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Class Logistics

• MUST e-mail me to set up research meeting by next week if you’re 
interested in doing final project

• Everyone else will be opting into the final exam



Recall: Concentration Inequalities

• Concentration inequalities bound the probability that a random 
variable is “far away” from its expectation

• Looking at the 𝑘th moment for sufficiently high 𝑘 gives a number of 
very strong (and useful!) concentration inequalities with exponential 
tail bounds

• Chernoff bounds, Bernstein’s inequality, Hoeffding’s inequality, etc. 



Recall: Concentration Inequalities

• Suppose we flip a fair coin 𝑛 = 100 times and let 𝐻 be the total 
number of heads

• Markov’s inequality: Pr 𝐻 ≥ 60 ≤ 0.833

• Chebyshev’s inequality: Pr 𝐻 ≥ 60 ≤ 0.25

• 4th moment: Pr 𝐻 ≥ 60 ≤ 0.186

• Bernstein’s inequality: Pr 𝐻 ≥ 60 ≤ 0.15

• Truth: Pr 𝐻 ≥ 60 ≈ 0.0284



Last Time: Chernoff Bounds

• Useful variant of Bernstein’s inequality when the random variables 
are binary

• Chernoff bounds: Let 𝑋1, … , 𝑋𝑛 ∈ {0, 1} be independent random 
variables and let 𝑋 = 𝑋1 + ⋯ + 𝑋𝑛 have mean 𝜇. Then for any 𝛿 ≥ 0:

Pr 𝑋 − 𝜇 ≥ 𝛿𝜇 ≤ 2 exp −
𝛿2𝜇

2 + 𝛿



Last Time: Median-of-Means Framework

• Suppose we design a randomized algorithm 𝐴 to estimate a hidden 
statistic Θ of a dataset and we know 0 < Θ ≤ 1000. 

• Suppose each time we use the algorithm 𝐴, it outputs a number 𝑋
such that E 𝑋 = Θ and Var 𝑋 = 100Θ2

• Suppose we want to estimate Θ to accuracy 𝜀, with probability 1 − 𝛿

• Accuracy boosting: Repeat 𝐴 a total of 
1012

𝜀2 times and take the mean

• Success boosting: Find the mean a total of 𝑂 log
1

𝛿
times and take 

the median, to be correct with probability 1 − 𝛿



Trivia Question #3 (Max Load)

• Suppose we have a fair 𝑛-sided die that we roll 𝑛 times. “On average”, 
what is the largest number of times any outcome is rolled? Example: 
1, 5, 2, 4, 1, 3, 1 for 𝑛 = 7

• Θ(1)

• ෩Θ(log 𝑛)

• ෩Θ( 𝑛)

• ෩Θ(𝑛)



Last Time: Max Load

• Recall we fixed a value 𝑘 ∈ [𝑛]

• Pr 𝑋 ≥ 3 log 𝑛 ≤
1

𝑛2 means that with probability at least 1 −
1

𝑛2, we 

will get fewer than 3 log 𝑛 rolls with value 𝑘

• Union bound: With probability at least 1 −
1

𝑛
, no outcome will be 

rolled more than 3 log 𝑛 times



Hashing

• Suppose we have a number of files, how do we consistently store 
them in memory?
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• If we hash 𝑛 items, we 
require Θ(𝑛2) slots to 
avoid collisions



Dealing with Collisions

• Suppose we store multiple items in the same location as a linked list

• If the maximum number of collisions in a location is 𝑐, then could 
traverse a linked list of size 𝑐 for a query

• Query runtime: 𝑂(𝑐)

ℎ(Tejas Kakad) Zeling Li Tejas Kakad



Collisions and Max Load

• With probability at least 1 −
1

𝑛
, no outcome will be rolled more than 

3 log 𝑛 times

• Worst case query time: 𝑂(log 𝑛) 

Zeling Li Tejas Kakad



Hashing

• For 𝑂(1) query time, use 
Θ(𝑛2) slots to avoid 
collisions

• For 𝑂(log 𝑛) query time, 
use Θ(𝑛) slots with linked 
lists
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End of Probability Unit



Dimensionality Reduction

Many images from:

Cameron Musco’s

COMPSCI 514: Algorithms for Data Science



Big Data

• Not only many data points, but also many measurements per data 
point, i.e., very high dimensional data



Big Data

• Not only many data points, but also many measurements per data 
point, i.e., very high dimensional data

• Twitter has 450 million active monthly users (as of 2022), records 
(tens of) thousands of measurements per user: who they follow, who 
follows them, when they last visited the site, timestamps for specific 
interactions, how many tweets they have sent, the text of those 
tweets, etc...



Big Data

• Not only many data points, but also many measurements per data 
point, i.e., very high dimensional data

• A 3 minute Youtube clip with a resolution of 500 x 500 pixels at 15 
frames/second with 3 color channels is a recording of 2 billion pixel 
values. Even a 500 x 500 pixel color image has 750,000 pixel values



Big Data

• Not only many data points, but also many measurements per data 
point, i.e., very high dimensional data

• The human genome contains 3 billion+ base pairs. Genetic datasets 
often contain information on 100s of thousands+ mutations and 
genetic markers



Visualizing Big Data

• Data points are interpreted as high dimensional vectors, with real 
valued entries: 𝑥1, … , 𝑥𝑛 ∈ 𝑅𝑑

• Dataset is interpreted as 
a matrix: 𝑋 ∈ 𝑅𝑛×𝑑  with 
𝑘-th row 𝑥𝑘



Dimensionality Reduction

• Dimensionality Reduction: Transform the data points so that they 
have much smaller dimension

• Transformation should still capture the key aspects of 𝑥1, … , 𝑥𝑛

𝑥1, … , 𝑥𝑛 ∈ 𝑅𝑑 𝑦1, … , 𝑦𝑛 ∈ 𝑅𝑚 for 𝑚 ≪ 𝑑

𝑥𝑖 = (0, 1, 0, 0, 1, 0, 1, 1) 𝑦𝑖 = (−1, 2, 1)



Low Distortion Embedding

• Given 𝑥1, … , 𝑥𝑛 ∈ 𝑅𝑑, a distance function 𝐷, and an accuracy 
parameter 𝜀 ∈ (0,1), a low-distortion embedding of 𝑥1, … , 𝑥𝑛 is a set 
of points 𝑦1, … , 𝑦𝑛, and a distance function 𝐷′ such that for all 𝑖, 𝑗 ∈
[𝑛]

1 − 𝜀 𝐷 𝑥𝑖 , 𝑥𝑗 ≤ 𝐷′ 𝑦𝑖 , 𝑦𝑗 ≤ 1 + 𝜀 𝐷 𝑥𝑖 , 𝑥𝑗



Euclidean Space

• For 𝑧 ∈ 𝑅𝑑, the ℓ2 norm of 𝑧 is denoted by 𝑧 2 and defined as:

𝑧 2 = 𝑧1
2 + 𝑧2

2 + ⋯ + 𝑧𝑑
2



Euclidean Space

• For 𝑧 ∈ 𝑅𝑑, the ℓ2 norm of 𝑧 is denoted by 𝑧 2 and defined as:

𝑧 2 = 𝑧1
2 + 𝑧2

2 + ⋯ + 𝑧𝑑
2

• For 𝑥, 𝑦 ∈ 𝑅𝑑, the distance 
function 𝐷 is denoted by ⋅ 2 
and defined as 𝑥 − 𝑦 2



Low Distortion Embedding for Euclidean Space

• Given 𝑥1, … , 𝑥𝑛 ∈ 𝑅𝑑 and an accuracy parameter 𝜀 ∈ (0,1), a low-
distortion embedding of 𝑥1, … , 𝑥𝑛 is a set of points 𝑦1, … , 𝑦𝑛 such that 
for all 𝑖, 𝑗 ∈ [𝑛]

1 − 𝜀 𝑥𝑖 − 𝑥𝑗 2
≤ 𝑦𝑖 − 𝑦𝑗 2

≤ 1 + 𝜀 𝑥𝑖 − 𝑥𝑗 2

𝑥𝑖 − 𝑥𝑗 2 𝑦𝑖 − 𝑦𝑗 2



Examples: Embeddings for Euclidean Space

• Suppose 𝑥1, … , 𝑥𝑛 ∈ 𝑅𝑑 all lie on the 1st - axis

• Take 𝑚 = 1 and 𝑦𝑖 to be the first coordinate of 𝑥𝑖

• Then 𝑦𝑖 − 𝑦𝑗 2
= 𝑥𝑖 − 𝑥𝑗 2

for all 𝑖, 𝑗 ∈ [𝑛]

• Embedding has no distortion



Examples: Embeddings for Euclidean Space

• Suppose 𝑥1, … , 𝑥𝑛 ∈ 𝑅𝑑 all lie on some line in 𝑅𝑑

• Rotate to line to be the 1st - axis and proceed as before

• Require 𝑚 = 1 for embedding with no distortion



Examples: Embeddings for Euclidean Space

• Suppose 𝑥1, … , 𝑥𝑛 ∈ 𝑅𝑑 lie in some 𝑘-dimensional subspace 𝑉 of 𝑅𝑑

• Rotate 𝑉 to coincide with the 𝑘 - axes of 𝑅𝑑 and set 𝑚 = 𝑘



Embeddings for Euclidean Space

• Given 𝑥1, … , 𝑥𝑛 ∈ 𝑅𝑑 that lie in general position, does there exist an 
embedding with no distortion?



Embeddings for Euclidean Space

• Given 𝑥1, … , 𝑥𝑛 ∈ 𝑅𝑑 that lie in general position, does there exist an 
embedding with no distortion? NO!

• Given 𝑥1, … , 𝑥𝑛 ∈ 𝑅𝑑 that lie in general position, does there exist an 
embedding with 𝜀 distortion?



Embeddings for Euclidean Space

• Given 𝑥1, … , 𝑥𝑛 ∈ 𝑅𝑑 that lie in general position, does there exist an 
embedding with no distortion? NO!

• Given 𝑥1, … , 𝑥𝑛 ∈ 𝑅𝑑 that lie in general position, does there exist an 
embedding with 𝜀 distortion? YES!

• Johnson-Lindenstrauss Lemma



Johnson-Lindenstrauss Lemma

• Johnson-Lindenstrauss Lemma: Given 𝑥1, … , 𝑥𝑛 ∈ 𝑅𝑑 and an accuracy 
parameter 𝜀 ∈ (0,1), there exists a linear map Π: 𝑅𝑑 → 𝑅𝑚 with   

𝑚 = 𝑂
log 𝑛

𝜀2 so that if 𝑦𝑖 = Π𝑥𝑖, then for all 𝑖, 𝑗 ∈ [𝑛]:

1 − 𝜀 𝑥𝑖 − 𝑥𝑗 2
≤ 𝑦𝑖 − 𝑦𝑗 2

≤ 1 + 𝜀 𝑥𝑖 − 𝑥𝑗 2



Johnson-Lindenstrauss Lemma

• Johnson-Lindenstrauss Lemma: Given 𝑥1, … , 𝑥𝑛 ∈ 𝑅𝑑 and an accuracy 
parameter 𝜀 ∈ (0,1), there exists a linear map Π: 𝑅𝑑 → 𝑅𝑚 with   

𝑚 = 𝑂
log 𝑛

𝜀2 so that if 𝑦𝑖 = Π𝑥𝑖, then for all 𝑖, 𝑗 ∈ [𝑛]:

• For 𝑑 = 1012 , 𝑛 = 105, and 𝜀 = 0.5, only requires 𝑚 ≈ 6600

1 − 𝜀 𝑥𝑖 − 𝑥𝑗 2
≤ 𝑦𝑖 − 𝑦𝑗 2

≤ 1 + 𝜀 𝑥𝑖 − 𝑥𝑗 2



Johnson-Lindenstrauss Lemma

• Johnson-Lindenstrauss Lemma: Given 𝑥1, … , 𝑥𝑛 ∈ 𝑅𝑑 and an accuracy 
parameter 𝜀 ∈ (0,1), there exists a linear map Π: 𝑅𝑑 → 𝑅𝑚 with   

𝑚 = 𝑂
log 𝑛

𝜀2 so that if 𝑦𝑖 = Π𝑥𝑖, then for all 𝑖, 𝑗 ∈ [𝑛]:

• Moreover, if each entry of Π is drawn from 
1

𝑚
𝑁(0,1), then Π

satisfies the guarantee with high probability

1 − 𝜀 𝑥𝑖 − 𝑥𝑗 2
≤ 𝑦𝑖 − 𝑦𝑗 2

≤ 1 + 𝜀 𝑥𝑖 − 𝑥𝑗 2



Johnson-Lindenstrauss Lemma

• Given 𝑥1, … , 𝑥𝑛 ∈ 𝑅𝑑 and Π ∈ 𝑅𝑚×𝑑

with 𝑚 = 𝑂
log 𝑛

𝜀2 and each entry 

drawn from 
1

𝑚
𝑁 0,1 and setting 

𝑦𝑖 = Π𝑥𝑖, then with high probability, 
for all 𝑖, 𝑗 ∈ [𝑛]:

• Π is called a random projection

1 − 𝜀 𝑥𝑖 − 𝑥𝑗 2
≤ 𝑦𝑖 − 𝑦𝑗 2

≤ 1 + 𝜀 𝑥𝑖 − 𝑥𝑗 2

Π

𝑥𝑖

𝑦𝑖

𝑚 = 𝑂
log 𝑛

𝜀2  

𝑅𝑚×𝑑 𝑅𝑑 𝑅𝑚



Johnson-Lindenstrauss Lemma

• Johnson-Lindenstrauss Lemma: Given 𝑥1, … , 𝑥𝑛 ∈ 𝑅𝑑 and Π ∈ 𝑅𝑚×𝑑

with 𝑚 = 𝑂
log 𝑛

𝜀2 and each entry drawn from 
1

𝑚
𝑁 0,1 and setting 

𝑦𝑖 = Π𝑥𝑖, then with high probability, for all 𝑖, 𝑗 ∈ [𝑛]:

• “Applying a simple random linear transformation to a set of points 
approximately preserves all pairwise distances”

1 − 𝜀 𝑥𝑖 − 𝑥𝑗 2
≤ 𝑦𝑖 − 𝑦𝑗 2

≤ 1 + 𝜀 𝑥𝑖 − 𝑥𝑗 2



Johnson-Lindenstrauss Lemma

• Distributional Johnson-Lindenstrauss Lemma: Given Π ∈ 𝑅𝑚×𝑑 with 

𝑚 = 𝑂
log 1/𝛿

𝜀2 and each entry drawn from 
1

𝑚
𝑁 0,1 , then for any

𝑥 ∈ 𝑅𝑑 and setting 𝑦 = Π𝑥, then with probability at least 1 − 𝛿

1 − 𝜀 𝑥 2 ≤ 𝑦 2 ≤ 1 + 𝜀 𝑥 2



Johnson-Lindenstrauss Lemma

• Johnson-Lindenstrauss Lemma: Given 𝑥1, … , 𝑥𝑛 ∈ 𝑅𝑑 and Π ∈ 𝑅𝑚×𝑑

with 𝑚 = 𝑂
log 𝑛

𝜀2 and each entry drawn from 
1

𝑚
𝑁 0,1 and setting 

𝑦𝑖 = Π𝑥𝑖, then with high probability, for all 𝑖, 𝑗 ∈ [𝑛]:

• Distributional Johnson-Lindenstrauss Lemma: Given Π ∈ 𝑅𝑚×𝑑 with 

𝑚 = 𝑂
log 1/𝛿

𝜀2 and each entry drawn from 
1

𝑚
𝑁 0,1 , then for any

𝑥 ∈ 𝑅𝑑 and setting 𝑦 = Π𝑥, then with probability at least 1 − 𝛿

1 − 𝜀 𝑥𝑖 − 𝑥𝑗 2
≤ 𝑦𝑖 − 𝑦𝑗 2

≤ 1 + 𝜀 𝑥𝑖 − 𝑥𝑗 2

1 − 𝜀 𝑥 2 ≤ 𝑦 2 ≤ 1 + 𝜀 𝑥 2



Johnson-Lindenstrauss Lemma

• JL says that the random projection Π preserves all pairwise distances 
of 𝑛 points 𝑥1, … , 𝑥𝑛 ∈ 𝑅𝑑

• Distributional JL shows that the random projection Π preserves the 
norm of any 𝑥 ∈ 𝑅𝑑

• Take 𝑥1, … , 𝑥𝑛 ∈ 𝑅𝑑 and define 𝑧𝑖,𝑗 = 𝑥𝑖 − 𝑥𝑗 ∈ 𝑅𝑑 for all 𝑖, 𝑗 ∈ [𝑛]

•
𝑛
2

total vectors 



Johnson-Lindenstrauss Lemma

• Take 𝑥1, … , 𝑥𝑛 ∈ 𝑅𝑑 and define 𝑧𝑖,𝑗 = 𝑥𝑖 − 𝑥𝑗 ∈ 𝑅𝑑 for all 𝑖, 𝑗 ∈ [𝑛]

•
𝑛
2

total vectors 
𝑥1 𝑥2

𝑥3

𝑥4

𝑧2.4



Johnson-Lindenstrauss Lemma

• Distributional Johnson-Lindenstrauss Lemma: Given Π ∈ 𝑅𝑚×𝑑 with 

𝑚 = 𝑂
log 1/𝛿

𝜀2 and each entry drawn from 
1

𝑚
𝑁 0,1 , then for any

𝑥 ∈ 𝑅𝑑 and setting 𝑦 = Π𝑥, then with probability at least 1 − 𝛿

• What happens when we set 𝛿 =
1

𝑛3?

1 − 𝜀 𝑥 2 ≤ 𝑦 2 ≤ 1 + 𝜀 𝑥 2



Johnson-Lindenstrauss Lemma

• Distributional Johnson-Lindenstrauss Lemma: Given Π ∈ 𝑅𝑚×𝑑 with 

𝑚 = 𝑂
log 1/𝛿

𝜀2 and each entry drawn from 
1

𝑚
𝑁 0,1 , then for any

𝑥 ∈ 𝑅𝑑 and setting 𝑦 = Π𝑥, then with probability at least 1 − 𝛿

• What happens when we set 𝛿 =
1

𝑛3?

• Union bound

1 − 𝜀 𝑥 2 ≤ 𝑦 2 ≤ 1 + 𝜀 𝑥 2



Johnson-Lindenstrauss Lemma

• Distributional Johnson-Lindenstrauss Lemma: Given Π ∈ 𝑅𝑚×𝑑 with 

𝑚 = 𝑂
log 1/𝛿

𝜀2 and each entry drawn from 
1

𝑚
𝑁 0,1 , then for any

𝑥 ∈ 𝑅𝑑 and setting 𝑦 = Π𝑥, then with probability at least 1 − 𝛿

1 − 𝜀 𝑥 2 ≤ 𝑦 2 ≤ 1 + 𝜀 𝑥 2



Johnson-Lindenstrauss Lemma

• Distributional Johnson-Lindenstrauss Lemma: Given Π ∈ 𝑅𝑚×𝑑 with 

𝑚 = 𝑂
log 1/𝛿

𝜀2 and each entry drawn from 
1

𝑚
𝑁 0,1 , then for any

𝑥 ∈ 𝑅𝑑 and setting 𝑦 = Π𝑥, then with probability at least 1 − 𝛿

(Here 𝑥1 is the first coordinate of 𝑥)

1 − 𝜀 𝑥 2 ≤ 𝑦 2 ≤ 1 + 𝜀 𝑥 2

𝑥1

⋮
⋮
⋮

𝑥𝑑

Π
𝑦1

⋮
𝑦𝑚



Trivia Question #5 (Gaussian Behavior)

• Let 𝑥 ∼ 𝑁 𝜇, 𝜎2 . What is E 𝑥 and what is E 𝑥 − 𝜇 2 ?

• 0, 1

• (0, 𝜎)

• (𝜇, 𝜎)

• (𝜇, 𝜎2)

PDF of Gaussian 𝑁 𝜇, 𝜎2  is 𝑝 𝑥 =
1

2𝜋𝜎2
𝑒

−
(𝑥−𝜇)2

2𝜎2



Trivia Question #6 (Gaussian Stability)

• For independent 𝑎 ∼ 𝑁 𝜇1, 𝜎1
2 and 𝑏 ∼ 𝑁 𝜇2, 𝜎2

2 . What is the 
distribution of 𝑎 + 𝑏?

• 𝑁
𝜇1+𝜇2

2
,

𝜎1+𝜎2

2

• 𝑁 𝜇1 + 𝜇2, 𝜎1 + 𝜎2

• 𝑁 𝜇1 + 𝜇2, 𝜎1
2 + 𝜎2

2

• 𝑁 𝜇1 + 𝜇2, 𝜎1
2 + 𝜎2

2



Johnson-Lindenstrauss Lemma

• 𝑦𝑖 = Π𝑖 , 𝑥 =
1

𝑚
σ𝑗=1

𝑑 𝑔𝑗 ⋅ 𝑥𝑗 for 𝑔𝑗 ∼ 𝑁 0, 1

• 𝑔𝑗 ⋅ 𝑥𝑗 ∼ 𝑁 0, 𝑥𝑗
2 , normal random variable with variance 𝑥𝑗

2

variance 𝑥𝑗
2variance 1

𝑔𝑗 ⋅ 𝑥𝑗 𝑔𝑗



Gaussian Stability

variance 𝑥1
2 variance 𝑥2

2 variance 𝑥𝑑
2

𝑦𝑖 = Π𝑖 , 𝑥 =
1

𝑚
𝑔1 ⋅ 𝑥1 + 𝑔2 ⋅ 𝑥2 + ⋯ + 𝑔𝑑 ⋅ 𝑥𝑑

What is the distribution of 𝑦𝑖?



Gaussian Stability

• For independent 𝑎 ∼ 𝑁 𝜇1, 𝜎1
2 and 𝑏 ∼ 𝑁 𝜇2, 𝜎2

2 , we have 

𝑎 + 𝑏 ∼ 𝑁 𝜇1 + 𝜇2, 𝜎1
2 + 𝜎2

2



Gaussian Stability

• For independent 𝑎 ∼ 𝑁 𝜇1, 𝜎1
2 and 𝑏 ∼ 𝑁 𝜇2, 𝜎2

2 , we have 

𝑎 + 𝑏 ∼ 𝑁 𝜇1 + 𝜇2, 𝜎1
2 + 𝜎2

2

𝑦𝑖 = Π𝑖 , 𝑥 =
1

𝑚
𝑔1 ⋅ 𝑥1 + 𝑔2 ⋅ 𝑥2 + ⋯ + 𝑔𝑑 ⋅ 𝑥𝑑

𝑦𝑖 ∼ 𝑁 0,
1

𝑚
𝑥 2

2



Gaussian Stability

• For 𝑦𝑖 ∼ 𝑁 0,
1

𝑚
𝑥 2

2 , we have E 𝑦𝑖
2 =

1

𝑚
𝑥 2

2

• We have E 𝑦 2
2 = E 𝑦1

2 + ⋯ + 𝑦𝑚
2 = E 𝑦1

2 + ⋯ + E 𝑦𝑚
2 = 𝑥 2

2

• Correct expectation!

• How is it distributed?



Johnson-Lindenstrauss Lemma

• 𝑦 2
2 is distributed as Chi-Squared random variable with 𝑚 degrees of 

freedom (sum of 𝑚 squared independent Gaussians)



Johnson-Lindenstrauss Lemma

• 𝑦 2
2 is distributed as Chi-Squared random variable with 𝑚 degrees of 

freedom (sum of 𝑚 squared independent Gaussians)

• Chi-Squared Concentration: Let 𝑍 be a Chi-Squared random variable 
with 𝑚 degrees of freedom. Then

• Claim follows from setting 𝑚 = 𝑂
log 1/𝛿

𝜀2

Pr 𝑍 − E[𝑍] ≥ 𝜀 ⋅ E[𝑍] ≤ 2𝑒−𝑚𝜀2/8
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