
Delegating Streaming
Computation with Sublinear

Space
Tzu-Shen (Jason), Wang

Motivation

• A client with limit storage, delegates the computation to server
• Server with limit storage (larger than the client), computes the

approximate result
• Client verify the result
• Use its limit storage to store an authenticated data structure

• Lower the communication complexity
• Provide privacy over data stream

Previous Work --- Merkle tree [Merkle87, wiki]

Previous Work --- Merkle tree [Merkle87, wiki]

• With the collision resistant property of hash, if one of the leaf’s value
is changed, the root will also change

• The server stores all the leaf nodes
• The client only stores the root
• Server wants to proof value of a leaf node:
• Server sends a leaf node along with the path (and its siblings) from the leaf

node to the root
• Client verify that the path and reconstruct the root, check if equal to the root

it stores
• With the collision resistant property of the hash the server can not fake a

proof

An Example of Merkle tree [Merkle87, wiki]
Proof --- proving L1

Improvement of Merkle Tree[PST+13]

• Contribution of [PST+13]: Construct the collision resistant hash
function based on SIS (shortest integer solution)
• Stateless update --- client does not need to hold the leaf nodes to update the

root, can directly update the tree root when each element comes in

• Problems:
• The storage of the Server: linear to universe size
• Communication complexity, sublinear of universe size (O(path) = log (#leaf-

node))

Our Contribution

• Reduce server’s storage --- reduce #leaf nodes
• Reduce communication complexity
• Comes with the reduction of the number of leaf nodes (the path is O(log

#leaf-node))

• Generalize to general linear sketches
• Model for privacy

Reduce Storage
• Utilize the technique similar in count sketch to reduce #leaf node
• Instead of mapping each element into a leaf, map multiple elements into a bucket
• Update(x, freq(x)): B(h(x)) += S(x)*freq(x), S(x) ∈ {-1, 1}
• Retrieve(x): S(x)B(h(x))

• Two hash function:
• The first one decide which bucket to add
• The second one based on SIS, is collision resistant, construct the Merkle-like

tree that gives us stateless update

• Reduce the prover’s storage from O(m) to O(!
"
log m2)

Reduce Storage (2) --- Security Proof
• Proof in reduction that if the prover is able to generate a fake proof in our protocol, then it is able

to generate a fake proof in [PST+13] (where each element is stored on a leaf node) with self select
data stream
• Selective adversary: can select the data stream
• When our protocol updates leaf node y with frequency z, we also want to update [PST+13]’s

leaf node y with frequency z
• Observation: for every incoming element (x, freq(x)) for our protocol, we update node h1(x),

with frequency S(x)freq(x)
• We give element (h1(x), S(x)freq(x)) to [PST+13]
• If we can break our protocol for data stream (x, freq(x)), we can break [PST+13] with data

stream (h1(x), S(x)freq(x))

• We also do a simulation proof
• Property based proof: define property, and check if the property holds --- might miss

property
• Simulation proof: Can do whatever the adversary can do without the exchanging message

• Can generate the message itself
• Exchanging messages is what a party learns in the protocol

Generalize to General Linear Sketches

• Extend the data structure to have negative values for leaf nodes
• With one bit sacrification
• Also reduce from the data structure of [PST+13]

• If there exists a linear sketch that uses S words of space and
solves a problem P with probability at least !

"
. Then there exists

a protocol 𝜋 that solves P with probability at least !
"

in which a
prover stores and communicates S words, and a verifier stores
O (log n) bits

Different Model

• Privacy
• To hide the data stream from client, the server utilize homomorphic encryption (he)

and sends the encryptions to the client
• Homomorphic property: Compute on the encrypted data, then decrypt, equals to

the computation on plaintext
• Dec(C(Enc(x))) = C(x)

• With the homomorphic property, the client and computes on the encrypted inputs
• Curator model --- honest curator generates and sends all the data

• Can send permutation of data stream to the server if we also want to hide the exact data
stream from the server

• Dealing with the error of lattice based encryption
• Open every c (constant) encryptions

Reference

• Wiki https://en.wikipedia.org/wiki/Merkle_tree
• [Merkle 87] Merkle, R. C.. "A Digital Signature Based on a

Conventional Encryption Function". Advances in Cryptology – CRYPTO
'87. Lecture Notes in Computer Science. Vol. 293. pp. 369–378

• [PST+13] Charalampos Papamanthou, Elaine Shi, Roberto
Tamassia, Ke Yi:
Streaming Authenticated Data Structures. EUROCRYPT 2013: 353-370

https://dblp.org/db/conf/eurocrypt/eurocrypt2013.html

