CSCE 689: Special Topics in Modern Algorithms for Data Science
 Lecture 1

Samson Zhou

Why Data Science?

Search

About $13,400,000$ results (0.44 seconds)

AWarning: This page is a tool for AdWords advertisers to test their ads. For full Google functionality retum to the Google homepage.

Web
Images
Maps
Videos
News
More

Auckland
Change location

The web
Pages from New Zealand

More search tools
hor aflowerco Bz l gift
 Chocolate Gift Baskets, Chocolate Lovers Gift Baskets. Easy and Secure.

Chocolate Gift Baskets | Bliss Baskets and Gifts
wuw.blissgiftbaskets co.nz/style/chocolate-gift-baskets
With their wide range of variety and versatility, chocolate gift baskets are a popular gift that is always appreciated by the recipient.

Gift Ideas, Chocolate Bouquets | Edible Blooms NZ

wivi.edibleblooms.co.nzl
Edible Blooms New Zealand offers a unique twist on flowers and gift hampers. Our range of chocolate bouquets, fresh frit bouquets and gourmet gift baskets...
Ads related to chocolate gift baskets (1)
Gift Baskets 1 BeautifulBaskets.conz www.beautifulbaskets.co.nz/
NZ's Favourite Gift Baskets Fast Nationwide NZ Delivery
Chocolates Delivered Fast - Delicious Handmade NZ Chocolates. www.devonportchocolates.co.nz/ Browse Our Website \& Order Online.
Devonport, 17 Wynyard Street, Auckland - 0800002462 - Directions
Chocolate Bars - Weddings \& Special Occasions - Birthday Gifts - Corporate Gifts
Great Gift Baskets Online - Stunning Hampers for all Occasions. wnw.wineplus.co.nz/gift-baskets wn. windus Congit-baskets Fast Delivery NZ-wide - Buy Online.

Gift Baskets for Chocolate Lovers::My Goodness Gift Baskets New ...

Ads (1)

Order Gift Baskets Online
wiv.hamperbiz.co.nz/Gifts
Stunning Range of Gifts, Hampers Wine, Flowers, Free Delivery.

Gift Baskets Gourmet Food www.giftharn.co.nzl Fine Wine \& Chocolates Next day delivery New Zealand Wide

Chocolate delivery
wnw.edibleblooms.co.nz
Chocolate Bouquets The Perfect Gift Order New Zealand Wide Orline Now

Top Christmas Hampers www.champershampers.co.nzl The highest quality food and wine corporate hampers, Christmas hams

NZ's Top Gift Baskets

wuw.mygoodness.co.nz/
Quality, Stylish Hampers from Award Winning, Great Service Kiwi Company

Gift Baskets Delivered NZ www.raptaboutgifts.co.nz/Gifts Huge Selection of Gift Baskets Browse our Online Store Now!

Fine Chocolate Delivery

Google Ad Revenue (2001-2021, billion USD)

250

\qquad

Wall

Tisto
(a) Photes

Eigustioms
[Subscrignions 151
8. Subscribers 15.555 .3951

Mark Zuckerberg

New Yonk el Bonn on May 14, 1984
wall

Refresh
More *

Mark Zuckerbers

Cetting reaby for is - is Facebook HiO
Crunch gym discount code - LifeTimeFitt
© 101,918 prople like thin.
Q Vew all 107 comment
D Vew at 4.003 shares
mand actortr
20 Mank ubberibed to updates from Paul Tarpan and 9 other peoplo.

Older Posts

a

facebook

Google

COMPOSE

Inbox $(3,879)$
Starred
Important
Sent Mail
Drafts (5)

Google

Mark Zuckerberg

New York El Ben on May 14, 1984
wall

Evolving Demands

- Sublinear-time or sublinear-space algorithms
- Incorporation of advice
- Security and privacy
- Robustness to noise or adversarial input
- Ability to handle time-sensitive data

Modern Data Science

New Tools for
Classical Data Science

2017 Equifax Data Breach

"Equifax agreed to a $\$ 700$ million settlement over the privacy breach, but $\$ 425$ million of that was set aside to repay consumers as a restitution fund."

YАНОО!

\pm FA)Adobe ${ }^{\circ}$

eHarmony

LastPass ****

Dropbox

census.gov:

Privacy \& Confidentiality

Federal Law Protects Your Information. The U.S. Census Bureau is bound by Title 13 of the United States Code. This law not only provides authority for the work we do, but also provides strong protection for the information we collect from individuals and businesses. As a result, the Census Bureau has one of the strongest confidentiality guarantees in the federal government.

It is against the law for any Census Bureau employee to disclose or publish any census or survey information that identifies an individual or business. This is true even for inter-agency communication: the FBI and other government entities do not have the legal right to access this information. In fact, when these protections have been challenged, Title 13's confidentiality guarantee has been upheld.

For more information about how the Census Bureau safeguards the data it collects, visit the agency's Data Protection and Disclosure Avoidance Working Papers Web sites.

Anonymizing Data

Age	Zip Code	Employer	Has Pet
56	77005	Apple	Yes
32	77005	Microsoft	No
71	77005	Amazon	Yes
44	77005	Petsmart	Yes
25	77005	Netflix	No
61	77005	Google	No

Anonymizing Data

Age	Zip Code	Employer	Has Pet
56	77005	Apple	Yes
32	77005	Microsoft	No
71	77005	Amazon	Yes
44	77005	Petsmart	Yes
25	77005	Netflix	No
61	77005	Google	No

Name	Age	Gender	Employer
Alice	56	Female	Apple
Bob	32	Male	Microsoft
Carol	71	Female	Amazon
Dale	44	Male	Petsmart
Erin	25	Female	Netflix
Fred	61	Male	Google

Reconstruction Attack

Name	Age	Zip Code	Gender	Employer	Has Pet
Alice	56	77005	Female	Apple	Yes
Bob	32	77005	Male	Microsoft	No
Carol	71	77005	Female	Amazon	Yes
Dale	44	77005	Male	Petsmart	Yes
Erin	25	77005	Female	Netflix	No
Fred	61	77005	Male	Google	No

Implications of the simulated attack

The Census Bureau believed in 2010 that it was necessary to coarsen geographic identifiers in microdata such that the minimum population in any published geography was at least 100,000 persons (Public-Use Microdata Areas).

Our simulated reconstruction-abetted re-identification attack demonstrated that the tabular summaries from the 2010 Census can be converted into a 100% microdata file with geographic precision to the census block-level.

Our simulated attack demonstrated that, depending on the quality of the external data used, between 52 and 179 million respondents to the 2010 Census can be correctly re-identified from the reconstructed microdata.

Stronger privacy protections, such as those in the 2020 Census Disclosure Avoidance System, are necessary to protect against reconstruction-abetted attacks.

Class Motivation

- Data Science is highly interdisciplinary and highly evolving
- Many techniques are not covered in traditional CS classes

Modern Algorithms for Data Science

- Algorithms for data science
- Sublinear algorithms
- Models of computation for big data
- Differential privacy

Logistics

- HRBB 126, MWF, 1:50-2:40 pm CT
- Office Hours: PETR 424, 3 pm CT on Wednesdays
- Course materials: https://samsonzhou.github.io/csce689-2023

Primary Goals

- Describe the motivation and statement of central data science problems, measured by the midterm presentation
- Work in various big data models of computation, leading toward the final project
- Understand the fundamentals of private data analysis
- Demonstrate awareness of common algorithmic techniques, through scribe notes

Secondary Goals

- Describe the motivation and statement of central data science problems, measured by the midterm presentation (practice reading and presenting technical papers)
- Work in various big data models of computation, leading toward the final project (practice thinking about research!)
- Understand the fundamentals of private data analysis
- Demonstrate awareness of common algorithmic techniques, through scribe notes (familiarity with LaTeX)

Grading

- LaTeX summary of lectures 20\%
- Midterm presentation 35\%
- Final project 45\%

Related Coursework

- CSCE 689: Special Topics on Algorithms for Big Data
- Taught by Professor Crawford
- MWF 10:20-11:00 am, HRBB 126
- Topics:
- Streaming algorithms
- Parallel algorithms
- Sublinear time algorithms
- Sketching algorithms

Useful Background

- Big Oh notation, e.g., $O\left(\log ^{10} n\right), O(\sqrt{n}), O\left(n^{2}\right)$
- Reductions, e.g., NP-hardness
- Mathematical maturity, exposure to reading and writing proofs

Questions?

Probability Basics

- Random variable (X)
- Sample space (Ω): Set of possible values (discrete/continuous, finite/infinite)
- Probability: $\operatorname{Pr}[X=x]$ represents the probability that the random variable X achieves value $x \in \Omega$

Joint and Conditional Probability

- Joint distribution: $\operatorname{Pr}[X=x, Y=y]$ is the probability X and Y achieve values x and y respectively
- Conditional distribution: $\operatorname{Pr}[X=x \mid Y=y]$ is the probability that X achieves the value x when Y achieves the value y

$$
\operatorname{Pr}[X=x \mid Y=y]=\frac{\operatorname{Pr}[X=x, Y=y]}{\operatorname{Pr}[Y=y]}
$$

- Marginal distribution: $\operatorname{Pr}[X=x]=\sum_{y \in \Omega_{Y}} \operatorname{Pr}[X=x \mid Y=y]$

Independence

- Random variables X and Y are independent if $\operatorname{Pr}[X=x]=$ $\operatorname{Pr}[X=x \mid Y=y]$ for all possible outcomes $x \in \Omega_{X}, y \in \Omega_{Y}$

Independence

- Suppose we have a bag with 1 red marble and 1 blue marble.
- We draw a marble randomly from the bag
- We put the marble back in the bag
- We randomly draw another marble from the bag
- Let X be the color of the first marble drawn
- Let Y be the color of the second marble drawn
- Are X and Y independent?

Independence

- Suppose we have a bag with 1 red marble and 1 blue marble.
- We draw a marble randomly from the bag
- We DO NOT put the marble back in the bag
- We randomly draw another marble from the bag
- Let X be the color of the first marble drawn
- Let Y be the color of the second marble drawn
- Are X and Y independent?

Boole's Inequality (Union Bound)

- Let S_{1}, \ldots, S_{k} be a set of events that occur with probability p_{1}, \ldots, p_{k}
- The probability that at least one of the events S_{1}, \ldots, S_{k} occurs is at most $p_{1}+\cdots+p_{k}$
- Implication: the probability that NONE of the events S_{1}, \ldots, S_{k} occur is at least $1-\left(p_{1}+\cdots+p_{k}\right)$

Boole's Inequality (Union Bound)

- $\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]$

- Proof by induction

CSCE 689: Special Topics in Modern Algorithms for Data Science

Week 1: Probability basics

Samson Zhou

Trivia Question \#1 (Birthday Paradox)

- Suppose we have a fair n-sided die. "On average", how many times should we roll the die before we see a repeated outcome among the rolls? Example: 1, 5, 2, 4, 5
- $\Theta(1)$
- $\Theta(\log n)$
- $\Theta(\sqrt{n})$
- $\Theta(n)$

Trivia Question \#2 (Limits)

- Let $c>0$ be a constant. What is $\lim _{n \rightarrow \infty}\left(1-\frac{c}{n}\right)^{n}$?
- 0
- $\frac{1}{c}$
- $\frac{1}{2 c}$
- $\frac{1}{e^{c}}$
- 1

Trivia Question \#3 (Coupon Collector)

- Suppose we have a fair n-sided die. "On average", how many times should we roll the die before we all possible outcomes among the rolls? Example: 1, 5, 2, 4, 1, 3, 1, 6 for $n=6$
- $\Theta(n)$
- $\Theta(n \log n)$
- $\Theta(n \sqrt{n})$
- $\Theta\left(n^{2}\right)$

Trivia Question \#4 (Max Load)

- Suppose we have a fair n-sided die that we roll n times. "On average", what is the largest number of times any outcome is rolled? Example: $1,5,2,4,1,3,1$ for $n=7$
- $\Theta(1)$
- $\widetilde{\Theta}(\log n)$
- $\widetilde{\Theta}(\sqrt{n})$
- $\widetilde{\Theta}(n)$

Birthday Paradox

- Suppose we have a room with 367 people. What is the probability that two people share the same birthday?

Birthday Paradox

- Suppose we have a room with 367 people. What is the probability that two people share the same birthday?
- Suppose we have a room with 23 people. What is the probability that two people share the same birthday?

Birthday Paradox

- Suppose we have a fair n-sided die that we roll $k=1,2,3,4, \ldots$ times. What is the probability we see a repeated outcome among the rolls?

Birthday Paradox

- Suppose we have a fair n-sided die that we roll $k=1,2,3,4, \ldots$ times. What is the probability we see a repeated outcome among the rolls?

$$
\left(1-\frac{0}{n}\right)
$$

Birthday Paradox

- Suppose we have a fair n-sided die that we roll $k=1,2,3,4, \ldots$ times. What is the probability we see a repeated outcome among the rolls?

$$
\left(1-\frac{0}{n}\right)\left(1-\frac{1}{n}\right)
$$

Birthday Paradox

- Suppose we have a fair n-sided die that we roll $k=1,2,3,4, \ldots$ times. What is the probability we see a repeated outcome among the rolls?

$$
\left(1-\frac{0}{n}\right)\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)
$$

Birthday Paradox

- Suppose we have a fair n-sided die that we roll $k=1,2,3,4, \ldots$ times. What is the probability we see a repeated outcome among the rolls?

$$
\left(1-\frac{0}{n}\right)\left(1-\frac{1}{n}\right) \ldots\left(1-\frac{k-1}{n}\right)
$$

Birthday Paradox

- Suppose we have a fair n-sided die that we roll $k=1,2,3,4, \ldots$ times. What is the probability we see a repeated outcome among the rolls?

$$
\left(1-\frac{0}{n}\right)\left(1-\frac{1}{n}\right) \ldots\left(1-\frac{k-1}{n}\right)<\frac{1}{2} \quad \text { for } \quad k=O(\sqrt{n})
$$

Birthday Paradox

- Suppose we have a fair n-sided die. "On average", how many times should we roll the die before we see a repeated outcome among the rolls?
- $O(\sqrt{n})$
- But is it $\Theta(\sqrt{n})$?

Boole's Inequality (Union Bound)

- Let S_{1}, \ldots, S_{k} be a set of events that occur with probability p_{1}, \ldots, p_{k}
- The probability that at least one of the events S_{1}, \ldots, S_{k} occurs is at most $p_{1}+\cdots+p_{k}$
- Implication: the probability that NONE of the events S_{1}, \ldots, S_{k} occur is at least $1-\left(p_{1}+\cdots+p_{k}\right)$

Boole's Inequality (Union Bound)

- $\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]$

- Proof by induction

Birthday Paradox

- Suppose we have a fair n-sided die that we roll $k=1,2,3,4, \ldots$ times. What is the probability we see a repeated outcome among the rolls?
- Let S_{i} be the event that the i-th roll is a repeated outcome, conditioned on the previous rolls not being a repeated outcome
- $\operatorname{Pr}\left[S_{i}\right]=\frac{i-1}{n}$
- $\operatorname{Pr}\left[S_{1} \cup \cdots \cup S_{k}\right] \leq \frac{0}{n}+\ldots+\frac{k-1}{n} \leq \frac{k^{2}}{n}$

Birthday Paradox

- Suppose we have a fair n-sided die. "On average", how many times should we roll the die before we see a repeated outcome among the rolls?
- $\Theta(\sqrt{n})$

Hashing

- Suppose we have a data of images, how do we name them consistently?

Expected Value

- The expected value of a random variable X over Ω is:

$$
\mathrm{E}[X]=\sum_{x \in \Omega} \operatorname{Pr}[X=x] \cdot x
$$

- The "average value of the random variable"
- Linearity of expectation: $\mathrm{E}[X+Y]=\mathrm{E}[X]+\mathrm{E}[Y]$

Expected Value

- Suppose we roll a 6-sided die
- Let X be the outcome of the roll
- What is $\mathrm{E}[X]$?

Moments

- For $p>0$, the p-th moment of a random variable X over Ω is:

$$
\mathrm{E}\left[X^{p}\right]=\sum_{x \in \Omega} \operatorname{Pr}[X=x] \cdot x^{p}
$$

Variance

- The variance of a random variable X over Ω is:

$$
\operatorname{Var}[X]=\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2}
$$

- Linearity of variance for independent random variables: $\operatorname{Var}[X+Y]=$ $\operatorname{Var}[X]+\operatorname{Var}[Y]$
- "How far numbers are from the average"

Variance

- Suppose X takes the value 1 with probability $\frac{1}{2}$ and takes the value -1 with probability $\frac{1}{2}$
- What is $\mathrm{E}[X]$?
- What is $\operatorname{Var}[X]$?

Variance

- Suppose Y takes the value 100 with probability $\frac{1}{2}$ and takes the value
-100 with probability $\frac{1}{2}$
- What is $\mathrm{E}[Y]$?
- What is $\operatorname{Var}[Y]$?

Chebyshev's Inequality

- Let X be a random variable with expected value $\mu:=\mathrm{E}[X]$ and variance $\sigma^{2}:=\operatorname{Var}[X]$

$$
\operatorname{Pr}[|X-\mu| \geq k \sigma] \leq \frac{1}{k^{2}}
$$

- "What is the probability a random variable is far away from its average?"

