CSCE 658: Randomized Algorithms

Lecture 6

Samson Zhou



Class Logistics

* MUST e-mail me to set up research meeting by next week if you're
interested in doing final project

* Everyone else will be opting into the final exam



Recall: Concentration Inequalities

* Concentration inequalities bound the probability that a random
variable is “far away” from its expectation

 Looking at the k™ moment for sufficiently high k gives a number of
very strong (and useful!) concentration inequalities with exponential
tail bounds

* Chernoff bounds, Bernstein’s inequality, Hoeffding’s inequality, etc.



Recall: Concentration Inequalities

* Suppose we flip a fair coinn = 100 times and let H be the total
number of heads

e Markov’s inequality: Pr|H = 60] < 0.833

e Chebyshev’s inequality: Pr[H = 60] < 0.25
« 4t moment: Pr[H = 60] < 0.186

* Bernstein’s inequality: Pr[H > 60] < 0.15
* Truth: Pr|H = 60] =~ 0.0284



Last Time: Chernoff Bounds

e Useful variant of Bernstein’s inequality when the random variables
are binary

* Chernoff bounds: Let X, ..., X,, € {0, 1} be independent random
variables and let X = X; + --- + X,, have mean u. Then for any 6 = 0:

5% u
Pri|X —u|l = du] < 2exp 5



Last Time: Median-of-Means Framework

* Suppose we design a randomized algorithm A to estimate a hidden
statistic ® of a dataset and we know 0 < 0 < 1000.

e Suppose each time we use the algorithm A4, it outputs a number X
such that E[X] = © and Var[X] = 100072

e Suppose we want to estimate 0 to accuracy &, with probability 1 — 6

112

* Accuracy boosting: Repeat A a total of times and take the mean

c2
* Success boosting: Find the mean a total of O (log%) times and take

the median, to be correct with probability 1 — 6



Trivia Question #3 (Max Load)

e Suppose we have a fair n-sided die that we roll n times. “On average”,

what is the largest number of times any outcome is rolled? Example:
1,5,2,4,1,3,1forn=7

. (1)
* O(logn)

* O(Vn)
* O(n)



Last Time: Max Load

* Recall we fixed a value k € |n]

* Pr[X = 3logn| < % means that with probability at least 1 — %, we
will get fewer than 3 log n rolls with value k

* Union bound: With probability at least 1 — %, no outcome will be
rolled more than 3 logn times



Hashing

e Suppose we have a number of files, how do we consistently store
them in memory?

h(x)
_ Vaibhav Bajaj 0
* If we hash n items, we \ 1
require O(n?) slots to Jubey Garza \ 2
. o o 3
avoid collisions Tejas Kakad — 2
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Zeling Li > 6
Vidith Madhu ~ 7
—> 9

Tong Wu




Dealing with Collisions

* Suppose we store multiple items in the same location as a linked list

h(Tejas Kakad) ——|  ZelingLi Tejas Kakad

N

* |f the maximum number of collisions in a location is ¢, then could
traverse a linked list of size ¢ for a query

* Query runtime: 0(c)



Collisions and Max Load

. . 1 .
* With probability at least 1 — —, NO outcome will be rolled more than
3 logn times

* Worst case query time: O (logn)

Zeling Li Tejas Kakad

N




Hashing

* For O(1) query time, use
0(n?) slots to avoid
collisions

* For O(logn) query time,
use O (n) slots with linked
lists

h(x)
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End of Probability Unit



Dimensionality Reduction

Many images from:
Cameron Musco’s
COMPSCI 514: Algorithms for Data Science



Big Data

* Not only many data points, but also many measurements per data
point, i.e., very high dimensional data



Big Data

* Not only many data points, but also many measurements per data
point, i.e., very high dimensional data

e Twitter has 450 million active monthly users (as of 2022), records
(tens of) thousands of measurements per user: who they follow, who
follows them, when they last visited the site, timestamps for specific
interactions, how many tweets they have sent, the text of those

tweets, etc...



Big Data

* Not only many data points, but also many measurements per data
point, i.e., very high dimensional data

* A 3 minute Youtube clip with a resolution of 500 x 500 pixels at 15
frames/second with 3 color channels is a recording of 2 billion pixel
values. Even a 500 x 500 pixel color image has 750,000 pixel values



Big Data

* Not only many data points, but also many measurements per data
point, i.e., very high dimensional data

 The human genome contains 3 billion+ base pairs. Genetic datasets
often contain information on 100s of thousands+ mutations and
genetic markers



Visualizing Big Data

e Data points are interpreted as high dimensional vectors, with real

. . d
valued entries: x4, ..., x,, ER g

e Dataset is interpreted as
a matrix: X € R™*% with

k-th row x k w1 = 3000 images

LYPY~~~=0000

d = 784 pixels



Dimensionality Reduction

e Dimensionality Reduction: Transform the data points so that they
have much smaller dimension

X1, ., Xn ERE—— 1y, ..., v, ER™  for m«d

% =(0,1,0,0,1,0,1,1) ——y; = (1,2, 1)

* Transformation should still capture the key aspects of x4, ..., x,,



Low Distortion Embedding

* Given x4, ..., X,, € R% a distance function D, and an accuracy
parameter € € (0,1), a low-distortion embedding of x4, ..., x,, is a set
of points y4, ..., y,,, and a distance function D’ such that forall i, €

[n]
(1-— e)D(xl-,xj) < D’(yi,yj) < (1+ e)D(xi,xj)



Euclidean Space

* For z € R%, the £, norm of z is denoted by ||z||, and defined as:

Pythagorean theorem.

Iz]l, = \/212 +z5 4+ + 2] 2(1)

2(2)

VA

Izll, = V2(1)? + z(2)?



Euclidean Space

* For z € R%, the £, norm of z is denoted by ||z||, and defined as:

Pythagorean theorem.

Iz]l, = \/212 +z5 4+ + 2] 2(1)

2(2)

VA

* For x,y € R%, the distance
function D is denoted by ||-||, Izll, = VZ(D? + 2(2)2
and defined as ||x — y||,




Low Distortion Embedding for Euclidean Space

* Given x4, ..., X, € R% and an accuracy parameter € € (0,1), a low-
distortion embedding of x4, ..., x,, is a set of points v, ..., v,, such that
foralli,j € [n]

(I =lxi— x|, < [lyvi —wil, £ A+ )x; — x|,

® (]
® o
PR

® o ®
M
¥ =l



Examples: Embeddings for Euclidean Space

* Suppose x4, ..., X, € R% all lie on the 15t- axis

* Take m = 1 and y; to be the first coordinate of x;

0 09 00 °
* Then Hyl- — yf”z = Hxl — xf”z foralli,j € |n]

* Embedding has no distortion



Examples: Embeddings for Euclidean Space

* Suppose x4, ..., X, € R% all lie on some line in R ©
O
e Rotate to line to be the 15t- axis and proceed as before ©
O
* Require m = 1 for embedding with no distortion ©
<



Examples: Embeddings for Euclidean Space

* Suppose xq, ..., X, € R% lie in some k-dimensional subspace V of R4

« Rotate I to coincide with the k - axes of R% and setm = k



Embeddings for Euclidean Space

* Given x4, ..., x,, € R% that lie in general position, does there exist an
embedding with no distortion?



Embeddings for Euclidean Space

* Given x4, ..., x,, € R% that lie in general position, does there exist an
embedding with no distortion? NO!

* Given X4, ..., X, € R% that lie in general position, does there exist an
embedding with ¢ distortion?



Embeddings for Euclidean Space

* Given x4, ..., x,, € R that lie in general position, does there exist an
embedding with no distortion? NO!

* Given X4, ..., X, € R% that lie in general position, does there exist an
embedding with ¢ distortion? YES!

* Johnson-Lindenstrauss Lemma



Johnson-Lindenstrauss Lemma

* Johnson-Lindenstrauss Lemma: Given x4, ..., x,, € R% and an accuracy
parameter ¢ € (0,1), there exists a linear map I[1: R — R™ with

m=20 (log n) so that if y; = Ilx;, then forall i,j € [n]:

c2

(- o)llxi— 5, < Iy~ ll, = @+l —x],



Johnson-Lindenstrauss Lemma

* Johnson-Lindenstrauss Lemma: Given x4, ..., x,, € R% and an accuracy
parameter ¢ € (0,1), there exists a linear map I[1: R — R™ with

m=20 (log n) so that if y; = Ilx;, then forall i,j € [n]:

c2

(- o)llxi— 5, < Iy~ ll, = @+l —x],

e Ford = 10'? ,n = 10>, and € = 0.5, only requires m ~ 6600



Johnson-Lindenstrauss Lemma

* Johnson-Lindenstrauss Lemma: Given x4, ..., x,, € R% and an accuracy
parameter ¢ € (0,1), there exists a linear map I[1: R — R™ with

m=20 (log n) so that if y; = Ilx;, then forall i,j € [n]:

c2

(- o)llxi— 5, < Iy~ ll, = @+l —x],

* Moreover, if each entry of I1 is drawn from \/%N(O,l), then I1
satisfies the guarantee with high probability



Johnson-Lindenstrauss Lemma

Rmxd

* Given x4, ..., X, € R%*and Il € R™*? [Giciz 3 &7 10 4.
withm = 0 (log n) and each entry B
& I1
drawn from \/—mN(O,l) and setting
v; = Ilx;, then with high probability, m =0 (logn)

foralli,j € [n]:
(1= allxi = xll, < llyi = yjll, = T+ lxi = %],

 [Tis called a random projection

Rm

Vi




Johnson-Lindenstrauss Lemma

* Johnson-Lindenstrauss Lemma: Given x4, ..., x,, € R% and I1 € R™mxd

. - logn 1 :
withm = 0 ( > ) and each entry drawn from mN(O,l) and setting
y; = Ilx;, then with high probability, for all i, € |n]:

1= 9)lx — x|, < [lyi —yill, £ A+ )lx; — x5,

* “Applying a simple random linear transformation to a set of points
approximately preserves all pairwise distances”



Johnson-Lindenstrauss Lemma

e Distributional Johnson-Lindenstrauss Lemma: Given II € R™*% with

- log1/6 1
m=20 ( > mN(O,l), then for any
x € R% and setting y = Ilx, then with probability at least 1 — &

(1 =9)llxllz = llyllz = (1 + &)llx]l2

) and each entry drawn from



Johnson-Lindenstrauss Lemma

* Johnson-Lindenstrauss Lemma: Given x4, ..., x,, € R% and I1 € R™mxd

. - logn 1 :
withm = 0 ( > ) and each entry drawn from mN(O,l) and setting
y; = Ilx;, then with high probability, for all i, € |n]:

1= 9)lx — x|, < [lyi —yill, £ A+ )lx; — x5,

e Distributional Johnson-Lindenstrauss Lemma: Given IT € R™*% with

m=20 (10;;81/5) and each entry drawn from \/%N(O,l), then for any
x € R% and setting y = Ilx, then with probability at least 1 — &

(1 =98)llxllz = llyllz = (1 + &)llx]l




Johnson-Lindenstrauss Lemma

* JL says that the random projection II preserves all pairwise distances
of n points x4, ..., x,, € R?

* Distributional JL shows that the random projection II preserves the
norm of any x € R¢

* Take x4, ..., x, € R and define z; ; = x; — x; € R% forall i, € [n]

n
. (2) total vectors



Johnson-Lindenstrauss Lemma

* Take Xy, ..., x, € R% and define z; ; = x; — x; € R% forall i, € [n]

n
. (2) total vectors




Johnson-Lindenstrauss Lemma

e Distributional Johnson-Lindenstrauss Lemma: Given II € R™*% with

- log1/6 1
m=20 ( > mN(O,l), then for any
x € R% and setting y = Ilx, then with probability at least 1 — &

(1 =9)llxllz = llyllz = (1 + &)llx]l2

) and each entry drawn from

* What happens when we set 6 = %?
n



Johnson-Lindenstrauss Lemma

e Distributional Johnson-Lindenstrauss Lemma: Given II € R™*% with

m=20 (1og€;/6) and each entry drawn from \/%N(O,l), then for any
x € R% and setting y = Ilx, then with probability at least 1 — &

(1 =9)llxllz = llyllz = (1 + &)llx]l2

* What happens when we set 6 = n_13?

e Union bound



Johnson-Lindenstrauss Lemma

e Distributional Johnson-Lindenstrauss Lemma: Given II € R™*% with

- log1/6 1
m=20 ( > mN(O,l), then for any
x € R% and setting y = Ilx, then with probability at least 1 — &

(1 =9)llxllz = llyllz = (1 + &)llx]l2

) and each entry drawn from



Johnson-Lindenstrauss Lemma

e Distributional Johnson-Lindenstrauss Lemma: Given II € R™*% with

m=20 (logg;/a) and each entry drawn from \/%N(O,l), then for any
x € R% and setting y = Ilx, then with probability at least 1 — &

(1 =alixllz = llyll, = (1 + &)llxll;

=ING
E » .
: Vm

(Here x; is the first coordinate of x)




Trivia Question #5 (Gaussian Behavior)

e Letx ~ N(u,0%). What is E[x] and what is E[|x — u|?]?

* (0,1) 2

° O : 2\ — 1 T 252
E ,0; PDF of Gaussian N (u, a2) is p(x) —c 2

* (U, 0

* (u,0%)



Trivia Question #6 (Gaussian Stability)

* Forindependent a ~ N(uy,0¢) and b ~ N(u,,05). What is the
distribution of a + b?

N I A A AN

* N(uy + pp, 01 + o)
o N (1 + pz, /07 + %)
* N(uy + uy, 0f + 03)




Johnson-Lindenstrauss Lemma

v = (I, x) = Z, 19 x;forg; ~N(0,1)

*gjXj~ N(O, sz), normal random variable with variance sz

variance 1 variance x

— —
JAVANGS



Gaussian Stability

variance x? variance x5 variance x;

—— ———

+ + ... +

—
yi = (I1;, x) :\/_m(gl X1+ g Xy + -+ Gga - xq)

What is the distribution of y;?



Gaussian Stability

e For independent a ~ N(uy,0¢) and b ~ N(u,,05), we have

a+b~ N, +uy, of +0%)

JAGEAGIVANS




Gaussian Stability

e For independent a ~ N(uy,0¢) and b ~ N(u,,05), we have
a+b~ N + piz, 0f +03)

PANPIGAN

= (I1;, x) = _(91 X1+ 9z %2+t gg - xg)

yi ~N (0, IIxII3)



Gaussian Stability

* Fory; ~N (0,% ||x||%), we have E|y/| = % [E41E:

* We have E[||y[|7] = E[y{ + -+ y;] = E[y{] + -+ E[y7] = lIx]I3
* Correct expectation!

e How is it distributed?



Johnson-Lindenstrauss Lemma

. ||y||% is distributed as Chi-Squared random variable with m degrees of
freedom (sum of m squared independent Gaussians)

.lrr-l;-i"J 1‘1"
1.]. |__'I y

& [ =1

a -
—_ = Ll

0.4t

calERE SR S
-—
0

0.3+

o
e

02t/
]

0.1 ¥




Johnson-Lindenstrauss Lemma

. IIyII% is distributed as Chi-Squared random variable with m degrees of
freedom (sum of m squared independent Gaussians)

e Chi-Squared Concentration: Let Z be a Chi-Squared random variable
with m degrees of freedom. Then

Pr(|Z — E[Z]| = ¢ - E[Z]] < 2 ™¢"/8

log 1/6)

* Claim follows from settingm = O ( 2
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