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Motivation

e Pre-trained LMs are used
ubiquitously in NLP but there are
computationally expensive.

e Extensive work on reducing the
size of those models has been

done.
o The goal is to compress the
model without sacrificing a lot on
performance.
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Recap - Transformers

e Transformer based models consist of two main components that

contribute to model size.
o Multiheaded attention - makeup 33% of the total weights
o Fully connected layers - 67% of the model weights

e Each attention head consists of four matrices.
o Queries, keys, values, and output.
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Prior work

e Knowledge Distillation
Use a bigger teacher model to train a distilled version of it.
Need to pre-train from scratch!
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Remove some components of the already pre-trained model
Structured

Remove the component as a whole, eg. some heads
from the multihead attention, or even some full layers.
Limited choices for pruning.

Unstructured

Make the model sparse by removing weights by making
them zero.

Can achieve high sparsity.

Does not actually give inference speedup.
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Unstructured Pruning
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Structured Pruning
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How to decide what units to prune?

e Need to define some kind of importance

e Magnitude based pruning: use the absolute magnitude of the unit as its
Importance.
o Works well on low sparsity but gives performance degradation for high sparsity settings.
e Gradient based pruning: for any task, look at how the gradients of that
unit change during fine-tuning.
o The bigger the change for a unit, the more important it is.
o Data dependent!




Data independent structured pruning

e \We want inference speed up - structured pruning.
o Is a much harder setting, limited choices for pruning units.

e Data independent pruning - magnitude based.
o Does not perform as well as gradient based in high compression setting.
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Coresets

e A coreset is a small, weighted subset of the original input set of items.

e A coreset would return us a smaller matrix
o Retaining columns based on their importance.




Coreset for Query Matrix

e The importance of each column is measured based on its

norm.

Intuition: the larger the norm the more important that column is.
e Sample a subset of the column@“65s¥e'6h the importance.

Norms

[ 0.2, 0.1, 0.4, 0.15, 0.05, 0.1]
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Dataset and Model

e SST-2
o Single sentence sentiment analysis for movie reviews.
o Positive, negative.

e Bert base model used in all experiments.
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Results on SST-2 for Pruning Attention Layer

e Density = Pruned model size/Full model size
e Pruning the Self-Attention layer -- the 4 matrices

Density Accuracy w/o finetuning Accuracy with finetuning
1 - 0.9083
0.9 0.9151 0.9128
0.7 0.8601 0.9002
0.5 0.797 0.8475

0.3 0.5952 0.7947




Results on SST-2

e Pruning the full model

Density Inference time
1 940.13ms
0.9 916.69ms
0.7 794.17ms
0.5 633.06ms
0.3 519.61ms
0.1 397.20ms

Accuracy

Accuracy and Model Size Tradeoff on SST2
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Results on SST-2

e Coreset based pruning performs better at higher compression rates

Coreset vs Uniform sampling
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Conclusion

e Coreset based importance pruning of LMs performs better at high
compression rates.
e Pruning structured units in self-attention can give inference speedup.
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Thank you!
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