CSCE 689: Special Topics in Modern Algorithms for Data Science

Lecture 10

Samson Zhou

Presentation Schedule

- September 25: Team DAP, Team Bokun, Team Jason
- September 27: Galaxy AI, Team STMI
- September 29: Jung, Anmol, Chunkai

Last Time: The Streaming Model

- Input: Elements of an underlying data set *S*, which arrive sequentially
- Output: Evaluation (or approximation) of a given function
- Goal: Use space *sublinear* in the size *m* of the input *S*

10111001

Last Time: Reservoir Sampling

- Suppose we see a stream of elements from [*n*]. How do we uniformly sample one of the positions of the stream?
- [Vitter 1985]: Initialize $s = \bot$
- On the arrival of element *i*, replace *s* with x_i with probability $\frac{1}{i}$

47 72 81 10 14 33 51 29 54 9 36 46 10

Last Time: Reservoir Sampling

- Suppose we see a stream of elements from [*n*]. How do we uniformly sample one of the positions of the stream?
- [Vitter 1985]: Initialize $s = \bot$
- On the arrival of element *i*, replace *s* with x_i with probability $\frac{1}{i}$

47 72 81 10 14 33 51 29 54 9 36 46 10

Last Time: Frequent Items

f_1	f_2	f_3	f_4	f_5	f_6	f_7
10	0	1	1	2	0	9

- How many items can be returned? At most k coordinates with frequency at least $\frac{m}{k}$
- For k = 20, want items that are at least 5% of the stream

Last Time: Majority

• Goal: Given a set *S* of *m* elements from [*n*] and a parameter k = 2, output the items from [*n*] that have frequency at least $\frac{m}{2}$

• Find the item that forms the majority of the stream

Last Time: Majority

- Initialize item V = 1 with count c = 0
- For updates 1, ..., *m*:
 - If c = 0, set $V = x_i$ and c = 1
 - Else if $V = x_i$, increment counter *c* by setting c = c + 1
 - Else if $V \neq x_i$, decrement counter *c* by setting c = c 1
- Initialize $V = x_1$ and counter c = 1
- If x_1 is not majority, it must be deleted at some time T
- At time T, the stream will have consumed $\frac{T}{2}$ instances of x_1 , preserving majority

Frequent Items

Frequent Items

- Initialize item V = 1 with count c = 0
- For updates 1, ..., *m*:
 - If c = 0, set $V = x_i$
 - Else if $V = x_i$, increment counter *c* by setting c = c + 1
 - Else if $V \neq x_i$, decrement counter *c* by setting c = c 1

- Initialize k items V_1, \ldots, V_k with count $c_1, \ldots, c_k = 0$
- For updates 1, ..., *m*:
 - If $V_t = x_i$ for some t, increment counter c_t , i.e., $c_t = c_t + 1$
 - Else if $c_t = 0$ for some t, set $V_t = x_i$
 - Else decrement all counters c_j , i.e., $c_j = c_j 1$ for all $j \in [k]$

- n = 7, k = 3
- $V_1 = \bot$, $c_1 = 0$
- $V_2 = \bot$, $c_2 = 0$
- $V_3 = \bot, c_3 = 0$

f_1	f_2	f_3	f_4	f_5	f_6	f_7
0	0	0	0	0	0	0

- $V_1 = \bot$, $c_1 = 0$
- $V_2 = \bot$, $c_2 = 0$
- $V_3 = \bot$, $c_3 = 0$

f_1	f_2	f_3	f_4	f_5	f_6	f_7
0	0	0	0	0	0	0

- $V_1 = 3, c_1 = 1$
- $V_2 = \bot$, $c_2 = 0$
- $V_3 = \bot$, $c_3 = 0$

f_1	f_2	f_3	f_4	f_5	f_6	f_7
0	0	1	0	0	0	0

- $V_1 = 3, c_1 = 1$
- $V_2 = \bot$, $c_2 = 0$
- $V_3 = \bot$, $c_3 = 0$

f_1	f_2	f_3	f_4	f_5	f_6	f_7
0	0	1	0	0	0	0

- $V_1 = 3, c_1 = 1$
- $V_2 = 1, c_2 = 1$
- $V_3 = \bot$, $c_3 = 0$

f_1	f_2	f_3	f_4	f_5	f_6	f_7
1	0	1	0	0	0	0

- $V_1 = 3, c_1 = 1$
- $V_2 = 1, c_2 = 1$
- $V_3 = \bot, c_3 = 0$

f_1	f_2	f_3	f_4	f_5	f_6	f_7
1	0	1	0	0	0	0

- $V_1 = 3, c_1 = 1$
- $V_2 = 1, c_2 = 1$
- $V_3 = 2, c_3 = 1$

f_1	f_2	f_3	f_4	f_5	f_6	f_7
1	1	1	0	0	0	0

- $V_1 = 3, c_1 = 1$
- $V_2 = 1, c_2 = 1$
- $V_3 = 2, c_3 = 1$

f_1	f_2	f_3	f_4	f_5	f_6	f_7
1	1	1	0	0	0	0

- $V_1 = 3, c_1 = 1$
- $V_2 = 1, c_2 = 2$
- $V_3 = 2, c_3 = 1$

f_1	f_2	f_3	f_4	f_5	f_6	f_7
2	1	1	0	0	0	0

- $V_1 = 3, c_1 = 1$
- $V_2 = 1, c_2 = 2$
- $V_3 = 2, c_3 = 1$

f_1	f_2	f_3	f_4	f_5	f_6	f_7
2	1	1	0	0	0	0

- $V_1 = 3, c_1 = 0$
- $V_2 = 1, c_2 = 1$
- $V_3 = 2, c_3 = 0$

f_1	f_2	f_3	f_4	f_5	f_6	f_7
2	1	1	1	0	0	0

- $V_1 = 3, c_1 = 0$
- $V_2 = 1, c_2 = 1$
- $V_3 = 2, c_3 = 0$

f_1	f_2	f_3	f_4	f_5	f_6	f_7
2	1	1	1	0	0	0

- $V_1 = 3, c_1 = 0$
- $V_2 = 1, c_2 = 1$
- $V_3 = 2, c_3 = 1$

f_1	f_2	f_3	f_4	f_5	f_6	f_7
2	2	1	1	0	0	0

- $V_1 = 3, c_1 = 0$
- $V_2 = 1, c_2 = 1$
- $V_3 = 2, c_3 = 1$

f_1	f_2	f_3	f_4	f_5	f_6	f_7
2	2	1	1	0	0	0

- $V_1 = 3, c_1 = 0$
- $V_2 = 1, c_2 = 2$
- $V_3 = 2, c_3 = 1$

f_1	f_2	f_3	f_4	f_5	f_6	f_7
3	2	1	1	0	0	0

- $V_1 = 3, c_1 = 0$
- $V_2 = 1, c_2 = 2$
- $V_3 = 2, c_3 = 1$

f_1	f_2	f_3	f_4	f_5	f_6	f_7
3	2	1	1	0	0	0

- $V_1 = 5, c_1 = 1$
- $V_2 = 1, c_2 = 2$
- $V_3 = 2, c_3 = 1$

f_1	f_2	f_3	f_4	f_5	f_6	f_7
3	2	1	1	1	0	0

- $V_1 = 5, c_1 = 1$
- $V_2 = 1, c_2 = 2$
- $V_3 = 2, c_3 = 1$

f_1	f_2	f_3	f_4	f_5	f_6	f_7
3	2	1	1	1	0	0

- $V_1 = 5, c_1 = 1$
- $V_2 = 1, c_2 = 3$
- $V_3 = 2, c_3 = 1$

f_1	f_2	f_3	f_4	f_5	f_6	f_7
4	2	1	1	1	0	0

- $V_1 = 5, c_1 = 1$
- $V_2 = 1, c_2 = 3$
- $V_3 = 2, c_3 = 1$

f_1	f_2	f_3	f_4	f_5	f_6	f_7
4	2	1	1	1	0	0

- $V_1 = 5, c_1 = 0$
- $V_2 = 1, c_2 = 2$
- $V_3 = 2, c_3 = 0$

f_1	f_2	f_3	f_4	f_5	f_6	f_7
4	2	1	2	1	0	0

- $V_1 = 5, c_1 = 0$
- $V_2 = 1, c_2 = 2$
- $V_3 = 2, c_3 = 0$

f_1	f_2	f_3	f_4	f_5	f_6	f_7
4	2	1	2	1	0	0

- $V_1 = 5, c_1 = 0$
- $V_2 = 1, c_2 = 2$
- $V_3 = 3, c_3 = 0$

f_1	f_2	f_3	f_4	f_5	f_6	f_7
4	2	2	2	1	0	0

- $V_1 = 5, c_1 = 0$
- $V_2 = 1, c_2 = 2$
- $V_3 = 3, c_3 = 0$

f_1	f_2	f_3	f_4	f_5	f_6	f_7
4	2	2	2	1	0	0

- $V_1 = 5, c_1 = 0$
- $V_2 = 1, c_2 = 3$
- $V_3 = 3, c_3 = 0$

f_1	f_2	f_3	f_4	f_5	f_6	f_7
5	2	2	2	1	0	0

- $V_1 = 5, c_1 = 0$
- $V_2 = 1, c_2 = 3$
- $V_3 = 3, c_3 = 0$

f_1	f_2	f_3	f_4	f_5	f_6	f_7
5	2	2	2	1	0	0

- $V_1 = 5, c_1 = 0$
- $V_2 = 1, c_2 = 3$
- $V_3 = 3, c_3 = 1$

f_1	f_2	f_3	f_4	f_5	f_6	f_7
5	2	3	2	1	0	0

- $V_1 = 5, c_1 = 0$
- $V_2 = 1, c_2 = 3$
- $V_3 = 3, c_3 = 1$

f_1	f_2	f_3	f_4	f_5	f_6	f_7
5	2	3	2	1	0	0

- $V_1 = 5, c_1 = 0$
- $V_2 = 1, c_2 = 4$
- $V_3 = 3, c_3 = 1$

f_1	f_2	f_3	f_4	f_5	f_6	f_7
6	2	3	2	1	0	0

- $V_1 = 5, c_1 = 0$
- $V_2 = 1, c_2 = 4$
- $V_3 = 3, c_3 = 1$

f_1	f_2	f_3	f_4	f_5	f_6	f_7
6	2	3	2	1	0	0

- $V_1 = 5, c_1 = 0$
- $V_2 = 1, c_2 = 4$
- $V_3 = 3, c_3 = 2$

f_1	f_2	f_3	f_4	f_5	f_6	f_7
6	2	4	2	1	0	0

- $V_1 = 5, c_1 = 0$
- $V_2 = 1, c_2 = 4$
- $V_3 = 3, c_3 = 2$

f_1	f_2	f_3	f_4	f_5	f_6	f_7
6	2	4	2	1	0	0

- $V_1 = 5, c_1 = 0$
- $V_2 = 1, c_2 = 4$
- $V_3 = 3, c_3 = 3$

f_1	f_2	f_3	f_4	f_5	f_6	f_7
6	2	5	2	1	0	0

- $V_1 = 5, c_1 = 0$
- $V_2 = 1, c_2 = 4$
- $V_3 = 3, c_3 = 3$

f_1	f_2	f_3	f_4	f_5	f_6	f_7
6	2	5	2	1	0	0

- $V_1 = 6, c_1 = 1$
- $V_2 = 1, c_2 = 4$
- $V_3 = 3, c_3 = 3$

f_1	f_2	f_3	f_4	f_5	f_6	f_7
6	2	5	2	1	1	0

- $V_1 = 6, c_1 = 1$
- $V_2 = 1, c_2 = 4$
- $V_3 = 3, c_3 = 3$
- Report 1, 3, and 6 as frequent items

f_1	f_2	f_3	f_4	f_5	f_6	f_7
6	2	5	2	1	1	0

- Claim: At the end of the stream of length m, we report all items with frequency at least $\frac{m}{k}$
- Intuition: If there are $\frac{k}{k}$ coordinates with frequency $\frac{m}{k}$, they will all be tracked and reported, since we have $\frac{k}{k}$ counters
- If there are $\frac{k}{2}$ coordinates with frequency at least $\frac{m}{k}$, we still have $\frac{k}{2}$ counters for the remaining $\frac{m}{2}$, updates
- Will have at most $\frac{m}{k}$ decrement operations, which is small enough so that frequent items are still stored

• Drawbacks: Misra-Gries may return false positives, i.e., items that are not frequent

- In fact, no algorithm using o(n) space can output ONLY the items with frequency at least $\frac{n}{k}$
- Intuition: Hard to decide whether coordinate has frequency $\frac{n}{k}$ or $\frac{n}{k} 1$

• Intuition: Hard to decide whether coordinate has frequency $\frac{n}{k}$ or $\frac{n}{k} - 1$

•
$$x_1 = 2, x_2 = 5, x_3 = 4, x_4 = 7, x_5 = 1, x_6 = 9, ...$$

•
$$x_{n-\frac{n}{k}+1} = \alpha, x_{n-\frac{n}{k}+2} = \alpha, ..., x_n = \alpha$$

$$\frac{n}{k} - 1 \text{ times}$$

(ε, k) -Frequent Items Problem

- Goal: Given a set S of m elements from [n], an accuracy parameter $\varepsilon \in (0, 1)$, and a parameter k, output a list that includes:
 - The items from [n] that have frequency at least $\frac{m}{k}$
 - No items with frequency less than $(1 \varepsilon) \frac{m}{k}$

- Initialize k items V_1, \dots, V_k with count $c_1, \dots, c_k = 0$
- For updates 1, ..., *m*:
 - If $V_t = x_i$ for some t, increment counter c_t , i.e., $c_t = c_t + 1$
 - Else if $c_t = 0$ for some t, set $V_t = x_i$
 - Else decrement all counters c_j , i.e., $c_j = c_j 1$ for all $j \in [k]$

- Set $r = \left[\frac{k}{\varepsilon}\right]$
- Initialize r items V_1, \ldots, V_r with count $c_1, \ldots, c_r = 0$
- For updates 1, ..., *m*:
 - If $V_t = x_i$ for some t, increment counter c_t , i.e., $c_t = c_t + 1$
 - Else if $c_t = 0$ for some t, set $V_t = x_i$
 - Else decrement all counters c_j , i.e., $c_j = c_j 1$ for all $j \in [r]$

• Claim: For all estimated frequencies \hat{f}_i by Misra-Gries, we have

$$f_i - \frac{\varepsilon m}{k} \le \widehat{f}_i \le f_i$$

• Intuition: Have a lot of counters, so relatively few decrements

(ε, k) -Frequent Items Problem

- Goal: Given a set S of m elements from [n], an accuracy parameter $\varepsilon \in (0, 1)$, and a parameter k, output a list that includes:
 - The items from [n] that have frequency at least $\frac{m}{k}$
 - No items with frequency less than $(1 \varepsilon) \frac{m}{k}$

- Set $r = \left[\frac{k}{\varepsilon}\right]$
- Initialize r items V_1, \ldots, V_r with count $c_1, \ldots, c_r = 0$
- For updates 1, ..., *m*:
 - If $V_t = x_i$ for some t, increment counter c_t , i.e., $c_t = c_t + 1$
 - Else if $c_t = 0$ for some t, set $V_t = x_i$
 - Else decrement all counters c_j , i.e., $c_j = c_j 1$ for all $j \in [r]$
- Output coordinates V_t with $c_t \ge (1 \varepsilon) \cdot \frac{m}{k}$

• Claim: For all estimated frequencies \hat{f}_i by Misra-Gries, we have

$$f_i - \frac{\varepsilon m}{k} \le \widehat{f}_i \le f_i$$

- If $f_i \ge \frac{m}{k}$, then $\widehat{f}_i \ge f_i \frac{\varepsilon m}{k}$ and if $f_i < (1 \varepsilon) \cdot \frac{m}{k}$, then $\widehat{f}_i < f_i \frac{\varepsilon m}{k}$
- Returning coordinates V_t with $c_t \ge (1 \varepsilon) \cdot \frac{m}{k}$ means:
 - *i* with $f_i \ge \frac{m}{k}$ will be returned
 - NO *i* with $f_i < (1 \varepsilon) \cdot \frac{m}{k}$ will be returned

- Summary: Misra-Gries can be used to solve the (ε, k) -frequent items problem
- Misra-Gries uses $O\left(\frac{k}{\varepsilon}\log n\right)$ bits of space
- Misra-Gries is a deterministic algorithm
- Misra-Gries *never* overestimates the true frequency