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Why sKkip lists when you could use a tree?
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Skip lists are easier to implement and maintain with similar performance as BST.

SKkip lists are more efficient on range queries and frequent queries than BST.

Skip lists allows for easier implementation of lock-free and fine-grained locking mechanisms.
SKkip lists typically use less space than balanced binary trees.

Skip lists have better cache performance than trees (linked lists and memory locality).

For distributed systems, random promotion are preferred over deterministic balancing.

For multi-threaded applications, skip lists are more amenable to concurrent access.



Problem Formulation

Given a set of elements and the probability of each element
appearing in the query stream, build a learning-augmented
skip list data structure so as to improve querying operations
on the structure.



Vanila Skiplist
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Facts:

e Everynode has a 50% chance of being
promoted to the higher level.

e Query starts from the highest level and
O moves right and down similar to BST.

® 06 O e T(n)=0O(logn)on average.

All elements are assumed to be equally important, the data structure has no extra info.



Learning Augmented Skiplist

Facts:

e More frequently queried node will be
Level 4 O pushed to higher levels.

e Query starts from the highest level and

Level 3 O moves right and down similar to BST.
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Q O e T(n) << O(logn) (proved theoretically).

Level O

Elements are not equal, each element has additional info: probability of appearance in query.



Learning Augmented Node Promotion Algorithm

1.1 Algorithm

Algorithm 1 Learning-augmented skip list ID. Value

Input: Predicted frequencies py,...,p, for each item in [n]
Output: Learning-augmented skip list

ug

1: Insert all items at level 0
2: Insert exactly the items with predicted frequency at least }L at level 1
3: for each £ € [2 + logn] do

4:  for each i € [n| do
if predicted frequency p; > 2 then

- n

Insert 7 into level ¢ ID. Value. Prob -
else if i is in level £ — 1 then ’ ’

Insert 7 into level £ with probability %




Learning Augmented Node Promotion Demo
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For level 2 and up, promote nodes with prob >
2" (level-1)/n to the next level, otherwise,
coin-flip the promotion.

///

Initial filtering: promote nodes with higher than
average prob from level O to level 1.
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Skiplist Operation - Insertion

Inserting a value 26
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Skiplist Operation - Insertion
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Skiplist Operation - Insertion

Inserting a value 26
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Skiplist Operation - Insertion

Inserting a value 26
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Skiplist Operation - Insertion

Inserting a value 26
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Skiplist Operation - Insertion

Inserting a value 26 Head => Add Nodes

Tail => Stop
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Image: https://nationaltoday.com/flip-coin-day/
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Skiplist Operation - Insertion

Inserting a value 26
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Skiplist Operation - Insertion

Inserting a value 26
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Skiplist Operation - Insertion

Inserting a value 26
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Learned Skiplist - Insertion

Level O: Insert all elements at level O
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Learned Skiplist - Insertion

Level 1: Insert the items with predicted frequency at least 1/n (i.e., 0.1)
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Learned Skiplist - Insertion

Level 1: Insert the items with predicted frequency at least 1/n (i.e., 0.1)
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Learned Skiplist - Insertion

Inf

Level 2: Insert the items If : predicted frequency Pi = 2:1
Else: Coin flip
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Learned Skiplist - Insertion

Level 2: Insert the items If : predicted frequency Pi = 2:1
Else: Coin flip
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Results on Synthetic Datasets

Skewed Datasets (represented by Zipfian) Uniform Datasets
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Results on Synthetic Datasets

Query Time (seconds)

Query Time of Vanilla and Learned Skiplist (a=1.01)
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Results on Synthetic Datasets

Query Time of Vanilla and Learned Skiplist (Uniform)
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Results on Synthetic Datasets

Speed-up factor of learned skiplist over vanilla skiplist
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CAIDA Datasets Distribution

CAIDA receiver IP frequency distribution
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The data shown above contains 29.9 Million IP addresses, with 665,210 unique IP addresses.

Data source: https://data.caida.org/datasets/passive-2019/equinix-nyc/20190117-130000.UTC/



Results on CAIDA Datasets

Insertion Time of Vanilla and Learned Skiplist
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Results on CAIDA Datasets

Query Time of Vanilla and Learned Skiplist
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Conclusions

e Thetheoretical proof and experimental results on both synthetic and real
world datasets (CAIDA internet trace) show that the learning augmented
skip lists outperform a traditional coin-flip skip list in both insertion and
query time for either uniform distribution or skewed distributions like a
Zipfian distribution.






