}+\mu_{2}, \sigma_{1}+\sigma_{2}\right)$

- $N\left(\mu_{1}+\mu_{2}, \sqrt{\sigma_{1}^{2}+\sigma_{2}^{2}}\right)$
- $N\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)$

Johnson-Lindenstrauss Lemma

- $y_{i}=\left\langle\Pi_{i}, x\right\rangle=\frac{1}{\sqrt{m}} \sum_{j=1}^{d} g_{j} \cdot x_{j}$ for $g_{j} \sim N(0,1)$
- $g_{j} \cdot x_{j} \sim N\left(0, x_{j}^{2}\right)$, normal random variable with variance x_{j}^{2}
variance $1 \quad$ variance x_{j}^{2}

Gaussian Stability

What is the distribution of y_{i} ?

Gaussian Stability

- For independent $a \sim N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $b \sim N\left(\mu_{2}, \sigma_{2}^{2}\right)$, we have

$$
a+b \sim N\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right)
$$

Gaussian Stability

- For independent $a \sim N\left(\mu_{1}, \sigma_{1}^{2}\right)$ and $b \sim N\left(\mu_{2}, \sigma_{2}^{2}\right)$, we have

$$
\begin{gathered}
a+b \sim N\left(\mu_{1}+\mu_{2}, \sigma_{1}^{2}+\sigma_{2}^{2}\right) \\
y_{i}=\left\langle\Pi_{i}, x\right\rangle=\frac{1}{\sqrt{m}}\left(g_{1} \cdot x_{1}+g_{2} \cdot x_{2}+\cdots+g_{d} \cdot x_{d}\right) \\
y_{i} \sim N\left(0, \frac{1}{m}\|x\|_{2}^{2}\right)
\end{gathered}
$$

Gaussian Stability

- For $y_{i} \sim N\left(0, \frac{1}{m}\|x\|_{2}^{2}\right)$, we have $\mathrm{E}\left[y_{i}^{2}\right]=\frac{1}{m}\|x\|_{2}^{2}$
- We have $\mathrm{E}\left[\|y\|_{2}^{2}\right]=\mathrm{E}\left[y_{1}^{2}+\cdots+y_{m}^{2}\right]=\mathrm{E}\left[y_{1}^{2}\right]+\cdots+\mathrm{E}\left[y_{m}^{2}\right]=\|x\|_{2}^{2}$
- Correct expectation!
- How is it distributed?

Johnson-Lindenstrauss Lemma

- $\|y\|_{2}^{2}$ is distributed as Chi-Squared random variable with m degrees of freedom (sum of m squared independent Gaussians)

Johnson-Lindenstrauss Lemma

- $\|y\|_{2}^{2}$ is distributed as Chi-Squared random variable with m degrees of freedom (sum of m squared independent Gaussians)
- Chi-Squared Concentration: Let Z be a Chi-Squared random variable with m degrees of freedom. Then

$$
\operatorname{Pr}[|Z-\mathrm{E}[Z]| \geq \varepsilon \cdot \mathrm{E}[Z]] \leq 2 e^{-m \varepsilon^{2} / 8}
$$

- Claim follows from setting $m=O\left(\frac{\log 1 / \delta}{\varepsilon^{2}}\right)$

