
CSCE658 S2024: Possible Class Readings and Projects

1 Coresets and Dimensionality Reduction for Data Science

Coresets and dimensionality reduction are two ways to decrease the effective size of a dataset for a
specific task. A coreset is a subset of weighted points of the dataset, with dimensionality reduction
decreases the number of features of the dataset. The goal is to improve the runtime of data science
algorithms due to the smaller effective size of the dataset, without sacrificing too much accuracy
with respect to the original dataset. With the improved runtimes, the model can then be trained on
larger datasets, which can then actually improve overall accuracy. Potential papers of interest:

(1) [BLG+19] studies the application of coresets to neural networks, so that after the weights of
each neuron are trained, a number of edges and nodes are subsequently pruned, leading to
faster evaluation times of future inputs

(2) [MOB+20] studies the application of coresets to neural networks, where the neurons are pruned
before the neural network is trained, leading to faster training and evaluation times of future
inputs

(3) [TZM+23] studies coresets for radial basis function neural networks, which can approximate
any continuous function

(4) [LBL+20] applies sampling-based approaches to improve the performance of convolutional
neural networks (CNNs)

2 Social Aspects of Algorithmic Design

Often we would like additional functionality from our algorithms.

(1) [DYZH21] surveys fairness in deep learning work from the computational perspective

(2) [CKLV17] presents an algorithm for socially fair k-means clustering

(3) [AEKM20] studies the problem of fair correlation clustering

(4) [BC20] shows that the problem of histogram estimation has different behaviors in the central
setting of differential privacy and the shuffle model of differential privacy

(5) [CGK+23] studies the problem of releasing the values of all-pairs shortest-paths in the central
setting of differential privacy

3 Oracles and Learning-Augmented Algorithms

Learning-augmented algorithms or data-driven algorithm design is the study of incorporating
possibly erroneous external advice into algorithmic design. The goal is to perform better than
oblivious algorithms if the advice is good but not lose significant algorithmic performance if the
advice is bad. Potential papers of interest:
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(1) [EFS+22] studies the incorporation of advice for clustering data to achieve more accurate
approximation algorithms

(2) [LLW22] incorporates advice for binary search trees to achieve faster query times

(3) [HIKV19] studies the incorporation of advice for frequency estimation in the streaming model
to achieve algorithms with less memory usage, given additional distributional assumptions

(4) [Mit18] studies the incorporation of advice for improving the accuracy of bloom filters, which
are data structures for membership queries, i.e., answering queries on whether certain datasets
are contained within a dataset

(5) [CKT19] studies the problem of submodular optimization when an evaluation oracle may not
output the exact value but rather an approximate value
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