CSCE 658: Randomized Algorithms

Lecture 8

Samson Zhou

Last Time: The Streaming Model

* Input: Elements of an underlying data set S, which arrive sequentially
e Output: Evaluation (or approximation) of a given function
* Goal: Use space sublinear in the size m of the input §

10111001

Last Time: Reservoir Sampling

* Suppose we see a stream of elements from [n]. How do we uniformly
sample one of the positions of the stream?

e [Vitter 1985]: Initialize s =1

. . . . e 1
* On the arrival of element i, replace s with x; with probability -

47 728110143351295493646 10

Last Time: Reservoir Sampling

* Suppose we see a stream of elements from [n]. How do we uniformly
sample one of the positions of the stream?

e [Vitter 1985]: Initialize s =1

. . . . e 1
* On the arrival of element i, replace s with x; with probability -

47 728110143351295493646 10

Last Time: Frequent ltems

* Goal: Given a set S of m elements from [n| and a parameter k,
output the items from [n| that have frequency at least %

10 0 1 1 2 0 9

* How many items can be returned? At most k coordinates with
frequency at Ieast%

 For k = 20, want items that are at least 5% of the stream

Last Time: Majority

* Goal: Given a set S of m elements from |n] and a parameter k = 2,
output the items from [n| that have frequency at least %

* Find the item that forms the majority of the stream

Last Time: Majority

e Initializeitem V = 1 with countc = 0

* For updates 1, ..., m:
lfc=0,setl/ =x;andc =1
* Else if V = x;, increment counter ¢ by settingc =c¢c + 1
* Else if V # x;, decrement counter ¢ by settingc = c — 1

* Initialize V = x; and counterc =1
* If x; is not majority, it must be deleted at some time T

. . T .
* At time T', the stream will have consumed > instances of x4,
preserving majority

Misra Gries

* Drawbacks: Misra-Gries may return false positives, i.e., items that
are not frequent

* In fact, no algorithm using o(n) space can output ONLY the items
with frequency at Ieast%

* Intuition: Hard to decide whether coordinate has frequency % or

= -1
k

Misra Gries

* |Intuition: Hard to decide whether coordinate has frequency % or

= -1
k

*x1=2,%x,=5x3=4,x,=7,xs =1,x,=09, ...

. xn_%ﬂ = q, xn—%+2 =Q,., X, =«
\ J
|

n

Pl 1 times

(¢, k)-Frequent Items Problem

* Goal: Given a set S of m elements from [n], an accuracy parameter
¢ € (0,1), and a parameter k, output a list that includes:

* The items from [n] that have frequency at Ieast%

* No items with frequency less than (1 — e)%

Misra Gries for (&, k)-Frequent Items Problem

* Initialize k items I/, ..., V;, with count ¢4, ..., ¢, = 0

* For updates 1, ..., m:
o If V; = x; for some t, increment counter ¢, i.e.,, ¢; = ¢; + 1
* Elseif c; = 0 forsome t, set V; = x;
* Else decrement all counters ¢;, i.e., ¢; = ¢; — 1forallj € [k]

Misra Gries for (&, k)-Frequent Items Problem
*Setr = [ﬂ

* Initialize r items V4, ..., . with count ¢4, ..., ¢, =0

* For updates 1, ..., m:
* If V, = x; for some t, increment counter ¢, i.e., ¢; = ¢; + 1
* Elseif c; = 0 for some t, set V;, = x;
* Else decrement all counters ¢;, i.e., ¢; = ¢; — 1forall j € [r]

Misra Gries for (&, k)-Frequent Items Problem

e Claim: For all estimated frequencies ﬁ by Misra-Gries, we have

cm
fi-—<fi<f

* Intuition: Have a lot of counters, so relatively few decrements

(¢, k)-Frequent Items Problem

* Goal: Given a set S of m elements from [n], an accuracy parameter
¢ € (0,1), and a parameter k, output a list that includes:

* The items from [n] that have frequency at Ieast%

* No items with frequency less than (1 — e)%

Misra Gries for (&, k)-Frequent Items Problem
* Setr = [%} rather than r = [ﬂ

* Initialize r items V4, ..., . with count ¢4, ..., ¢, =0

* For updates 1, ..., m:
* If V, = x; for some t, increment counter ¢, i.e., ¢; = ¢; + 1
* Elseif c; = 0 for some t, set V;, = x;
* Else decrement all counters ¢;, i.e., ¢; = ¢; — 1forall j € [r]

* Output coordinates V, with ¢, > (1 — ¢) - %

Misra Gries for (&, k)-Frequent Items Problem

e Claim: For all estimated frequencies ﬁ by Misra-Gries, we have

eEm
fi—r <fi<fi

o If f; 2— thenﬁ>ﬁ-——and|fﬁ<(1—e) — thenﬁ<ﬁ

em

2k

m
* Returning coordinates V; with ¢; = (1 — E) ~ means:
* [with f; = WI|| be returned

* NO i with ﬁ <(1-¢) -?will be returned

Misra Gries for (&, k)-Frequent Items Problem

* Summary: Misra-Gries can be used to solve the (¢, k)-frequent
items problem

* Misra-Gries uses O (glog n) bits of space

* Misra-Gries is a deterministic algorithm

* Misra-Gries never overestimates the true frequency

Insertion-Deletion Streams

 Stream of length m = ©(n)
* Universe of size [n], underlying vector f € R™
* Each update increases or decreases a coordinate in [

0 0 0 0 0 0 0

o ”
* “Decrease fg

0 0 0 0 0 -1 0

Insertion-Deletion Streams

* Database Management: In database management, insertion-
deletion streams are used to track changes made to the database
over time

* Transaction logs often utilize this concept to record insertions and
deletions to ensure data integrity and support features like rollbacks
and recovery

Insertion-Deletion Streams

* \Version Control Systems: Insertion-deletion streams track changes
made to files, enabling users to see what has been added (inserted)
or removed (deleted) in each version

* Crucial for collaboration and managing software development
projects, central to version control systems

git C) z: o Bitbucket

GItHUb Dropbox

Insertion-Deletion Streams

e Traffic Flow and Transportation Systems: Insertion-deletion streams
are used to analyze traffic patterns and changes in transportation
systems

* This helps in optimizing traffic flow, managing congestion, and
improving transportation infrastructure

Frequent Items on Insertion-Deletion Streams

* Misra-Gries on Insertion-Deletion Streams
* “Increase f;”

* “Increase f3”

* “Increase f,”

* “Increase f,”

* “Decrease f,”

* “Decrease f,”

* “Decrease f3”

CountMin

* Another algorithm for the (¢, k)-frequent items problem
e Can be used on insertion-deletion streams

* Can be easily parallelized across multiple servers

CountMin

e |[nitalization: Create b buckets of counters and use a random hash
function h: [n| — [b]

e Algorithm: For each update x;, increment the counter h(x;)
0 0 0 0

* At the end of the stream, output the counter h(x;) as the estimate
for x;

CountMin

A R i A & fe f
0 0 0 0 0 0 0

1

0 0 0 0

CountMin

A R i A & fe f
1 0 0 0 0 0 0

h(x) = 3x + 2 (mod 4) 1

0 0 0 0

CountMin

A R i A & fe f
1 0 0 0 0 0 0

h(x) = 3x + 2 (mod 4) / 1

0 0 0 0

CountMin

A R i A & fe f
1 0 0 0 0 0 0

h(x) = 3x + 2 (mod 4) / 1

1 0 0 0

CountMin

A R i A & fe f
1 0 0 0 0 0 0

h(x) = 3x + 2 (mod 4) 3

1 0 0 0

CountMin

A R i A & fe f
1 0 1 0 0 0 0

h(x) = 3x + 2 (mod 4) 3

A 4
1 0 1 0

CountMin

A R i A & fe f
1 0 1 0 0 0 0

h(x) = 3x + 2 (mod 4) 2

1 0 1 0

CountMin

A R i A & fe f
1 1 1 0 0 0 0

h(x) = 3x + 2 (mod 4) 2

1 0 1 1

CountMin

A R i A & fe f
1 1 1 0 0 0 0

h(x) = 3x + 2 (mod 4) 1

1 0 1 1

CountMin

A R i A & fe f
2 1 1 0 0 0 0

h(x) = 3x + 2 (mod 4) / 1

2 0 1 1

CountMin

A R i A & fe f
2 1 1 0 0 0 0

h(x) = 3x + 2 (mod 4) 5

2 0 1 1

CountMin

A R i A & fe f
2 1 1 0 1 0 0

h(x) = 3x + 2 (mod 4) / 5

3 0 1 1

CountMin
A B s fs fi
2 1 1 0 1 0 0

* What is the estimation for f,?
* What about f3?
* What about f5? What about f;?

3 0 1 1

h(x) = 3x 4+ 2 (mod 4)

CountMin

* Given a set S of m elements from [n], let f; be the estimated
frequency for f;

« Claim: We always have f; > f; for insertion-only streams

+ Suppose (i) = a so that ¢, = f;

* Note that ¢, counts the number f; of occurrences of any j with
h(j) = a = h(i), including f; itself

CountMin

* Suppose h(i) = a so thatc, = f;

* Note that ¢, counts the number f; of occurrences of any j with
h(j) = a = h(i), including f; itself

* Cq = Xjn(j)=afa = fisince h(i) = a

Ca = fi + Xjsi with j-h(j)=a i

CountMin Error Analysis

*Cq =fi + Zjii, withj:h(j)zafj
 What is the expected error for f;?

CountMin Error Analysis

*Cq =fi + Zjii, withj:h(j)zafj
 What is the expected error for f;?

* E”Zjii, withj:h(j):afj” = z:jvtiE“fjl 'Ih(j)=h(i)]

CountMin Error Analysis

*Cq = fi + Zjii, withj:h(j)zafj

 What is the expected error for f;?

* E”Zjii, withj:h(j):afj” = z:jvtiE_|fj| ’Ih(j)=h(i)_
= Zj2iE[Iny=nw] - |

CountMin Error Analysis

* Cq = fi + 2jsi with j:n(j)=afj

 What is the expected error for f;?

) E”Zjii, withj:h(j)=afj|] = ZfiiE:lfjl 'Ih(j)=h(i):
= ZjiE|In(y=no) - |
= % Pr{h(j) = h(D] - |f;]

CountMin Error Analysis

*Cq = fi + Zjii, withj:h(j)zafj

 What is the expected error for f;?

* E”Zjii, withj:h(j):afj” = z:jiiE_|fj| 'Ih(j)=h(i)_
= Zj2iE[Iny=nw] - |

— zjilPr[h(j) = h(®] - |fjl

1l
]ilb ‘f]‘ b :

CountMin Error Analysis

* Cq = fi + 2jsi with j:n(j)=afj

 What is the expected error for f;?

’ E”Zjii, withj:h(j)=afj|] = z:jvtiE:|fj| ’Ih(j)=h(i):
= ZjiE|In(y=no) - |
— Z,#Pr[h(i) = h()] - |f;]

1l
Jilb |f}‘ b -

9%k
e Seth = — then the expected error is at most ellrlly

CountMin Error Analysis

9k :
e Seth = — then the expected error is at most 8”9];”1

ellfll4 with

* By Markov’s inequality, the error for f; is at most

. 2
probability at least 2

* How to ensure accuracy for all i € [n]?

CountMin Error Analysis

* By Markov’s inequality, the error for f; is at most glz{lll with

. 2
probability at least 3

* How to ensure accuracy for all i € [n]?

* Repeat £ := O(logn) times to get estimates e4, ..., e, foreach i €
In] and set f; = median(eq, ..., ep) (or min for insertion-only)

CountMin for (&, k)-Frequent Items Problem

e Claim: For all estimated frequencies ﬁ by CountMin, we have

ellflly ellfll4
fi-= =h=hit—3

«If f; = ”];{”1 then f; > f; — sllkaI1 andif ; < (1—¢) - ”flll , then
f<f— 8|If||1
* Returning coordinates I/; with ¢; = (1 — g) ”’;”1 means:
[with f; > ”];{”1 will be returned

IIfI|1

*NOiwithf; < (1—¢)- will be returned

CountMin for (&, k)-Frequent Items Problem

* Summary: CountMin can be used to solve the (¢, k)-frequent items
problem on an insertion-deletion stream

* CountMin uses O (Slog2 n) bits of space

* CountMin is a randomized algorithm

* CountMin never underestimates the true frequency for insertion-
only streams

	Slide 1: CSCE 658: Randomized Algorithms
	Slide 2: Last Time: The Streaming Model
	Slide 3: Last Time: Reservoir Sampling
	Slide 4: Last Time: Reservoir Sampling
	Slide 5: Last Time: Frequent Items
	Slide 6: Last Time: Majority
	Slide 7: Last Time: Majority
	Slide 8: Misra Gries
	Slide 9: Misra Gries
	Slide 10: open paren script epsilon ,k close paren -Frequent Items Problem
	Slide 11: Misra Gries for open paren script epsilon ,k close paren -Frequent Items Problem
	Slide 12: Misra Gries for open paren script epsilon ,k close paren -Frequent Items Problem
	Slide 13: Misra Gries for open paren script epsilon ,k close paren -Frequent Items Problem
	Slide 14: open paren script epsilon ,k close paren -Frequent Items Problem
	Slide 15: Misra Gries for open paren script epsilon ,k close paren -Frequent Items Problem
	Slide 16: Misra Gries for open paren script epsilon ,k close paren -Frequent Items Problem
	Slide 17: Misra Gries for open paren script epsilon ,k close paren -Frequent Items Problem
	Slide 18: Insertion-Deletion Streams
	Slide 19: Insertion-Deletion Streams
	Slide 20: Insertion-Deletion Streams
	Slide 21: Insertion-Deletion Streams
	Slide 22: Frequent Items on Insertion-Deletion Streams
	Slide 23: CountMin
	Slide 24: CountMin
	Slide 25: CountMin
	Slide 26: CountMin
	Slide 27: CountMin
	Slide 28: CountMin
	Slide 29: CountMin
	Slide 30: CountMin
	Slide 31: CountMin
	Slide 32: CountMin
	Slide 33: CountMin
	Slide 34: CountMin
	Slide 35: CountMin
	Slide 36: CountMin
	Slide 37: CountMin
	Slide 38: CountMin
	Slide 39: CountMin
	Slide 40: CountMin Error Analysis
	Slide 41: CountMin Error Analysis
	Slide 42: CountMin Error Analysis
	Slide 43: CountMin Error Analysis
	Slide 44: CountMin Error Analysis
	Slide 45: CountMin Error Analysis
	Slide 46: CountMin Error Analysis
	Slide 47: CountMin Error Analysis
	Slide 48: CountMin for open paren script epsilon ,k close paren -Frequent Items Problem
	Slide 49: CountMin for open paren script epsilon ,k close paren -Frequent Items Problem

