CSCE 689: Special Topics in Modern Algorithms for Data Science

Lecture 10

Samson Zhou

Presentation Schedule

- September 25: Team DAP, Team Bokun, Team Jason
- September 27: Galaxy AI, Team STMI
- September 29: Jung, Anmol, Chunkai

Last Time: The Streaming Model

- Input: Elements of an underlying data set S, which arrive sequentially
- Output: Evaluation (or approximation) of a given function
- Goal: Use space sublinear in the size m of the input S

Last Time: Reservoir Sampling

- Suppose we see a stream of elements from [n]. How do we uniformly sample one of the positions of the stream?
- [Vitter 1985]: Initialize $s=\perp$
- On the arrival of element i, replace s with x_{i} with probability $\frac{1}{i}$

4772811014335129549364610

Last Time: Reservoir Sampling

- Suppose we see a stream of elements from [n]. How do we uniformly sample one of the positions of the stream?
- [Vitter 1985]: Initialize $s=\perp$
- On the arrival of element i, replace s with x_{i} with probability $\frac{1}{i}$

4772811014335129549364610

Last Time: Frequent Items

- Goal: Given a set S of m elements from $[n]$ and a parameter k, output the items from $[n]$ that have frequency at least $\frac{m}{k}$

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
10	0	1	1	2	0	9

- How many items can be returned? At most k coordinates with frequency at least $\frac{m}{k}$
- For $k=20$, want items that are at least 5% of the stream

Last Time: Majority

- Goal: Given a set S of m elements from [n] and a parameter $k=2$, output the items from $[n]$ that have frequency at least $\frac{m}{2}$
- Find the item that forms the majority of the stream

Last Time: Majority

- Initialize item $V=1$ with count $c=0$
- For updates $1, \ldots, m$:
- If $c=0$, set $V=x_{i}$ and $c=1$
- Else if $V=x_{i}$, increment counter c by setting $c=c+1$
- Else if $V \neq x_{i}$, decrement counter c by setting $c=c-1$
- Initialize $V=x_{1}$ and counter $c=1$
- If x_{1} is not majority, it must be deleted at some time T
- At time T, the stream will have consumed $\frac{T}{2}$ instances of x_{1}, preserving majority

Frequent Items

- Goal: Given a set S of m elements from [n] and a parameter k, output the items from $[n]$ that have frequency at least $\frac{m}{k}$

Frequent Items

- Goal: Given a set S of m elements from $[n]$ and a parameter k, output the items from $[n]$ that have frequency at least $\frac{m}{k}$
- Initialize item $V=1$ with count $c=0$
- For updates $1, \ldots, m$:
- If $c=0$, set $V=x_{i}$
- Else if $V=x_{i}$, increment counter c by setting $c=c+1$
- Else if $V \neq x_{i}$, decrement counter c by setting $c=c-1$

Misra Gries

- Goal: Given a set S of m elements from $[n]$ and a parameter k, output the items from $[n]$ that have frequency at least $\frac{m}{k}$
- Initialize k items V_{1}, \ldots, V_{k} with count $c_{1}, \ldots, c_{k}=0$
- For updates $1, \ldots, m$:
- If $V_{t}=x_{i}$ for some t, increment counter c_{t}, i.e., $c_{t}=c_{t}+1$
- Else if $c_{t}=0$ for some t, set $V_{t}=x_{i}$
- Else decrement all counters c_{j}, i.e., $c_{j}=c_{j}-1$ for all $j \in[k]$

Misra Gries

- $n=7, k=3$
- $V_{1}=\perp, c_{1}=0$
- $V_{2}=\perp, c_{2}=0$
- $V_{3}=\perp, c_{3}=0$

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
0	0	0	0	0	0	0

Misra Gries

- $V_{1}=\perp, c_{1}=0$
- $V_{2}=\perp, c_{2}=0$
- $V_{3}=\perp, c_{3}=0$

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
0	0	0	0	0	0	0

Misra Gries

- $V_{1}=3, c_{1}=1$
- $V_{2}=\perp, c_{2}=0$
- $V_{3}=\perp, c_{3}=0$

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
0	0	1	0	0	0	0

Misra Gries

- $V_{1}=3, c_{1}=1$
- $V_{2}=\perp, c_{2}=0$

1

- $V_{3}=\perp, c_{3}=0$

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
0	0	1	0	0	0	0

Misra Gries

- $V_{1}=3, c_{1}=1$
- $V_{2}=1, c_{2}=1$
- $V_{3}=\perp, c_{3}=0$

1

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
1	0	1	0	0	0	0

Misra Gries

- $V_{1}=3, c_{1}=1$
- $V_{2}=1, c_{2}=1$
- $V_{3}=\perp, c_{3}=0$

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
1	0	1	0	0	0	0

Misra Gries

- $V_{1}=3, c_{1}=1$
- $V_{2}=1, c_{2}=1$
- $V_{3}=2, c_{3}=1$

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
1	1	1	0	0	0	0

Misra Gries

- $V_{1}=3, c_{1}=1$
- $V_{2}=1, c_{2}=1$
- $V_{3}=2, c_{3}=1$

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
1	1	1	0	0	0	0

Misra Gries

- $V_{1}=3, c_{1}=1$
- $V_{2}=1, c_{2}=2$
- $V_{3}=2, c_{3}=1$

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
2	1	1	0	0	0	0

Misra Gries

- $V_{1}=3, c_{1}=1$
- $V_{2}=1, c_{2}=2$

4

- $V_{3}=2, c_{3}=1$

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
2	1	1	0	0	0	0

Misra Gries

- $V_{1}=3, c_{1}=0$
- $V_{2}=1, c_{2}=1$

4

- $V_{3}=2, c_{3}=0$

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
2	1	1	1	0	0	0

Misra Gries

- $V_{1}=3, c_{1}=0$
- $V_{2}=1, c_{2}=1$

2

- $V_{3}=2, c_{3}=0$

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
2	1	1	1	0	0	0

Misra Gries

- $V_{1}=3, c_{1}=0$
- $V_{2}=1, c_{2}=1$ 2
- $V_{3}=2, c_{3}=1$

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
2	2	1	1	0	0	0

Misra Gries

- $V_{1}=3, c_{1}=0$
- $V_{2}=1, c_{2}=1$
- $V_{3}=2, c_{3}=1$

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
2	2	1	1	0	0	0

Misra Gries

- $V_{1}=3, c_{1}=0$
- $V_{2}=1, c_{2}=2$
- $V_{3}=2, c_{3}=1$

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
3	2	1	1	0	0	0

Misra Gries

- $V_{1}=3, c_{1}=0$
- $V_{2}=1, c_{2}=2$
- $V_{3}=2, c_{3}=1$

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
3	2	1	1	0	0	0

Misra Gries

- $V_{1}=5, c_{1}=1$
- $V_{2}=1, c_{2}=2$
- $V_{3}=2, c_{3}=1$

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
3	2	1	1	1	0	0

Misra Gries

- $V_{1}=5, c_{1}=1$
- $V_{2}=1, c_{2}=2$
- $V_{3}=2, c_{3}=1$

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
3	2	1	1	1	0	0

Misra Gries

- $V_{1}=5, c_{1}=1$
- $V_{2}=1, c_{2}=3$

1

- $V_{3}=2, c_{3}=1$

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
4	2	1	1	1	0	0

Misra Gries

- $V_{1}=5, c_{1}=1$
- $V_{2}=1, c_{2}=3$

4

- $V_{3}=2, c_{3}=1$

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
4	2	1	1	1	0	0

Misra Gries

- $V_{1}=5, c_{1}=0$
- $V_{2}=1, c_{2}=2$

4

- $V_{3}=2, c_{3}=0$

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
4	2	1	2	1	0	0

Misra Gries

- $V_{1}=5, c_{1}=0$
- $V_{2}=1, c_{2}=2$
- $V_{3}=2, c_{3}=0$

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
4	2	1	2	1	0	0

Misra Gries

- $V_{1}=5, c_{1}=0$
- $V_{2}=1, c_{2}=2$
- $V_{3}=3, c_{3}=0$

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
4	2	2	2	1	0	0

Misra Gries

- $V_{1}=5, c_{1}=0$
- $V_{2}=1, c_{2}=2$
- $V_{3}=3, c_{3}=0$

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
4	2	2	2	1	0	0

Misra Gries

- $V_{1}=5, c_{1}=0$
- $V_{2}=1, c_{2}=3$

1

- $V_{3}=3, c_{3}=0$

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
5	2	2	2	1	0	0

Misra Gries

- $V_{1}=5, c_{1}=0$
- $V_{2}=1, c_{2}=3$
- $V_{3}=3, c_{3}=0$

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
5	2	2	2	1	0	0

Misra Gries

- $V_{1}=5, c_{1}=0$
- $V_{2}=1, c_{2}=3$
- $V_{3}=3, c_{3}=1$

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
5	2	3	2	1	0	0

Misra Gries

- $V_{1}=5, c_{1}=0$
- $V_{2}=1, c_{2}=3$

1

- $V_{3}=3, c_{3}=1$

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
5	2	3	2	1	0	0

Misra Gries

- $V_{1}=5, c_{1}=0$
- $V_{2}=1, c_{2}=4$

1

- $V_{3}=3, c_{3}=1$

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
6	2	3	2	1	0	0

Misra Gries

- $V_{1}=5, c_{1}=0$
- $V_{2}=1, c_{2}=4$

- $V_{3}=3, c_{3}=1$

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
6	2	3	2	1	0	0

Misra Gries

- $V_{1}=5, c_{1}=0$
- $V_{2}=1, c_{2}=4$
- $V_{3}=3, c_{3}=2$

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
6	2	4	2	1	0	0

Misra Gries

- $V_{1}=5, c_{1}=0$
- $V_{2}=1, c_{2}=4$
- $V_{3}=3, c_{3}=2$

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
6	2	4	2	1	0	0

Misra Gries

- $V_{1}=5, c_{1}=0$
- $V_{2}=1, c_{2}=4$
- $V_{3}=3, c_{3}=3$

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
6	2	5	2	1	0	0

Misra Gries

- $V_{1}=5, c_{1}=0$
- $V_{2}=1, c_{2}=4$
- $V_{3}=3, c_{3}=3$

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
6	2	5	2	1	0	0

Misra Gries

- $V_{1}=6, c_{1}=1$
- $V_{2}=1, c_{2}=4$
- $V_{3}=3, c_{3}=3$

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
6	2	5	2	1	1	0

Misra Gries

- $V_{1}=6, c_{1}=1$
- $V_{2}=1, c_{2}=4$
- $V_{3}=3, c_{3}=3$
- Report 1, 3, and 6 as frequent items

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
6	2	5	2	1	1	0

Misra Gries

- Claim: At the end of the stream of length m, we report all items with frequency at least $\frac{m}{k}$
- Intuition: If there are k coordinates with frequency $\frac{m}{k}$, they will all be tracked and reported, since we have k counters
- If there are $\frac{k}{2}$ coordinates with frequency at least $\frac{m}{k}$, we still have $\frac{k}{2}$ counters for the remaining $\frac{m}{2}$, updates
- Will have at most $\frac{m}{k}$ decrement operations, which is small enough so that frequent items are still stored

Misra Gries

- Drawbacks: Misra-Gries may return false positives, i.e., items that are not frequent
- In fact, no algorithm using $o(n)$ space can output ONLY the items with frequency at least $\frac{n}{k}$
- Intuition: Hard to decide whether coordinate has frequency $\frac{n}{k}$ or $\frac{n}{k}-1$

Misra Gries

- Intuition: Hard to decide whether coordinate has frequency $\frac{n}{k}$ or $\frac{n}{k}-1$
- $x_{1}=2, x_{2}=5, x_{3}=4, x_{4}=7, x_{5}=1, x_{6}=9, \ldots$
- $x_{n-\frac{n}{k}+1}=\alpha, x_{n-\frac{n}{k}+2}=\alpha, \ldots, x_{n}=\alpha$ L

$$
\frac{n}{k}-1 \text { times }
$$

($\varepsilon, k)$-Frequent Items Problem

- Goal: Given a set S of m elements from [n], an accuracy parameter $\varepsilon \in(0,1)$, and a parameter k, output a list that includes:
- The items from $[n]$ that have frequency at least $\frac{m}{k}$
- No items with frequency less than $(1-\varepsilon) \frac{m}{k}$

Misra Gries for (ε, k)-Frequent Items Problem

- Initialize k items V_{1}, \ldots, V_{k} with count $c_{1}, \ldots, c_{k}=0$
- For updates $1, \ldots, m$:
- If $V_{t}=x_{i}$ for some t, increment counter c_{t}, i.e., $c_{t}=c_{t}+1$
- Else if $c_{t}=0$ for some t, set $V_{t}=x_{i}$
- Else decrement all counters c_{j}, i.e., $c_{j}=c_{j}-1$ for all $j \in[k]$

Misra Gries for (ε, k)-Frequent Items Problem

- Set $r=\left\lceil\frac{k}{\varepsilon}\right\rceil$
- Initialize r items V_{1}, \ldots, V_{r} with count $c_{1}, \ldots, c_{r}=0$
- For updates $1, \ldots, m$:
- If $V_{t}=x_{i}$ for some t, increment counter c_{t}, i.e., $c_{t}=c_{t}+1$
- Else if $c_{t}=0$ for some t, set $V_{t}=x_{i}$
- Else decrement all counters c_{j}, i.e., $c_{j}=c_{j}-1$ for all $j \in[r]$

Misra Gries for (ε, k)-Frequent Items Problem

- Claim: For all estimated frequencies $\widehat{f_{i}}$ by Misra-Gries, we have

$$
f_{i}-\frac{\varepsilon m}{k} \leq \widehat{f}_{i} \leq f_{i}
$$

- Intuition: Have a lot of counters, so relatively few decrements

($\varepsilon, k)$-Frequent Items Problem

- Goal: Given a set S of m elements from [n], an accuracy parameter $\varepsilon \in(0,1)$, and a parameter k, output a list that includes:
- The items from $[n]$ that have frequency at least $\frac{m}{k}$
- No items with frequency less than $(1-\varepsilon) \frac{m}{k}$

Misra Gries for (ε, k)-Frequent Items Problem

- Set $r=\left\lceil\frac{k}{\varepsilon}\right\rceil$
- Initialize r items V_{1}, \ldots, V_{r} with count $c_{1}, \ldots, c_{r}=0$
- For updates $1, \ldots, m$:
- If $V_{t}=x_{i}$ for some t, increment counter c_{t}, i.e., $c_{t}=c_{t}+1$
- Else if $c_{t}=0$ for some t, set $V_{t}=x_{i}$
- Else decrement all counters c_{j}, i.e., $c_{j}=c_{j}-1$ for all $j \in[r]$
- Output coordinates V_{t} with $c_{t} \geq(1-\varepsilon) \cdot \frac{m}{k}$

Misra Gries for (ε, k)-Frequent Items Problem

- Claim: For all estimated frequencies $\widehat{f_{i}}$ by Misra-Gries, we have

$$
f_{i}-\frac{\varepsilon m}{k} \leq \widehat{f}_{i} \leq f_{i}
$$

- If $f_{i} \geq \frac{m}{k}$, then $\widehat{f_{i}} \geq f_{i}-\frac{\varepsilon m}{k}$ and if $f_{i}<(1-\varepsilon) \cdot \frac{m}{k}$, then $\widehat{f}_{i}<f_{i}-$ $\frac{\varepsilon m}{k}$
- Returning coordinates V_{t} with $c_{t} \geq(1-\varepsilon) \cdot \frac{m}{k}$ means:
- i with $f_{i} \geq \frac{m}{k}$ will be returned
- NO i with $f_{i}<(1-\varepsilon) \cdot \frac{m}{k}$ will be returned

Misra Gries for (ε, k)-Frequent Items Problem

- Summary: Misra-Gries can be used to solve the (ε, k)-frequent items problem
- Misra-Gries uses $O\left(\frac{k}{\varepsilon} \log n\right)$ bits of space
- Misra-Gries is a deterministic algorithm
- Misra-Gries never overestimates the true frequency

