CSCE 658: Randomized Algorithms Lecture 8 Samson Zhou ### Last Time: The Streaming Model - Input: Elements of an underlying data set *S*, which arrive sequentially - Output: Evaluation (or approximation) of a given function - Goal: Use space sublinear in the size m of the input S ### Last Time: Reservoir Sampling - Suppose we see a stream of elements from [n]. How do we uniformly sample one of the positions of the stream? - [Vitter 1985]: Initialize $s = \bot$ - On the arrival of element i, replace s with x_i with probability $\frac{1}{i}$ # 47 72 81 10 14 33 51 29 54 9 36 46 10 ### Last Time: Reservoir Sampling - Suppose we see a stream of elements from [n]. How do we uniformly sample one of the positions of the stream? - [Vitter 1985]: Initialize $s = \bot$ - On the arrival of element i, replace s with x_i with probability $\frac{1}{i}$ # 47 72 81 10 14 33 51 29 54 9 36 46 10 ### Last Time: Frequent Items • Goal: Given a set S of m elements from [n] and a parameter k, output the items from [n] that have frequency at least $\frac{m}{k}$ | f_1 | f_2 | f_3 | f_4 | f_5 | f_6 | f_7 | |-------|-------|-------|-------|-------|-------|-------| | 10 | 0 | 1 | 1 | 2 | 0 | 9 | - How many items can be returned? At most k coordinates with frequency at least $\frac{m}{k}$ - For k = 20, want items that are at least 5% of the stream # Last Time: Majority • Goal: Given a set S of m elements from [n] and a parameter k=2, output the items from [n] that have frequency at least $\frac{m}{2}$ Find the item that forms the majority of the stream # Last Time: Majority - Initialize item V=1 with count c=0 - For updates 1, ..., *m*: - If c=0, set $V=x_i$ and c=1 - Else if $V = x_i$, increment counter c by setting c = c + 1 - Else if $V \neq x_i$, decrement counter c by setting c = c 1 - Initialize $V = x_1$ and counter c = 1 - If x_1 is not majority, it must be deleted at some time T - At time T, the stream will have consumed $\frac{T}{2}$ instances of x_1 , preserving majority #### Misra Gries • Drawbacks: Misra-Gries may return false positives, i.e., items that are not frequent • In fact, no algorithm using o(n) space can output ONLY the items with frequency at least $\frac{n}{k}$ • Intuition: Hard to decide whether coordinate has frequency $\frac{n}{k}$ or $\frac{n}{k}-1$ #### Misra Gries • Intuition: Hard to decide whether coordinate has frequency $\frac{n}{k}$ or $\frac{n}{k}-1$ • $$x_1 = 2$$, $x_2 = 5$, $x_3 = 4$, $x_4 = 7$, $x_5 = 1$, $x_6 = 9$, ... • $$x_{n-\frac{n}{k}+1} = \alpha$$, $x_{n-\frac{n}{k}+2} = \alpha$,..., $x_n = \alpha$ $$\frac{n}{k} - 1 \text{ times}$$ # (ε, k) -Frequent Items Problem - Goal: Given a set S of m elements from [n], an accuracy parameter $\varepsilon \in (0, 1)$, and a parameter k, output a list that includes: - The items from [n] that have frequency at least $\frac{m}{k}$ - No items with frequency less than $(1 \varepsilon) \frac{m}{k}$ - Initialize k items V_1, \dots, V_k with count $c_1, \dots, c_k = 0$ - For updates 1, ..., *m*: - If $V_t = x_i$ for some t, increment counter c_t , i.e., $c_t = c_t + 1$ - Else if $c_t = 0$ for some t, set $V_t = x_i$ - Else decrement all counters c_i , i.e., $c_i = c_i 1$ for all $j \in [k]$ • Set $$r = \left[\frac{k}{\varepsilon}\right]$$ - Initialize r items V_1, \dots, V_r with count $c_1, \dots, c_r = 0$ - For updates 1, ..., *m*: - If $V_t = x_i$ for some t, increment counter c_t , i.e., $c_t = c_t + 1$ - Else if $c_t = 0$ for some t, set $V_t = x_i$ - Else decrement all counters c_i , i.e., $c_i = c_i 1$ for all $j \in [r]$ • Claim: For all estimated frequencies $\hat{f_i}$ by Misra-Gries, we have $$f_i - \frac{\varepsilon m}{k} \le \widehat{f}_i \le f_i$$ Intuition: Have a lot of counters, so relatively few decrements # (ε, k) -Frequent Items Problem - Goal: Given a set S of m elements from [n], an accuracy parameter $\varepsilon \in (0, 1)$, and a parameter k, output a list that includes: - The items from [n] that have frequency at least $\frac{m}{k}$ - No items with frequency less than $(1 \varepsilon) \frac{m}{k}$ • Set $$r = \left\lceil \frac{2k}{\varepsilon} \right\rceil$$ rather than $r = \left\lceil \frac{k}{\varepsilon} \right\rceil$ - Initialize r items V_1, \dots, V_r with count $c_1, \dots, c_r = 0$ - For updates 1, ..., *m*: - If $V_t = x_i$ for some t, increment counter c_t , i.e., $c_t = c_t + 1$ - Else if $c_t = 0$ for some t, set $V_t = x_i$ - Else decrement all counters c_i , i.e., $c_i = c_i 1$ for all $j \in [r]$ - Output coordinates V_t with $c_t \ge (1 \varepsilon) \cdot \frac{m}{k}$ • Claim: For all estimated frequencies \hat{f}_i by Misra-Gries, we have $$f_i - \frac{\varepsilon m}{2k} \le \widehat{f}_i \le f_i$$ - If $f_i \ge \frac{m}{k}$, then $\widehat{f_i} \ge f_i \frac{\varepsilon m}{2k}$ and if $f_i < (1 \varepsilon) \cdot \frac{m}{k}$, then $\widehat{f_i} < f_i \frac{\varepsilon m}{2k}$ - Returning coordinates V_t with $c_t \ge \left(1 \frac{\varepsilon}{2}\right) \cdot \frac{m}{k}$ means: - i with $f_i \ge \frac{m}{k}$ will be returned - NO i with $f_i < (1 \varepsilon) \cdot \frac{m}{k}$ will be returned • Summary: Misra-Gries can be used to solve the (ε, k) -frequent items problem • Misra-Gries uses $O\left(\frac{k}{\varepsilon}\log n\right)$ bits of space Misra-Gries is a deterministic algorithm Misra-Gries never overestimates the true frequency - Stream of length $m = \Theta(n)$ - Universe of size [n], underlying vector $f \in \mathbb{R}^n$ - Each update increases or decreases a coordinate in f | f_1 | f_2 | f_3 | f_4 | f_5 | f_6 | f_7 | |-------|-------|-------|-------|-------|-------|-------| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | • "Decrease f_6 " | f_1 | f_2 | f_3 | f_4 | f_5 | f_6 | f_7 | |-------|-------|-------|-------|-------|-------|-------| | 0 | 0 | 0 | 0 | 0 | -1 | 0 | Database Management: In database management, insertiondeletion streams are used to track changes made to the database over time Transaction logs often utilize this concept to record insertions and deletions to ensure data integrity and support features like rollbacks and recovery Version Control Systems: Insertion-deletion streams track changes made to files, enabling users to see what has been added (inserted) or removed (deleted) in each version Crucial for collaboration and managing software development projects, central to version control systems Bitbucket - Traffic Flow and Transportation Systems: Insertion-deletion streams are used to analyze traffic patterns and changes in transportation systems - This helps in optimizing traffic flow, managing congestion, and improving transportation infrastructure ### Frequent Items on Insertion-Deletion Streams - Misra-Gries on Insertion-Deletion Streams - "Increase f_1 " - "Increase f_3 " - "Increase f_2 " - "Increase f_2 " - "Decrease f_2 " - "Decrease f_2 " - "Decrease f_3 " • Another algorithm for the (ε, k) -frequent items problem Can be used on insertion-deletion streams Can be easily parallelized across multiple servers - Initalization: Create b buckets of counters and use a random hash function $h: [n] \to [b]$ - Algorithm: For each update x_i , increment the counter $h(x_i)$ | c_1 | c_2 | c_3 | c_4 | |-------|-------|-------|-------| | 0 | 0 | 0 | 0 | • At the end of the stream, output the counter $h(x_i)$ as the estimate for x_i | f_1 | f_2 | f_3 | f_4 | f_5 | f_6 | f_7 | |-------|-------|-------|-------|-------|-------|-------| | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 1 | c_1 | c_2 | c_3 | c_4 | |-------|-------|-------|-------| | 0 | 0 | 0 | 0 | | f_1 | f_2 | f_3 | f_4 | f_5 | f_6 | f_7 | |-------|-------|-------|-------|-------|-------|-------| | 1 | 0 | 0 | 0 | 0 | 0 | 0 | $$h(x) = 3x + 2 \pmod{4}$$ | c_1 | c_2 | c_3 | C_4 | |-------|-------|-------|-------| | 0 | 0 | 0 | 0 | | f_1 | f_2 | f_3 | f_4 | f_5 | f_6 | f_7 | |-------|-------|-------|-------|-------|-------|-------| | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | f_1 | f_2 | f_3 | f_4 | f_5 | f_6 | f_7 | |-------|-------|-------|-------|-------|-------|-------| | 1 | 0 | 0 | 0 | 0 | 0 | 0 | | f_1 | f_2 | f_3 | f_4 | f_5 | f_6 | f_7 | |-------|-------|-------|-------|-------|-------|-------| | 1 | 0 | 0 | 0 | 0 | 0 | 0 | $$h(x) = 3x + 2 \pmod{4}$$ | c_1 | c_2 | c_3 | C_4 | |-------|-------|-------|-------| | 1 | 0 | 0 | 0 | | f_1 | f_2 | f_3 | f_4 | f_5 | f_6 | f_7 | |-------|-------|-------|-------|-------|-------|-------| | 1 | 0 | 1 | 0 | 0 | 0 | 0 | | f_1 | f_2 | f_3 | f_4 | f_5 | f_6 | f_7 | |-------|-------|-------|-------|-------|-------|-------| | 1 | 0 | 1 | 0 | 0 | 0 | 0 | $$h(x) = 3x + 2 \pmod{4}$$ | c_1 | c_2 | c_3 | c_4 | |-------|-------|-------|-------| | 1 | 0 | 1 | 0 | | f_1 | f_2 | f_3 | f_4 | f_5 | f_6 | f_7 | |-------|-------|-------|-------|-------|-------|-------| | 1 | 1 | 1 | 0 | 0 | 0 | 0 | $$h(x) = 3x + 2 \pmod{4}$$ | c_1 | c_2 | c_3 | c_4 | |-------|-------|-------|-------| | 1 | 0 | 1 | 1 | | f_1 | f_2 | f_3 | f_4 | f_5 | f_6 | f_7 | |-------|-------|-------|-------|-------|-------|-------| | 1 | 1 | 1 | 0 | 0 | 0 | 0 | $$h(x) = 3x + 2 \pmod{4}$$ | c_1 | c_2 | c_3 | c_4 | |-------|-------|-------|-------| | 1 | 0 | 1 | 1 | | f_1 | f_2 | f_3 | f_4 | f_5 | f_6 | f_7 | |-------|-------|-------|-------|-------|-------|-------| | 2 | 1 | 1 | 0 | 0 | 0 | 0 | | f_1 | f_2 | f_3 | f_4 | f_5 | f_6 | f_7 | |-------|-------|-------|-------|-------|-------|-------| | 2 | 1 | 1 | 0 | 0 | 0 | 0 | $$h(x) = 3x + 2 \pmod{4}$$ | c_1 | c_2 | <i>c</i> ₃ | c_4 | |-------|-------|-----------------------|-------| | 2 | 0 | 1 | 1 | | f_1 | f_2 | f_3 | f_4 | f_5 | f_6 | f_7 | |-------|-------|-------|-------|-------|-------|-------| | 2 | 1 | 1 | 0 | 1 | 0 | 0 | #### CountMin | f_1 | f_2 | f_3 | f_4 | f_5 | f_6 | f_7 | |-------|-------|-------|-------|-------|-------|-------| | 2 | 1 | 1 | 0 | 1 | 0 | 0 | • What is the estimation for f_4 ? $$h(x) = 3x + 2 \pmod{4}$$ - What about f_3 ? - What about f_5 ? What about f_1 ? | c_1 | c_2 | c_3 | c_4 | |-------|-------|-------|-------| | 3 | 0 | 1 | 1 | #### CountMin - Given a set S of m elements from [n], let $\widehat{f_i}$ be the estimated frequency for f_i - Claim: We always have $\hat{f}_i \geq f_i$ for insertion-only streams - Suppose h(i) = a so that $c_a = \widehat{f_i}$ - Note that c_a counts the number f_j of occurrences of any j with h(j) = a = h(i), including f_i itself #### CountMin - Suppose h(i) = a so that $c_a = \widehat{f}_i$ - Note that c_a counts the number f_j of occurrences of any j with h(j) = a = h(i), including f_i itself - $c_a = \sum_{j:h(j)=a} f_a \ge f_i$ since h(i) = a • $c_a = f_i + \sum_{j \neq i, \text{ with } j:h(j)=a} f_j$ - $c_a = f_i + \sum_{j \neq i, \text{ with } j: h(j) = a} f_j$ - What is the expected error for f_i ? - $c_a = f_i + \sum_{j \neq i, \text{ with } j:h(j)=a} f_j$ - What is the expected error for f_i ? - $E[|\sum_{j\neq i, \text{ with } j:h(j)=a} f_j|] \le \sum_{j\neq i} E[|f_j| \cdot I_{h(j)=h(i)}]$ - $c_a = f_i + \sum_{j \neq i, \text{ with } j:h(j)=a} f_j$ - What is the expected error for f_i ? - $\mathrm{E}\left[\left|\sum_{j\neq i, \text{ with } j:h(j)=a} f_j\right|\right] \leq \sum_{j\neq i} \mathrm{E}\left[\left|f_j\right| \cdot I_{h(j)=h(i)}\right]$ = $\sum_{j\neq i} \mathrm{E}\left[I_{h(j)=h(i)}\right] \cdot \left|f_j\right|$ - $c_a = f_i + \sum_{j \neq i, \text{ with } j:h(j)=a} f_j$ - What is the expected error for f_i ? • $$\mathrm{E}[|\sum_{j\neq i, \, \mathrm{with} \, j:h(j)=a} f_j|] \leq \sum_{j\neq i} \mathrm{E}[|f_j| \cdot I_{h(j)=h(i)}]$$ $$= \sum_{j\neq i} \mathrm{E}[I_{h(j)=h(i)}] \cdot |f_j|$$ $$= \sum_{j\neq i} \mathrm{Pr}[h(j) = h(i)] \cdot |f_j|$$ - $c_a = f_i + \sum_{j \neq i, \text{ with } j:h(j)=a} f_j$ - What is the expected error for f_i ? • $$E[|\sum_{j\neq i, \text{ with } j:h(j)=a} f_j|] \leq \sum_{j\neq i} E[|f_j| \cdot I_{h(j)=h(i)}]$$ $$= \sum_{j\neq i} E[I_{h(j)=h(i)}] \cdot |f_j|$$ $$= \sum_{j\neq i} \Pr[h(j)=h(i)] \cdot |f_j|$$ $$= \sum_{j\neq i} \frac{1}{h} \cdot |f_j| \leq \frac{||f||_1}{h}$$ - $c_a = f_i + \sum_{j \neq i, \text{ with } j:h(j)=a} f_j$ - What is the expected error for f_i ? • $$E[|\sum_{j\neq i, \text{ with } j:h(j)=a} f_j|] \leq \sum_{j\neq i} E[|f_j| \cdot I_{h(j)=h(i)}]$$ $$= \sum_{j\neq i} E[I_{h(j)=h(i)}] \cdot |f_j|$$ $$= \sum_{j\neq i} \Pr[h(j)=h(i)] \cdot |f_j|$$ $$= \sum_{j\neq i} \frac{1}{b} \cdot |f_j| \leq \frac{||f||_1}{b}$$ • Set $b = \frac{9k}{\varepsilon}$, then the expected error is at most $\frac{\varepsilon ||f||_1}{9k}$ • Set $b = \frac{9k}{\varepsilon}$, then the expected error is at most $\frac{\varepsilon \|f\|_1}{9k}$ • By Markov's inequality, the error for f_i is at most $\frac{\varepsilon \|f\|_1}{3k}$ with probability at least $\frac{2}{3}$ • How to ensure accuracy for all $i \in [n]$? • By Markov's inequality, the error for f_i is at most $\frac{\varepsilon \|f\|_1}{3k}$ with probability at least $\frac{2}{3}$ • How to ensure accuracy for all $i \in [n]$? • Repeat $\ell \coloneqq O(\log n)$ times to get estimates e_1, \dots, e_ℓ for each $i \in [n]$ and set $\widehat{f_i} = \operatorname{median}(e_1, \dots, e_\ell)$ (or min for insertion-only) # CountMin for (ε, k) -Frequent Items Problem • Claim: For all estimated frequencies $\widehat{f_i}$ by CountMin, we have $$f_i - \frac{\varepsilon \|f\|_1}{3k} \le \widehat{f}_i \le f_i + \frac{\varepsilon \|f\|_1}{3k}$$ - If $f_i \geq \frac{\|f\|_1}{k}$, then $\widehat{f}_i \geq f_i \frac{\varepsilon \|f\|_1}{2k}$ and if $f_i < (1-\varepsilon) \cdot \frac{\|f\|_1}{k}$, then $\widehat{f}_i < f_i \frac{\varepsilon \|f\|_1}{2k}$ - Returning coordinates V_t with $c_t \ge \left(1 \frac{\varepsilon}{2}\right) \cdot \frac{\|f\|_1}{k}$ means: - i with $f_i \ge \frac{\|f\|_1}{k}$ will be returned - NO i with $f_i < (1 \varepsilon) \cdot \frac{\|f\|_1}{k}$ will be returned # CountMin for (ε, k) -Frequent Items Problem • Summary: CountMin can be used to solve the (ε, k) -frequent items problem on an insertion-deletion stream • CountMin uses $O\left(\frac{k}{\varepsilon}\log^2 n\right)$ bits of space CountMin is a randomized algorithm • CountMin *never* underestimates the true frequency for insertiononly streams