
CSCE689-608 Final Project

Coreset on NeRF

Dawei Xiang, Lipai Huang
Dec 1st, 2023

Layout

● Motivation

● Coreset on Neural Network

● Introduction of Neural Radiance Fields (NeRF)

● Methodologies

● Results

● Conclusion

1. Motivation

● Trend of Overparameterization -> Trend of smaller model

○ Less parameters but keeps performance

○ Rather sacrifice performance for lower computation cost

● 3D Reconstruction

○ Interesting topic

○ Relatively not over-explored

○ Coreset/pruning be adapted in 3D Reconstruction?

○ Performance? Cost?

1. Coreset on Neural Network

● Well-pruned NN can guarantee the trade-off between Compression Rate and
Approximation Error.

○ Input: neurons at current layer
○ Output: Selected optimal neurons and new connections weights for next

layer
○ Apply layer-wisely

2. Introduction of NeRF

● Neural Radiance Fields (NeRF): creating highly realistic 3D models from a
set of 2D images

● Input: images of an object.

● Output: a rendered image viewing from a new angle that doesn’t appear

in training set.

2. Introduction of NeRF

● Generate a NeRF from a specific viewpoint
○ Generate a sampled set of 3D points—by marching camera rays

through the scene.
○ Produce an output set of densities and colors—by inputting sampled

points with their corresponding 2D viewing directions into the neural
network.

○ Accumulate densities and colors into a 2D image—by using classical
volume rendering techniques.

● Backbone: MLP
● Input: 3D Location + 2D Direction
● Output: Emitted color RGB + Volume Density

2.1 NeRF base structure

𝛄(x): Positional encoding of input location
𝛔: Volume density
→: Layer with ReLU
⤏: Layer with Sigmoid
→: Layer without activation
+: Concatenation

● Scene-specific

○ Dynamic scene problem

● Extensive Data Needs

○ Needs large number of input images taken from various viewpoints

● High Computational Requirements

○ Long Training Times

○ Extremely large parameters

2.2 NeRF main challenges

related works

[1] has studied the feasibility of model compression in NeRF. It basically
pruned some edges between neurons to reveal its sparsity. But we are looking
at something deeper about the neurons instead of only edges. [2] used SVD
decomposition to decompose the original NeRF representation to lower-rank
representations. [3] proposed a pruning method working on 3D voxel-based
representations as Instant-NGP and achieved satisfying result. Its main idea to
prune the hash table with different limits.

[1] Neural 3D Scene Compression via Model Compression. Arxiv.org
[2] Compressible-composable NeRF via Rank-residual Decomposition. NeuIPS 2022.
[3] HollowNeRF: Pruning Hashgrid-Based NeRFs with Trainable Collision Mitigation, ICCV 2023

3. Sparcity in NeRF MLP

We have extracted the edge weights in the above MLP model.

• a large amount of edge weights
are indeed very small (less than
0.05) => MLP in NeRF is indeed
sparse, and there is some space
for compression.

• sparsity: some edges are
redundant.

3.1 Pruning edges

we first tried to prune some low-weight edges: we discard the edges that
have weight less than 0.05 which are almost 40% of the total edges.

this means around 40% of the edges can be considered as real important
edges.

Edge pruning threshold 0 0.05 0.1

Remaining percentage 100% 40% 20%

PSNR on test set 21.5 21.3 20.8

the problem of edge pruning only

pruning edges could not bring substantial speed increase because still a lot of
edges are not null. The weight matrix between two layers is still the same.

3.2 pruning neurons

The original MLP is connected by 7 layers of 256*256 full connection layer.
Our initial idea is to find a way to compress to 64*64 fully connection layers
for compression.

3.2.1 uniform sampling

We first tried uniform sampling, which refers to select neurons in each layer
with equal weight/possibility.

This shows:

1. randomly picking neurons doesn’t work.

2. we need a way to find the important neurons.

baseline Uniform sampling

Connection layer size 256*256 64*64

PSNR 21.5 16.5

neuron_j

layer i-1

neuron_i

neuron_k

layer i

layer i+1

3.2.2 importance sampling

Pruning by importance refers to prune the neurons by their importance weights. For
each layer we select the top k neurons with the highest importance.

For a neuron i, we define two types of importance weight: incoming weight and
outcoming weight:

for a neuron i in layer l_i, the
previous layer is l_{i−1} and the
next layer is l_{i+1}

result of pruning 256*256 to
64*64

3.2.3 coreset

Coreset refers to construct a small set of points to approximate a large set.

basic idea: assign each point a weight and sample
by probability proportional to its weight.

Connection layer size 256*256 64*64 64*64

Pruning baseline importance
pruning

coreset

PSNR 21.5 20.0 20.1

3.3 results

Connection layer
size

256*256 128*128 64*64

Model parameter
size

595K 288K 177K

Model size 2.38Mb 1.14Mb 0.7Mb

PSNR 21.5 21.3 20.1

Training time 78.75
min/100K
iteration

51.2
min/100K
iteration

46.25
min/100K
iteration

3.4 visualization results

baseline:256*256 PSNR:21.5 coreset: 128*128 PSNR:21.3 coreset: 64*64 PSNR:20.1

4. Conclusion& Future work

Conclusion:

we show that importance pruning and coreset sampling could reduce the
training time of NeRF by 35% and model size by 50% while keeping the
performance.

Thank you for listening!

	Slide 1: CSCE689-608 Final Project Coreset on NeRF
	Slide 2: Layout
	Slide 3: 1. Motivation
	Slide 4: 1. Coreset on Neural Network
	Slide 6: 2. Introduction of NeRF
	Slide 7: 2. Introduction of NeRF
	Slide 8: 2.1 NeRF base structure
	Slide 9: 2.2 NeRF main challenges
	Slide 11: related works
	Slide 12: 3. Sparcity in NeRF MLP
	Slide 13: 3.1 Pruning edges
	Slide 14: the problem of edge pruning only
	Slide 15: 3.2 pruning neurons
	Slide 16: 3.2.1 uniform sampling
	Slide 17: 3.2.2 importance sampling
	Slide 18: 3.2.3 coreset
	Slide 19: 3.3 results
	Slide 20: 3.4 visualization results
	Slide 21: 4. Conclusion& Future work
	Slide 22: Thank you for listening!

