CSCE 658: Randomized Algorithms

Lecture 9

Samson Zhou

Homework 1

- Quick overview of the solutions

Last Time: CountMin

- Initalization: Create b buckets of counters and use a random hash function $h:[n] \rightarrow[b]$
- Algorithm: For each update x_{i}, increment the counter $h\left(x_{i}\right)$

c_{1}	c_{2}	c_{3}	c_{4}
0	0	0	0

- At the end of the stream, output the counter $h\left(x_{i}\right)$ as the estimate for x_{i}

CountMin for (ε, k)-Frequent Items Problem

- Claim: For all estimated frequencies \widehat{f}_{i} by CountMin, we have

$$
f_{i}-\frac{\varepsilon\|f\|_{1}}{3 k} \leq \widehat{f}_{i} \leq f_{i}+\frac{\varepsilon\|f\|_{1}}{3 k}
$$

- If $f_{i} \geq \frac{\|f\|_{1}}{k}$, then $\widehat{f}_{i} \geq f_{i}-\frac{\varepsilon\|f\|_{1}}{2 k}$ and if $f_{i}<(1-\varepsilon) \cdot \frac{\|f\|_{1}}{k}$, then $\widehat{f}_{i}<f_{i}-\frac{\varepsilon\|f\|_{1}}{2 k}$
- Returning coordinates V_{t} with $c_{t} \geq\left(1-\frac{\varepsilon}{2}\right) \cdot \frac{\|f\|_{1}}{k}$ means:
- i with $f_{i} \geq \frac{\|f\|_{1}}{k}$ will be returned
- NO i with $f_{i}<(1-\varepsilon) \cdot \frac{\|f\|_{1}}{k}$ will be returned

CountMin for (ε, k)-Frequent Items Problem

- Summary: CountMin can be used to solve the (ε, k)-frequent items problem on an insertion-deletion stream
- CountMin uses $O\left(\frac{k}{\varepsilon} \log ^{2} n\right)$ bits of space
- CountMin is a randomized algorithm

Recall: Euclidean Space and L_{2} Norm

- For $z \in R^{n}$, the L_{2} norm of z is denoted by $\|z\|_{2}$ and defined as:

$$
\|z\|_{2}=\sqrt{z_{1}^{2}+z_{2}^{2}+\cdots+z_{n}^{2}}
$$

- For $x, y \in R^{n}$, the distance function D is denoted by $\|\cdot\|_{2}$ and defined as $\|x-y\|_{2}$

Trivia Question \#7 (Norms)

- For $x \in R^{n}$, which of the following is (the most) true?
- $\|x\|_{2}>\|x\|_{1}$
- $\|x\|_{2} \geq\|x\|_{1}$
- $\|x\|_{2}=\|x\|_{1}$
- $\|x\|_{2} \leq\|x\|_{1}$
- $\|x\|_{2}<\|x\|_{1}$
- None of these are true characterizations of the relationship between $\|x\|_{2}$ and $\|x\|_{1}$

Trivia Question \#8 (Norms)

- For $x \in R^{n}$, how much large can $\|x\|_{1} /\|x\|_{2}$ be?
- $O(n)$
- $O(\sqrt{n})$
- $O(\log n)$
- O(1)

(ε, k)-Frequent Items Problem

- Goal: Given a set S of m elements from [n] that induces a frequency vector $f \in R^{n}$, an accuracy parameter $\varepsilon \in(0,1)$, and a parameter k, output a list that includes:
- The items from $[n]$ that have frequency at least $\frac{\|f\|_{1}}{k}$
- No items with frequency less than $(1-\varepsilon) \frac{\|f\|_{1}}{k}$

L_{2} Heavy-Hitters

- Goal: Given a set S of m elements from [n] that induces a frequency vector $f \in R^{n}$, an accuracy parameter $\varepsilon \in(0,1)$, and a parameter k, output a list that includes:
- The items from $[n]$ that have frequency at least $\frac{\|f\|_{2}}{k}$
- No items with frequency less than $(1-\varepsilon) \frac{\|f\|_{2}}{k}$

L_{2} Heavy-Hitters

- Goal: Given a set S of m elements from [n] that induces a frequency vector $f \in R^{n}$ and a threshold parameter $\varepsilon \in(0,1)$, output a list that includes:
- The items from [n] that have frequency at least $\varepsilon \cdot\|f\|_{2}$
- No items with frequency less than $\frac{\varepsilon}{2} \cdot\|f\|_{2}$

L_{2} Estimation

- Goal: Given a set S of m elements from [n] that induces a frequency vector $f \in R^{n}$ and an accuracy parameter $\varepsilon \in(0,1)$, output a $(1+\varepsilon)$-approximation to $\|f\|_{2}$
- Find Z such that $(1-\varepsilon) \cdot\|f\|_{2} \leq Z \leq(1+\varepsilon) \cdot\|f\|_{2}$
- Find Z^{\prime} such that $(1-\varepsilon) \cdot\|f\|_{2}^{2} \leq Z^{\prime} \leq(1+\varepsilon) \cdot\|f\|_{2}^{2}$

L_{2} Estimation

- How to do?

L_{2} Estimation

- How to do?
- Recall: Johnson-Lindenstrauss Transformation
- Assume for now we are given $\|f\|_{2}$

Revisiting CountMin

- Initalization: Create b buckets of counters and use a random hash function $h:[n] \rightarrow[b]$
- Algorithm: For each insertion (or deletion) to x_{i}, increment (or decrement) the counter $h\left(x_{i}\right)$

c_{1}	c_{2}	c_{3}	c_{4}
0	0	0	0

- At the end of the stream, output the counter $h\left(x_{i}\right)$ as the estimate for x_{i}

CountMin and the Power of Random Signs

- Initalization: Create b buckets of counters and use a random hash function $h:[n] \rightarrow[b]$ and a uniformly random sign function $s:[n] \rightarrow$ $\{-1,+1\}$, i.e., $\operatorname{Pr}[s(i)=+1]=\operatorname{Pr}[s(i)=-1]=\frac{1}{2}$
- Algorithm: For each insertion (or deletion) to x_{i}, change the counter $h\left(x_{i}\right)$ by $s\left(x_{i}\right)$ (or $\left.-s\left(x_{i}\right)\right)$

- At the end of the stream, output the quantity $\mathrm{s}\left(x_{i}\right) \cdot h\left(x_{i}\right)$ as the estimate for x_{i}

CountSketch

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
0	0	0	0	0	0	0

1

CountSketch

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
1	0	0	0	0	0	0

$$
\begin{gathered}
h(x)=3 x+2(\bmod 4) \\
s(x)=+1 \text { for } x \in\{1,2,3,6,7\} \\
s(x)=-1 \text { for } x \in\{4,5\}
\end{gathered}
$$

$$
1
$$

c_{1}	c_{2}	c_{3}	c_{4}
0	0	0	0

CountSketch

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
1	0	0	0	0	0	0

$$
\begin{gathered}
h(x)=3 x+2(\bmod 4) \\
s(x)=+1 \text { for } x \in\{1,2,3,6,7\} \\
s(x)=-1 \text { for } x \in\{4,5\}
\end{gathered}
$$

$$
1
$$

c_{1}	c_{2}	c_{3}	c_{4}
0	0	0	0

CountSketch

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
1	0	0	0	0	0	0

$$
\begin{gathered}
h(x)=3 x+2(\bmod 4) \\
s(x)=+1 \text { for } x \in\{1,2,3,6,7\} \\
s(x)=-1 \text { for } x \in\{4,5\}
\end{gathered}
$$

$$
\uparrow
$$

c_{1}	c_{2}	c_{3}	c_{4}
1	0	0	0

CountSketch

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
1	0	0	0	0	0	0

$$
\begin{gathered}
h(x)=3 x+2(\bmod 4) \\
s(x)=+1 \text { for } x \in\{1,2,3,6,7\} \\
s(x)=-1 \text { for } x \in\{4,5\}
\end{gathered}
$$

c_{1}	c_{2}	c_{3}	c_{4}
1	0	0	0

CountSketch

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
1	0	1	0	0	0	0

$$
\begin{gathered}
h(x)=3 x+2(\bmod 4) \\
s(x)=+1 \text { for } x \in\{1,2,3,6,7\} \\
s(x)=-1 \text { for } x \in\{4,5\}
\end{gathered}
$$

c_{1}	c_{2}	c_{3}	c_{4}
1	0	1	0

CountSketch

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
1	0	1	0	0	0	0

$$
\begin{gathered}
h(x)=3 x+2(\bmod 4) \\
s(x)=+1 \text { for } x \in\{1,2,3,6,7\} \\
s(x)=-1 \text { for } x \in\{4,5\}
\end{gathered}
$$

c_{1}	c_{2}	c_{3}	c_{4}
1	0	1	0

CountSketch

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
1	1	1	0	0	0	0

$$
\begin{gathered}
h(x)=3 x+2(\bmod 4) \\
s(x)=+1 \text { for } x \in\{1,2,3,6,7\} \\
s(x)=-1 \text { for } x \in\{4,5\}
\end{gathered}
$$

c_{1}	c_{2}	c_{3}	c_{4}
1	0	1	1

CountSketch

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
1	1	1	0	0	0	0

$$
\begin{gathered}
h(x)=3 x+2(\bmod 4) \\
s(x)=+1 \text { for } x \in\{1,2,3,6,7\} \\
s(x)=-1 \text { for } x \in\{4,5\}
\end{gathered}
$$

$$
1
$$

c_{1}	c_{2}	c_{3}	c_{4}
1	0	1	1

CountSketch

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
2	1	1	0	0	0	0

$$
\begin{gathered}
h(x)=3 x+2(\bmod 4) \\
s(x)=+1 \text { for } x \in\{1,2,3,6,7\} \\
s(x)=-1 \text { for } x \in\{4,5\}
\end{gathered}
$$

$$
1
$$

c_{1}	c_{2}	c_{3}	c_{4}
2	0	1	1

CountSketch

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
2	1	1	0	0	0	0

$$
\begin{gathered}
h(x)=3 x+2(\bmod 4) \\
s(x)=+1 \text { for } x \in\{1,2,3,6,7\} \\
s(x)=-1 \text { for } x \in\{4,5\}
\end{gathered}
$$

c_{1}	c_{2}	c_{3}	c_{4}
2	0	1	1

CountSketch

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
2	1	1	0	1	0	0

$$
\begin{aligned}
& \begin{array}{l}
h(x)=3 x+2(\bmod 4) \\
s(x)=+1 \text { for } x \in\{1,2,3,6,7\} \\
s(x)=-1 \text { for } x \in\{4,5\}
\end{array} \\
& \qquad ⿰ c_{1} \\
& \\
& \\
& \hline
\end{aligned}
$$

CountSketch

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
2	1	1	0	1	0	0

- What is the estimation for f_{4} ?

$$
\begin{array}{cl}
h(x)=3 x+2(\bmod 4) & \bullet \text { What about } f_{3} ? \\
s(x)=+1 \text { for } x \in\{1,2,3,6,7\} & \bullet \text { What about } f_{5} \text { ? What about } f_{1} \text { ? } \\
s(x)=-1 \text { for } x \in\{4,5\} &
\end{array}
$$

c_{1}	c_{2}	c_{3}	c_{4}
1	0	1	1

CountSketch

- Given a set S of m elements from [n], let \widehat{f}_{i} be the estimated frequency for f_{i}
- Suppose $h(i)=a$ so that $\widehat{f}_{i}=s(i) \cdot c_{a}$
- Note that c_{a} includes the signed number $s(j) \cdot f_{j}$ of occurrences of any j with $h(j)=a=h(i)$, including f_{i} itself

CountSketch

- Suppose $h(i)=a$ so that $c_{a}=\widehat{f}_{i}$
- Note that c_{a} includes the signed number $s(j) \cdot f_{j}$ of occurrences of any j with $h(j)=a=h(i)$, including f_{i} itself
- $c_{a}=\sum_{j: h(j)=a} s(j) \cdot f_{a}$
- Estimated frequency f_{i} of i is $\widehat{f}_{i}=s(i) \cdot c_{a}$
- $s(i) c_{a}=s(i) \cdot s(i) \cdot f_{i}+\sum_{j \neq i, \text { with } j: h(j)=a} s(i) \cdot s(j) \cdot f_{j}$

