

Data Independent Pruning of Language Models

Ayesha Qamar

Motivation

- Pre-trained LMs are used ubiquitously in NLP but there are computationally expensive.
- Extensive work on reducing the size of those models has been done.
 - The goal is to compress the model without sacrificing a lot on performance.

1000B GPT-3 (175B) PaLM (540B) Megatron-Turing NLG (530B) 100B Jurassic-1 (178B) MODEL SIZE (IN BILLIONS OF PARAMETERS) Megatron-LM (8.3B) Turing-NLG (17.2B) 10B T5 (11B) GPT-2 (1.5B) 1B BERT-Large (340M) 0.1B ELMo (94M) 0.01B 2019 2019 2020 2021 2022 2023

Language Model Sizes Over Time

Recap - Transformers

- Transformer based models consist of two main components that contribute to model size.
 - Multiheaded attention makeup 33% of the total weights
 - Fully connected layers 67% of the model weights
- Each attention head consists of four matrices.
 - Queries, keys, values, and output.

Prior work

- Knowledge Distillation
 - Use a bigger teacher model to train a distilled version of it.
 - Need to pre-train from scratch!
 - DistilBert
- Pruning
 - Remove some components of the already pre-trained model
 - Structured
 - Remove the component as a whole, eg. some heads from the multihead attention, or even some full layers.
 - Limited choices for pruning.
 - Unstructured
 - Make the model sparse by removing weights by making them zero.
 - Can achieve high sparsity.
 - Does not actually give inference speedup.

Unstructured Pruning

Query Matrix

Query Matrix

Structured Pruning

Query Matrix

Query Matrix

Pruned Query Matrix

How to decide what units to prune?

- Need to define some kind of importance
- Magnitude based pruning: use the absolute magnitude of the unit as its importance.
 - Works well on low sparsity but gives performance degradation for high sparsity settings.
- Gradient based pruning: for any task, look at how the gradients of that unit change during fine-tuning.
 - The bigger the change for a unit, the more important it is.
 - Data dependent!

Data independent structured pruning

- We want inference speed up structured pruning.
 - Is a much harder setting, limited choices for pruning units.
- Data independent pruning magnitude based.
 - Does not perform as well as gradient based in high compression setting.

Coresets

- A coreset is a small, weighted subset of the original input set of items.
- A coreset would return us a smaller matrix
 - Retaining columns based on their importance.

Coreset for Query Matrix

- The importance of each column is measured based on its norm.
- Intuition: the larger the norm the more important that column is.
- Sample a subset of the columns based on the importance.

Dataset and Model

- SST-2
 - Single sentence sentiment analysis for movie reviews.
 - Positive, negative.
- Bert base model used in all experiments.

Results on SST-2 for Pruning Attention Layer

- Density = Pruned model size/Full model size
- Pruning the Self-Attention layer -- the 4 matrices

Density	Accuracy w/o finetuning	Accuracy with finetuning
1	-	0.9083
0.9	0.9151	0.9128
0.7	0.8601	0.9002
0.5	0.797	0.8475
0.3	0.5952	0.7947

Results on SST-2

• Pruning the full model

Density	Inference time	
1	940.13ms	
0.9	916.69ms	
0.7	794.17ms	
0.5	633.06ms	
0.3	519.61ms	
0.1	397.20ms	

Results on SST-2

• Coreset based pruning performs better at higher compression rates

Conclusion

- Coreset based importance pruning of LMs performs better at high compression rates.
- Pruning structured units in self-attention can give inference speedup.

Thank you!