

Coreset based Data-Independent pruning of Graph Convolutional Networks

Presentation by Anmol Anand November 29, 2023

TABLE OF CONTENTS

Ol Background

O4 Results

O2 IMDb Graph dataset

O5 Observations

O3 GCN Architecture

Background - Coreset based Neural Pruning

- Coresets:
 - A subset of the original dataset that approximately preserves the properties of the full dataset.
- Coreset based Neural Pruning:
 - Aimed at retaining a smaller, representative set of neurons that maintain network performance while reducing redundancy.

Background - Graph Convolutional Networks

- Input: Structured graph data (Examples: citation networks, knowledge graphs, etc)
 - NODE FEATURES
 - EDGE FEATURES
- Output:
 - GRAPH CLASSIFICATION (IN THIS PAPER)
 - NODE CLASSIFICATION
 - EDGE CLASSIFICATION

AM

IMDb Graph Datasets

- Samples are ego-network graphs (every node represents a person).
 - Nodes represent actors with features such as:
 - Age
 - Number of movies
 - Awards won
 - Number of interviews
 - Popularity score
 - Edges are between actors who have appeared in same movies.

IMDb-MULTI

Classify IMDb graphs into 2 genres:

- Action
- Romance

Classify IMDb graphs into 3 genres:

- Action
- Romance
- Sci-Fi

GCN Architecture

Layer	Original Number of Neurons	Number of Neurons after Compression	Compression Factor
Graph Convolution Layer 1	512	512	
Graph Convolution Layer 2	512	256	2
Fully Connected Layer 1	1024	512	2
Fully Connected Layer 2	Number of classes	Number of classes	

• Compression factor 2 on hidden layers.

Average latency to reach the saturation accuracy of 75% while using the **Uncompressed Network: 58.67 seconds**

Average latency to reach the saturation accuracy of 75% while using the **Uniformly Pruned Network: 42.53 seconds**

Average latency to reach the saturation accuracy of 75% while using the **Coreset Pruned Network: 38.21 seconds**

Compression Type	Expected latency (seconds) to reach saturation accuracy of 75%
None	58.67
Uniformly Pruning	42.53
Coreset Pruning	38.21

- Coreset Pruning took **35%** less time than the Uncompressed network.
- Whereas, Uniform Pruning took **28%** less time than the Uncompressed network.

Average latency to reach the saturation accuracy of 56% while using the **Uncompressed Network: 16.31 seconds**

Average latency to reach the saturation accuracy of 56% while using the **Uniformly Pruned Network: 13.92 seconds**

Average latency to reach the saturation accuracy of 56% while using the **Coreset Pruned Network: 14.19 seconds**

Compression Type	Expected latency (seconds) to reach saturation accuracy of 56%
None	16.31
Uniformly Pruning	13.92
Coreset Pruning	14.19

- Coreset Pruning took **13%** less time than the Uncompressed network.
- Whereas, Uniform Pruning took **15%** less time than the Uncompressed network.

Observations

- Coreset based pruning improves performance and reaches saturation accuracy faster than the unpruned network.
- Coreset based pruning outperformed Uniform pruning for IMDb-Binary but not for IMDb-Multi.
- Possible **reasons** why coreset based pruning did not consistently outperform uniform pruning for Graph Convolutional Networks:
 - Using the same coreset computation algorithm for GCN layers as FC layers might be a bad
 idea.

THANKS!

DO YOU HAVE ANY QUESTIONS?

