CSCE 658: Randomized Algorithms

Lecture 8

Samson Zhou

Last Time: The Streaming Model

- Input: Elements of an underlying data set S, which arrive sequentially
- Output: Evaluation (or approximation) of a given function
- Goal: Use space sublinear in the size m of the input S

Last Time: Reservoir Sampling

- Suppose we see a stream of elements from [n]. How do we uniformly sample one of the positions of the stream?
- [Vitter 1985]: Initialize $s=\perp$
- On the arrival of element i, replace s with x_{i} with probability $\frac{1}{i}$

4772811014335129549364610

Last Time: Reservoir Sampling

- Suppose we see a stream of elements from [n]. How do we uniformly sample one of the positions of the stream?
- [Vitter 1985]: Initialize $s=\perp$
- On the arrival of element i, replace s with x_{i} with probability $\frac{1}{i}$

4772811014335129549364610

Last Time: Frequent Items

- Goal: Given a set S of m elements from $[n]$ and a parameter k, output the items from $[n]$ that have frequency at least $\frac{m}{k}$

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
10	0	1	1	2	0	9

- How many items can be returned? At most k coordinates with frequency at least $\frac{m}{k}$
- For $k=20$, want items that are at least 5% of the stream

Last Time: Majority

- Goal: Given a set S of m elements from [n] and a parameter $k=2$, output the items from $[n]$ that have frequency at least $\frac{m}{2}$
- Find the item that forms the majority of the stream

Last Time: Majority

- Initialize item $V=1$ with count $c=0$
- For updates $1, \ldots, m$:
- If $c=0$, set $V=x_{i}$ and $c=1$
- Else if $V=x_{i}$, increment counter c by setting $c=c+1$
- Else if $V \neq x_{i}$, decrement counter c by setting $c=c-1$
- Initialize $V=x_{1}$ and counter $c=1$
- If x_{1} is not majority, it must be deleted at some time T
- At time T, the stream will have consumed $\frac{T}{2}$ instances of x_{1}, preserving majority

Misra Gries

- Drawbacks: Misra-Gries may return false positives, i.e., items that are not frequent
- In fact, no algorithm using $o(n)$ space can output ONLY the items with frequency at least $\frac{n}{k}$
- Intuition: Hard to decide whether coordinate has frequency $\frac{n}{k}$ or $\frac{n}{k}-1$

Misra Gries

- Intuition: Hard to decide whether coordinate has frequency $\frac{n}{k}$ or $\frac{n}{k}-1$
- $x_{1}=2, x_{2}=5, x_{3}=4, x_{4}=7, x_{5}=1, x_{6}=9, \ldots$
- $x_{n-\frac{n}{k}+1}=\alpha, x_{n-\frac{n}{k}+2}=\alpha, \ldots, x_{n}=\alpha$ L

$$
\frac{n}{k}-1 \text { times }
$$

($\varepsilon, k)$-Frequent Items Problem

- Goal: Given a set S of m elements from [n], an accuracy parameter $\varepsilon \in(0,1)$, and a parameter k, output a list that includes:
- The items from $[n]$ that have frequency at least $\frac{m}{k}$
- No items with frequency less than $(1-\varepsilon) \frac{m}{k}$

Misra Gries for (ε, k)-Frequent Items Problem

- Initialize k items V_{1}, \ldots, V_{k} with count $c_{1}, \ldots, c_{k}=0$
- For updates $1, \ldots, m$:
- If $V_{t}=x_{i}$ for some t, increment counter c_{t}, i.e., $c_{t}=c_{t}+1$
- Else if $c_{t}=0$ for some t, set $V_{t}=x_{i}$
- Else decrement all counters c_{j}, i.e., $c_{j}=c_{j}-1$ for all $j \in[k]$

Misra Gries for (ε, k)-Frequent Items Problem

- Set $r=\left\lceil\frac{k}{\varepsilon}\right\rceil$
- Initialize r items V_{1}, \ldots, V_{r} with count $c_{1}, \ldots, c_{r}=0$
- For updates $1, \ldots, m$:
- If $V_{t}=x_{i}$ for some t, increment counter c_{t}, i.e., $c_{t}=c_{t}+1$
- Else if $c_{t}=0$ for some t, set $V_{t}=x_{i}$
- Else decrement all counters c_{j}, i.e., $c_{j}=c_{j}-1$ for all $j \in[r]$

Misra Gries for (ε, k)-Frequent Items Problem

- Claim: For all estimated frequencies $\widehat{f_{i}}$ by Misra-Gries, we have

$$
f_{i}-\frac{\varepsilon m}{k} \leq \widehat{f}_{i} \leq f_{i}
$$

- Intuition: Have a lot of counters, so relatively few decrements

($\varepsilon, k)$-Frequent Items Problem

- Goal: Given a set S of m elements from [n], an accuracy parameter $\varepsilon \in(0,1)$, and a parameter k, output a list that includes:
- The items from $[n]$ that have frequency at least $\frac{m}{k}$
- No items with frequency less than $(1-\varepsilon) \frac{m}{k}$

Misra Gries for (ε, k)-Frequent Items Problem

- Set $r=\left\lceil\frac{2 k}{\varepsilon}\right\rceil$ rather than $r=\left\lceil\frac{k}{\varepsilon}\right\rceil$
- Initialize r items V_{1}, \ldots, V_{r} with count $c_{1}, \ldots, c_{r}=0$
- For updates $1, \ldots, m$:
- If $V_{t}=x_{i}$ for some t, increment counter c_{t}, i.e., $c_{t}=c_{t}+1$
- Else if $c_{t}=0$ for some t, set $V_{t}=x_{i}$
- Else decrement all counters c_{j}, i.e., $c_{j}=c_{j}-1$ for all $j \in[r]$
- Output coordinates V_{t} with $c_{t} \geq(1-\varepsilon) \cdot \frac{m}{k}$

Misra Gries for (ε, k)-Frequent Items Problem

- Claim: For all estimated frequencies $\widehat{f_{i}}$ by Misra-Gries, we have

$$
f_{i}-\frac{\varepsilon m}{2 k} \leq \widehat{f}_{i} \leq f_{i}
$$

- If $f_{i} \geq \frac{m}{k}$, then $\widehat{f_{i}} \geq f_{i}-\frac{\varepsilon m}{2 k}$ and if $f_{i}<(1-\varepsilon) \cdot \frac{m}{k}$, then $\widehat{f}_{i}<f_{i}-$ $\frac{\varepsilon m}{2 k}$
- Returning coordinates V_{t} with $c_{t} \geq\left(1-\frac{\varepsilon}{2}\right) \cdot \frac{m}{k}$ means:
- i with $f_{i} \geq \frac{m}{k}$ will be returned
- NO i with $f_{i}<(1-\varepsilon) \cdot \frac{m}{k}$ will be returned

Misra Gries for (ε, k)-Frequent Items Problem

- Summary: Misra-Gries can be used to solve the (ε, k)-frequent items problem
- Misra-Gries uses $O\left(\frac{k}{\varepsilon} \log n\right)$ bits of space
- Misra-Gries is a deterministic algorithm
- Misra-Gries never overestimates the true frequency

Insertion-Deletion Streams

- Stream of length $m=\Theta(n)$
- Universe of size $[n]$, underlying vector $f \in R^{n}$
- Each update increases or decreases a coordinate in f

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
0	0	0	0	0	0	0

- "Decrease f_{6} "

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
0	0	0	0	0	-1	0

Insertion-Deletion Streams

- Database Management: In database management, insertiondeletion streams are used to track changes made to the database over time
- Transaction logs often utilize this concept to record insertions and deletions to ensure data integrity and support features like rollbacks and recovery

Insertion-Deletion Streams

- Version Control Systems: Insertion-deletion streams track changes made to files, enabling users to see what has been added (inserted) or removed (deleted) in each version
- Crucial for collaboration and managing software development projects, central to version control systems

Insertion-Deletion Streams

- Traffic Flow and Transportation Systems: Insertion-deletion streams are used to analyze traffic patterns and changes in transportation systems
- This helps in optimizing traffic flow, managing congestion, and improving transportation infrastructure

Frequent Items on Insertion-Deletion Streams

- Misra-Gries on Insertion-Deletion Streams
- "Increase f_{1} "
- "Increase f_{3} "
- "Increase f_{2} "
- "Increase f_{2} "
- "Decrease f_{2} "
- "Decrease f_{2} "
- "Decrease f_{3} "

CountMin

- Another algorithm for the (ε, k)-frequent items problem
- Can be used on insertion-deletion streams
- Can be easily parallelized across multiple servers

CountMin

- Initalization: Create b buckets of counters and use a random hash function $h:[n] \rightarrow[b]$
- Algorithm: For each update x_{i}, increment the counter $h\left(x_{i}\right)$

c_{1}	c_{2}	c_{3}	c_{4}
0	0	0	0

- At the end of the stream, output the counter $h\left(x_{i}\right)$ as the estimate for x_{i}

CountMin

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
0	0	0	0	0	0	0

c_{1}	c_{2}	c_{3}	c_{4}
0	0	0	0

CountMin

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
1	0	0	0	0	0	0

$$
h(x)=3 x+2(\bmod 4)
$$

1

CountMin

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
1	0	0	0	0	0	0

CountMin

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
1	0	0	0	0	0	0

CountMin

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
1	0	0	0	0	0	0

$$
h(x)=3 x+2(\bmod 4)
$$

CountMin

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
1	0	1	0	0	0	0

$$
h(x)=3 x+2(\bmod 4)
$$

c_{1}	c_{2}	c_{3}	c_{4}
1	0	1	0

CountMin

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
1	0	1	0	0	0	0

$$
h(x)=3 x+2(\bmod 4)
$$

CountMin

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
1	1	1	0	0	0	0

$$
h(x)=3 x+2(\bmod 4)
$$

c_{1}	c_{2}	c_{3}	c_{4}
1	0	1	1

CountMin

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
1	1	1	0	0	0	0

$$
h(x)=3 x+2(\bmod 4)
$$

1

CountMin

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
2	1	1	0	0	0	0

$$
h(x)=3 x+2(\bmod 4)
$$

c_{1}	c_{2}	c_{3}	c_{4}
2	0	1	1

CountMin

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
2	1	1	0	0	0	0

$$
h(x)=3 x+2(\bmod 4)
$$

c_{1}	c_{2}	c_{3}	c_{4}
2	0	1	1

CountMin

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
2	1	1	0	1	0	0

CountMin

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
2	1	1	0	1	0	0

- What is the estimation for f_{4} ?

$$
\begin{array}{ll}
h(x)=3 x+2(\bmod 4) & \bullet \text { What about } f_{3} ? \\
& \bullet \text { What about } f_{5} ? \text { What about } f_{1} ?
\end{array}
$$

c_{1}	c_{2}	c_{3}	c_{4}
3	0	1	1

CountMin

- Given a set S of m elements from [n], let \widehat{f}_{i} be the estimated frequency for f_{i}
- Claim: We always have $\widehat{f_{i}} \geq f_{i}$ for insertion-only streams
- Suppose $h(i)=a$ so that $c_{a}=\widehat{f}_{i}$
- Note that c_{a} counts the number f_{j} of occurrences of any j with $h(j)=a=h(i)$, including f_{i} itself

CountMin

- Suppose $h(i)=a$ so that $c_{a}=\widehat{f}_{i}$
- Note that c_{a} counts the number f_{j} of occurrences of any j with $h(j)=a=h(i)$, including f_{i} itself
- $c_{a}=\sum_{j: h(j)=a} f_{a} \geq f_{i}$ since $h(i)=a$
- $c_{a}=f_{i}+\sum_{j \neq i, \text { with } j: h(j)=a} f_{j}$

CountMin Error Analysis

- $c_{a}=f_{i}+\sum_{j \neq i, \text { with } j: h(j)=a} f_{j}$
- What is the expected error for f_{i} ?

CountMin Error Analysis

- $c_{a}=f_{i}+\sum_{j \neq i, \text { with } j: h(j)=a} f_{j}$
- What is the expected error for f_{i} ?
- $\mathrm{E}\left[\left|\sum_{j \neq i, \text { with } j: h(j)=a} f_{j}\right|\right] \leq \Sigma_{j \neq i} \mathrm{E}\left[\left|f_{j}\right| \cdot I_{h(j)=h(i)}\right]$

CountMin Error Analysis

- $c_{a}=f_{i}+\sum_{j \neq i, \text { with } j: h(j)=a} f_{j}$
- What is the expected error for f_{i} ?
- $\mathrm{E}\left[\left|\sum_{j \neq i \text {, with } j: h(j)=a} f_{j}\right|\right] \leq \Sigma_{j \neq i} \mathrm{E}\left[\left|f_{j}\right| \cdot I_{h(j)=h(i)}\right]$

$$
=\Sigma_{j \neq i} \mathrm{E}\left[I_{h(j)=h(i)}\right] \cdot\left|f_{j}\right|
$$

CountMin Error Analysis

- $c_{a}=f_{i}+\sum_{j \neq i, \text { with } j: h(j)=a} f_{j}$
- What is the expected error for f_{i} ?
- $\mathrm{E}\left[\left|\sum_{j \neq i \text {, with } j: h(j)=a} f_{j}\right|\right] \leq \Sigma_{j \neq i} \mathrm{E}\left[\left|f_{j}\right| \cdot I_{h(j)=h(i)}\right]$

$$
\begin{aligned}
& =\Sigma_{j \neq i} \mathrm{E}\left[I_{h(j)=h(i)}\right] \cdot\left|f_{j}\right| \\
& =\Sigma_{j \neq i} \operatorname{Pr}[h(j)=h(i)] \cdot\left|f_{j}\right|
\end{aligned}
$$

CountMin Error Analysis

- $c_{a}=f_{i}+\sum_{j \neq i, \text { with } j: h(j)=a} f_{j}$
- What is the expected error for f_{i} ?
- $\mathrm{E}\left[\left|\sum_{j \neq i \text {, with } j: h(j)=a} f_{j}\right|\right] \leq \Sigma_{j \neq i} \mathrm{E}\left[\left|f_{j}\right| \cdot I_{h(j)=h(i)}\right]$

$$
\begin{aligned}
& =\Sigma_{j \neq i} \mathrm{E}\left[I_{h(j)=h(i)}\right] \cdot\left|f_{j}\right| \\
& =\Sigma_{j \neq i} \operatorname{Pr}[h(j)=h(i)] \cdot\left|f_{j}\right| \\
& =\Sigma_{j \neq i} \frac{1}{b} \cdot\left|f_{j}\right| \leq \frac{\|f\|_{1}}{b}
\end{aligned}
$$

CountMin Error Analysis

- $c_{a}=f_{i}+\sum_{j \neq i, \text { with } j: h(j)=a} f_{j}$
- What is the expected error for f_{i} ?
- $\mathrm{E}\left[\left|\sum_{j \neq i \text {, with } j: h(j)=a} f_{j}\right|\right] \leq \Sigma_{j \neq i} \mathrm{E}\left[\left|f_{j}\right| \cdot I_{h(j)=h(i)}\right]$

$$
\begin{aligned}
& =\Sigma_{j \neq i} \mathrm{E}\left[I_{h(j)=h(i)}\right] \cdot\left|f_{j}\right| \\
& =\Sigma_{j \neq i} \operatorname{Pr}[h(j)=h(i)] \cdot\left|f_{j}\right| \\
& =\Sigma_{j \neq i} \frac{1}{b} \cdot\left|f_{j}\right| \leq \frac{\|f\|_{1}}{b}
\end{aligned}
$$

- Set $b=\frac{9 k}{\varepsilon}$, then the expected error is at most $\frac{\varepsilon\|f\|_{1}}{9 k}$

CountMin Error Analysis

- Set $b=\frac{9 k}{\varepsilon}$, then the expected error is at most $\frac{\varepsilon\|f\|_{1}}{9 k}$
- By Markov's inequality, the error for f_{i} is at most $\frac{\varepsilon\|f\|_{1}}{3 k}$ with probability at least $\frac{2}{3}$
- How to ensure accuracy for all $i \in[n]$?

CountMin Error Analysis

- By Markov's inequality, the error for f_{i} is at most $\frac{\varepsilon\|f\|_{1}}{3 k}$ with probability at least $\frac{2}{3}$
- How to ensure accuracy for all $i \in[n]$?
- Repeat $\ell:=O(\log n)$ times to get estimates e_{1}, \ldots, e_{ℓ} for each $i \in$ [n] and set $\widehat{f}_{i}=$ median $\left(\mathrm{e}_{1}, \ldots, \mathrm{e}_{\ell}\right)$ (or min for insertion-only)

CountMin for (ε, k)-Frequent Items Problem

- Claim: For all estimated frequencies \widehat{f}_{i} by CountMin, we have

$$
f_{i}-\frac{\varepsilon\|f\|_{1}}{3 k} \leq \widehat{f}_{i} \leq f_{i}+\frac{\varepsilon\|f\|_{1}}{3 k}
$$

- If $f_{i} \geq \frac{\|f\|_{1}}{k}$, then $\widehat{f}_{i} \geq f_{i}-\frac{\varepsilon\|f\|_{1}}{2 k}$ and if $f_{i}<(1-\varepsilon) \cdot \frac{\|f\|_{1}}{k}$, then $\widehat{f}_{i}<f_{i}-\frac{\varepsilon\|f\|_{1}}{2 k}$
- Returning coordinates V_{t} with $c_{t} \geq\left(1-\frac{\varepsilon}{2}\right) \cdot \frac{\|f\|_{1}}{k}$ means:
- i with $f_{i} \geq \frac{\|f\|_{1}}{k}$ will be returned
- NO i with $f_{i}<(1-\varepsilon) \cdot \frac{\|f\|_{1}}{k}$ will be returned

CountMin for (ε, k)-Frequent Items Problem

- Summary: CountMin can be used to solve the (ε, k)-frequent items problem on an insertion-deletion stream
- CountMin uses $O\left(\frac{k}{\varepsilon} \log ^{2} n\right)$ bits of space
- CountMin is a randomized algorithm
- CountMin never underestimates the true frequency for insertiononly streams

