CSCE 658: Randomized Algorithms

Lecture 6

Samson Zhou

Class Logistics

• MUST e-mail me to set up research meeting by next week if you're interested in doing final project

• Everyone else will be opting into the final exam

Recall: Concentration Inequalities

- Concentration inequalities bound the probability that a random variable is "far away" from its expectation
- Looking at the kth moment for sufficiently high k gives a number of very strong (and useful!) concentration inequalities with exponential tail bounds
- Chernoff bounds, Bernstein's inequality, Hoeffding's inequality, etc.

Recall: Concentration Inequalities

- Suppose we flip a fair coin n = 100 times and let H be the total number of heads
- Markov's inequality: $Pr[H \ge 60] \le 0.833$
- Chebyshev's inequality: $Pr[H \ge 60] \le 0.25$
- 4th moment: $\Pr[H \ge 60] \le 0.186$
- Bernstein's inequality: $Pr[H \ge 60] \le 0.15$
- Truth: $\Pr[H \ge 60] \approx 0.0284$

Last Time: Chernoff Bounds

- Useful variant of Bernstein's inequality when the random variables are binary
- Chernoff bounds: Let $X_1, ..., X_n \in \{0, 1\}$ be independent random variables and let $X = X_1 + \cdots + X_n$ have mean μ . Then for any $\delta \ge 0$:

$$\Pr[|X - \mu| \ge \delta\mu] \le 2\exp\left(-\frac{\delta^2\mu}{2+\delta}\right)$$

Last Time: Median-of-Means Framework

- Suppose we design a randomized algorithm A to estimate a hidden statistic Θ of a dataset and we know $0 < \Theta \leq 1000$.
- Suppose each time we use the algorithm A, it outputs a number X such that $E[X] = \Theta$ and $Var[X] = 100\Theta^2$
- Suppose we want to estimate Θ to accuracy ε , with probability 1δ
- Accuracy boosting: Repeat A a total of $\frac{10^{12}}{\epsilon^2}$ times and take the mean
- Success boosting: Find the mean a total of $O\left(\log \frac{1}{\delta}\right)$ times and take the median, to be correct with probability 1δ

Trivia Question #3 (Max Load)

- Suppose we have a fair *n*-sided die that we roll *n* times. "On average", what is the largest number of times any outcome is rolled? Example: 1, 5, 2, 4, 1, 3, 1 for *n* = 7
- $\Theta(1)$
- $\widetilde{\Theta}(\log n)$
- $\widetilde{\Theta}(\sqrt{n})$
- $\widetilde{\Theta}(n)$

Last Time: Max Load

- Recall we fixed a value $k \in [n]$
- $\Pr[X \ge 3 \log n] \le \frac{1}{n^2}$ means that with probability at least $1 \frac{1}{n^2}$, we will get fewer than $3 \log n$ rolls with value k
- Union bound: With probability at least $1 \frac{1}{n'}$, no outcome will be rolled more than $3 \log n$ times

Hashing

- Suppose we have a number of files, how do we consistently store them in memory?
- If we hash n items, we require Θ(n²) slots to avoid collisions

Dealing with Collisions

• Suppose we store multiple items in the same location as a linked list

• If the maximum number of collisions in a location is *c*, then could traverse a linked list of size *c* for a query

• Query runtime: O(c)

Collisions and Max Load

- With probability at least $1 \frac{1}{n}$, no outcome will be rolled more than $3 \log n$ times
- Worst case query time: $O(\log n)$

Hashing

- For O(1) query time, use $\Theta(n^2)$ slots to avoid collisions
- For $O(\log n)$ query time, use $\Theta(n)$ slots with linked lists

End of Probability Unit

Dimensionality Reduction

Many images from: Cameron Musco's COMPSCI 514: Algorithms for Data Science

• Not only many data points, but also many measurements per data point, i.e., very high dimensional data

• Not only many data points, but also many measurements per data point, i.e., very high dimensional data

• Twitter has 450 million active monthly users (as of 2022), records (tens of) thousands of measurements per user: who they follow, who follows them, when they last visited the site, timestamps for specific interactions, how many tweets they have sent, the text of those tweets, etc...

• Not only many data points, but also many measurements per data point, i.e., very high dimensional data

• A 3 minute Youtube clip with a resolution of 500 x 500 pixels at 15 frames/second with 3 color channels is a recording of 2 billion pixel values. Even a 500 x 500 pixel color image has 750,000 pixel values

• Not only many data points, but also many measurements per data point, i.e., very high dimensional data

 The human genome contains 3 billion+ base pairs. Genetic datasets often contain information on 100s of thousands+ mutations and genetic markers

Visualizing Big Data

• Data points are interpreted as high dimensional vectors, with real valued entries: $x_1, ..., x_n \in \mathbb{R}^d$

• Dataset is interpreted as a matrix: $X \in \mathbb{R}^{n \times d}$ with *k*-th row x_k

Dimensionality Reduction

• Dimensionality Reduction: Transform the data points so that they have much smaller dimension

$$x_1, \dots, x_n \in \mathbb{R}^d \longrightarrow y_1, \dots, y_n \in \mathbb{R}^m \quad \text{for} \quad m \ll d$$

$$5 \longrightarrow x_i = (0, 1, 0, 0, 1, 0, 1, 1) \longrightarrow y_i = (-1, 2, 1)$$

• Transformation should still capture the key aspects of x_1, \ldots, x_n

Low Distortion Embedding

• Given $x_1, ..., x_n \in \mathbb{R}^d$, a distance function D, and an accuracy parameter $\varepsilon \in (0,1)$, a low-distortion embedding of $x_1, ..., x_n$ is a set of points $y_1, ..., y_n$, and a distance function D' such that for all $i, j \in [n]$

$$(1-\varepsilon)D(x_i,x_j) \le D'(y_i,y_j) \le (1+\varepsilon)D(x_i,x_j)$$

Euclidean Space

• For $z \in \mathbb{R}^d$, the ℓ_2 norm of z is denoted by $||z||_2$ and defined as:

$$||z||_2 = \sqrt{z_1^2 + z_2^2 + \dots + z_d^2}$$

Euclidean Space

• For $z \in \mathbb{R}^d$, the ℓ_2 norm of z is denoted by $||z||_2$ and defined as:

$$||z||_2 = \sqrt{z_1^2 + z_2^2 + \dots + z_d^2}$$

• For $x, y \in \mathbb{R}^d$, the distance function D is denoted by $\|\cdot\|_2$ and defined as $\|x - y\|_2$

Low Distortion Embedding for Euclidean Space

• Given $x_1, \ldots, x_n \in \mathbb{R}^d$ and an accuracy parameter $\varepsilon \in (0,1)$, a low-distortion embedding of x_1, \ldots, x_n is a set of points y_1, \ldots, y_n such that for all $i, j \in [n]$

$$(1 - \varepsilon) \|x_{i} - x_{j}\|_{2} \leq \|y_{i} - y_{j}\|_{2} \leq (1 + \varepsilon) \|x_{i} - x_{j}\|_{2}$$

Examples: Embeddings for Euclidean Space

- Suppose $x_1, \dots, x_n \in \mathbb{R}^d$ all lie on the 1^{st} axis
- Take m = 1 and y_i to be the first coordinate of x_i

• Then
$$\|y_i - y_j\|_2 = \|x_i - x_j\|_2$$
 for all $i, j \in [n]$

• Embedding has no distortion

Examples: Embeddings for Euclidean Space

- Suppose $x_1, \dots, x_n \in \mathbb{R}^d$ all lie on some line in \mathbb{R}^d
- Rotate to line to be the 1st axis and proceed as before
- Require m = 1 for embedding with no distortion

Examples: Embeddings for Euclidean Space

• Suppose $x_1, ..., x_n \in \mathbb{R}^d$ lie in some k-dimensional subspace V of \mathbb{R}^d

• Rotate V to coincide with the k - axes of \mathbb{R}^d and set m = k

Embeddings for Euclidean Space

• Given $x_1, ..., x_n \in \mathbb{R}^d$ that lie in *general position*, does there exist an embedding with no distortion?

Embeddings for Euclidean Space

• Given $x_1, ..., x_n \in \mathbb{R}^d$ that lie in *general position*, does there exist an embedding with no distortion? NO!

• Given $x_1, ..., x_n \in \mathbb{R}^d$ that lie in *general position*, does there exist an embedding with ε distortion?

Embeddings for Euclidean Space

• Given $x_1, ..., x_n \in \mathbb{R}^d$ that lie in *general position*, does there exist an embedding with no distortion? NO!

- Given $x_1, ..., x_n \in \mathbb{R}^d$ that lie in *general position*, does there exist an embedding with ε distortion? YES!
- Johnson-Lindenstrauss Lemma

• Johnson-Lindenstrauss Lemma: Given $x_1, ..., x_n \in \mathbb{R}^d$ and an accuracy parameter $\varepsilon \in (0,1)$, there exists a linear map $\Pi: \mathbb{R}^d \to \mathbb{R}^m$ with $m = O\left(\frac{\log n}{\varepsilon^2}\right)$ so that if $y_i = \Pi x_i$, then for all $i, j \in [n]$:

$$(1-\varepsilon) \|x_i - x_j\|_2 \le \|y_i - y_j\|_2 \le (1+\varepsilon) \|x_i - x_j\|_2$$

• Johnson-Lindenstrauss Lemma: Given $x_1, ..., x_n \in \mathbb{R}^d$ and an accuracy parameter $\varepsilon \in (0,1)$, there exists a linear map $\Pi: \mathbb{R}^d \to \mathbb{R}^m$ with $m = O\left(\frac{\log n}{\varepsilon^2}\right)$ so that if $y_i = \Pi x_i$, then for all $i, j \in [n]$:

$$(1-\varepsilon) \|x_i - x_j\|_2 \le \|y_i - y_j\|_2 \le (1+\varepsilon) \|x_i - x_j\|_2$$

• For $d = 10^{12}$, $n = 10^5$, and $\varepsilon = 0.5$, only requires $m \approx 6600$

• Johnson-Lindenstrauss Lemma: Given $x_1, ..., x_n \in \mathbb{R}^d$ and an accuracy parameter $\varepsilon \in (0,1)$, there exists a linear map $\Pi: \mathbb{R}^d \to \mathbb{R}^m$ with $m = O\left(\frac{\log n}{\varepsilon^2}\right)$ so that if $y_i = \Pi x_i$, then for all $i, j \in [n]$:

$$(1-\varepsilon) \|x_i - x_j\|_2 \le \|y_i - y_j\|_2 \le (1+\varepsilon) \|x_i - x_j\|_2$$

• Moreover, if each entry of Π is drawn from $\frac{1}{\sqrt{m}}N(0,1)$, then Π satisfies the guarantee with high probability

• Given
$$x_1, \ldots, x_n \in \mathbb{R}^d$$
 and $\Pi \in \mathbb{R}^{m \times d}$
with $m = O\left(\frac{\log n}{\varepsilon^2}\right)$ and each entry
drawn from $\frac{1}{\sqrt{m}}N(0,1)$ and setting
 $y_i = \Pi x_i$, then with high probability,
for all $i, j \in [n]$:
 $\mathbb{R}^{m \times d}$
 \mathbb{R}^d
 \mathbb{R}^m
 $\mathbb{R}^{m \times d}$
 \mathbb{R}^{m

nm×d

ъd

$$(1-\varepsilon) \|x_i - x_j\|_2 \le \|y_i - y_j\|_2 \le (1+\varepsilon) \|x_i - x_j\|_2$$

• Π is called a random projection

• Johnson-Lindenstrauss Lemma: Given $x_1, ..., x_n \in \mathbb{R}^d$ and $\Pi \in \mathbb{R}^{m \times d}$ with $m = O\left(\frac{\log n}{\varepsilon^2}\right)$ and each entry drawn from $\frac{1}{\sqrt{m}}N(0,1)$ and setting $y_i = \Pi x_i$, then with high probability, for all $i, j \in [n]$:

$$(1-\varepsilon) \|x_i - x_j\|_2 \le \|y_i - y_j\|_2 \le (1+\varepsilon) \|x_i - x_j\|_2$$

• "Applying a simple random linear transformation to a set of points approximately preserves all pairwise distances"

• Distributional Johnson-Lindenstrauss Lemma: Given $\Pi \in \mathbb{R}^{m \times d}$ with $m = O\left(\frac{\log 1/\delta}{\varepsilon^2}\right)$ and each entry drawn from $\frac{1}{\sqrt{m}}N(0,1)$, then for any $x \in \mathbb{R}^d$ and setting $y = \Pi x$, then with probability at least $1 - \delta$

 $(1 - \varepsilon) \|x\|_2 \le \|y\|_2 \le (1 + \varepsilon) \|x\|_2$

• Johnson-Lindenstrauss Lemma: Given $x_1, ..., x_n \in \mathbb{R}^d$ and $\Pi \in \mathbb{R}^{m \times d}$ with $m = O\left(\frac{\log n}{\varepsilon^2}\right)$ and each entry drawn from $\frac{1}{\sqrt{m}}N(0,1)$ and setting $y_i = \Pi x_i$, then with high probability, for all $i, j \in [n]$:

$$(1-\varepsilon) \|x_i - x_j\|_2 \le \|y_i - y_j\|_2 \le (1+\varepsilon) \|x_i - x_j\|_2$$

• Distributional Johnson-Lindenstrauss Lemma: Given $\Pi \in \mathbb{R}^{m \times d}$ with $m = O\left(\frac{\log 1/\delta}{\varepsilon^2}\right)$ and each entry drawn from $\frac{1}{\sqrt{m}}N(0,1)$, then for any $x \in \mathbb{R}^d$ and setting $y = \Pi x$, then with probability at least $1 - \delta$ $(1 - \varepsilon) \|x\|_2 \le \|y\|_2 \le (1 + \varepsilon) \|x\|_2$

- JL says that the random projection Π preserves all pairwise distances of n points $x_1, \dots, x_n \in \mathbb{R}^d$
- Distributional JL shows that the random projection Π preserves the norm of any $x \in \mathbb{R}^d$
- Take $x_1, \dots, x_n \in \mathbb{R}^d$ and define $z_{i,j} = x_i x_j \in \mathbb{R}^d$ for all $i, j \in [n]$

• Take $x_1, \dots, x_n \in \mathbb{R}^d$ and define $z_{i,j} = x_i - x_j \in \mathbb{R}^d$ for all $i, j \in [n]$ x_1 total vectors x_2 • (7 Z_{2.4} χ_3 χ_4

- Distributional Johnson-Lindenstrauss Lemma: Given $\Pi \in R^{m \times d}$ with $m = O\left(\frac{\log 1/\delta}{\varepsilon^2}\right)$ and each entry drawn from $\frac{1}{\sqrt{m}}N(0,1)$, then for any $x \in R^d$ and setting $y = \Pi x$, then with probability at least 1δ $(1 - \varepsilon) \| x \|_{\infty} \le \| y \|_{\infty} \le (1 + \varepsilon) \| x \|_{\infty}$
 - $(1 \varepsilon) \|x\|_2 \le \|y\|_2 \le (1 + \varepsilon) \|x\|_2$

• What happens when we set $\delta = \frac{1}{n^3}$?

• Distributional Johnson-Lindenstrauss Lemma: Given $\Pi \in \mathbb{R}^{m \times d}$ with $m = O\left(\frac{\log 1/\delta}{\varepsilon^2}\right)$ and each entry drawn from $\frac{1}{\sqrt{m}}N(0,1)$, then for any $x \in \mathbb{R}^d$ and setting $y = \Pi x$, then with probability at least $1 - \delta$ $(1 - \varepsilon)||x||_2 \le ||y||_2 \le (1 + \varepsilon)||x||_2$

- What happens when we set $\delta = \frac{1}{n^3}$?
- Union bound

• Distributional Johnson-Lindenstrauss Lemma: Given $\Pi \in \mathbb{R}^{m \times d}$ with $m = O\left(\frac{\log 1/\delta}{\varepsilon^2}\right)$ and each entry drawn from $\frac{1}{\sqrt{m}}N(0,1)$, then for any $x \in \mathbb{R}^d$ and setting $y = \Pi x$, then with probability at least $1 - \delta$

 $(1 - \varepsilon) \|x\|_2 \le \|y\|_2 \le (1 + \varepsilon) \|x\|_2$

• Distributional Johnson-Lindenstrauss Lemma: Given $\Pi \in R^{m \times d}$ with $m = O\left(\frac{\log 1/\delta}{\varepsilon^2}\right)$ and each entry drawn from $\frac{1}{\sqrt{m}}N(0,1)$, then for any $x \in R^d$ and setting $y = \Pi x$, then with probability at least $1 - \delta$

 $(1 - \varepsilon) \|x\|_2 \le \|y\|_2 \le (1 + \varepsilon) \|x\|_2$

Trivia Question #5 (Gaussian Behavior)

• Let $x \sim N(\mu, \sigma^2)$. What is E[x] and what is $E[|x - \mu|^2]$?

- (0, 1) • (0, σ) PDF of Gaussian $N(\mu, \sigma^2)$ is $p(x) = \frac{1}{\sqrt{2\pi\sigma^2}}e^{-\frac{(x-\mu)^2}{2\sigma^2}}$
- (μ, σ)
- (μ, σ^2)

Trivia Question #6 (Gaussian Stability)

• For independent $a \sim N(\mu_1, \sigma_1^2)$ and $b \sim N(\mu_2, \sigma_2^2)$. What is the distribution of a + b?

- $N\left(\frac{\mu_1+\mu_2}{2},\frac{\sigma_1+\sigma_2}{2}\right)$
- $N(\mu_1 + \mu_2, \sigma_1 + \sigma_2)$
- $N\left(\mu_1 + \mu_2, \sqrt{\sigma_1^2 + \sigma_2^2}\right)$
- $N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$

•
$$y_i = \langle \Pi_i, x \rangle = \frac{1}{\sqrt{m}} \sum_{j=1}^d g_j \cdot x_j$$
 for $g_j \sim N(0, 1)$

• $g_i \cdot x_i \sim N(0, x_i^2)$, normal random variable with variance x_i^2

Gaussian Stability

• For independent $a \sim N(\mu_1, \sigma_1^2)$ and $b \sim N(\mu_2, \sigma_2^2)$, we have

$$a + b \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

Gaussian Stability

• For independent $a \sim N(\mu_1, \sigma_1^2)$ and $b \sim N(\mu_2, \sigma_2^2)$, we have

$$a + b \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$

$$y_i = \langle \Pi_i, x \rangle = \frac{1}{\sqrt{m}} (g_1 \cdot x_1 + g_2 \cdot x_2 + \dots + g_d \cdot x_d)$$
$$y_i \sim N\left(0, \frac{1}{m} ||x||_2^2\right)$$

Gaussian Stability

• For
$$y_i \sim N\left(0, \frac{1}{m} ||x||_2^2\right)$$
, we have $\mathbb{E}[y_i^2] = \frac{1}{m} ||x||_2^2$

- We have $E[||y||_2^2] = E[y_1^2 + \dots + y_m^2] = E[y_1^2] + \dots + E[y_m^2] = ||x||_2^2$
- Correct expectation!
- How is it distributed?

• $||y||_2^2$ is distributed as Chi-Squared random variable with *m* degrees of freedom (sum of *m* squared independent Gaussians)

• $||y||_2^2$ is distributed as Chi-Squared random variable with *m* degrees of freedom (sum of *m* squared independent Gaussians)

 Chi-Squared Concentration: Let Z be a Chi-Squared random variable with m degrees of freedom. Then

$$\Pr[|Z - E[Z]| \ge \varepsilon \cdot E[Z]] \le 2e^{-m\varepsilon^2/8}$$

• Claim follows from setting $m = O\left(\frac{\log 1/\delta}{\epsilon^2}\right)$