CSCE 689: Special Topics in Modern Algorithms for Data Science

Lecture 11

Samson Zhou

Presentation Schedule

- September 25: Team DAP, Team Bokun, Team Jason
- September 27: Galaxy AI, Team STMI
- September 29: Jung, Anmol, Chunkai

Last Time: Misra Gries

• Goal: Given a set *S* of *m* elements from [*n*] and a parameter *k*, output the items from [*n*] that have frequency at least $\frac{m}{k}$

- Initialize k items V_1, \ldots, V_k with count $c_1, \ldots, c_k = 0$
- For updates 1, ..., *m*:
 - If $V_t = x_i$ for some t, increment counter c_t , i.e., $c_t = c_t + 1$
 - Else if $c_t = 0$ for some t, set $V_t = x_i$
 - Else decrement all counters c_j , i.e., $c_j = c_j 1$ for all $j \in [k]$

Last Time: Misra Gries

• Drawbacks: Misra-Gries may return false positives, i.e., items that are not frequent

- In fact, no algorithm using o(n) space can output ONLY the items with frequency at least $\frac{n}{k}$
- Intuition: Hard to decide whether coordinate has frequency $\frac{n}{k}$ or $\frac{n}{k} 1$

Last Time: (ε, k) -Frequent Items Problem

- Goal: Given a set S of m elements from [n], an accuracy parameter $\varepsilon \in (0, 1)$, and a parameter k, output a list that includes:
 - The items from [n] that have frequency at least $\frac{m}{k}$
 - No items with frequency less than $(1 \varepsilon) \frac{m}{k}$

Last Time: Misra Gries for (ε, k) -Frequent Items Problem

- Set $r = \left[\frac{k}{\varepsilon}\right]$
- Initialize r items V_1, \ldots, V_r with count $c_1, \ldots, c_r = 0$
- For updates 1, ..., *m*:
 - If $V_t = x_i$ for some t, increment counter c_t , i.e., $c_t = c_t + 1$
 - Else if $c_t = 0$ for some t, set $V_t = x_i$
 - Else decrement all counters c_j , i.e., $c_j = c_j 1$ for all $j \in [r]$
- Output coordinates V_t with $c_t \ge (1 \varepsilon) \cdot \frac{m}{k}$

Last Time: Misra Gries for (ε, k) -Frequent Items Problem

• Claim: For all estimated frequencies \hat{f}_i by Misra-Gries, we have

$$f_i - \frac{\varepsilon m}{k} \le \widehat{f}_i \le f_i$$

• If
$$f_i \ge \frac{m}{k}$$
, then $\widehat{f}_i \ge f_i - \frac{\varepsilon m}{k}$ and if $f_i < (1 - \varepsilon) \cdot \frac{m}{k}$, then $\widehat{f}_i < f_i - \frac{\varepsilon m}{k}$

- Returning coordinates V_t with $c_t \ge (1 \varepsilon) \cdot \frac{m}{k}$ means:
 - *i* with $f_i \ge \frac{m}{k}$ will be returned
 - NO *i* with $f_i < (1 \varepsilon) \cdot \frac{m}{k}$ will be returned

Last Time: Misra Gries for (ε, k) -Frequent Items Problem

- Summary: Misra-Gries can be used to solve the (ε, k) -frequent items problem
- Misra-Gries uses $O\left(\frac{k}{\varepsilon}\log n\right)$ bits of space
- Misra-Gries is a deterministic algorithm
- Misra-Gries *never* overestimates the true frequency

- Stream of length $m = \Theta(n)$
- Universe of size [n], underlying vector $f \in \mathbb{R}^n$
- Each update increases or decreases a coordinate in *f*

f_1	f_2	f_3	f_4	f_5	f_6	f_7
0	0	0	0	0	0	0

• "Decrease f_6 "

f_1	f_2	f_3	f_4	f_5	f_6	f_7
0	0	0	0	0	-1	0

 Database Management: In database management, insertiondeletion streams are used to track changes made to the database over time

 Transaction logs often utilize this concept to record insertions and deletions to ensure data integrity and support features like rollbacks and recovery

- Version Control Systems: Insertion-deletion streams track changes made to files, enabling users to see what has been added (inserted) or removed (deleted) in each version
- Crucial for collaboration and managing software development projects, central to version control systems

- Traffic Flow and Transportation Systems: Insertion-deletion streams are used to analyze traffic patterns and changes in transportation systems
- This helps in optimizing traffic flow, managing congestion, and improving transportation infrastructure

Frequent Items on Insertion-Deletion Streams

- Misra-Gries on Insertion-Deletion Streams
- "Increase f_1 "
- "Increase f_3 "
- "Increase f_2 "
- "Increase f_2 "
- "Decrease f_2 "
- "Decrease f_2 "
- "Decrease f_3 "

- Another algorithm for the (ε, k) -frequent items problem
- Can be used on insertion-deletion streams
- Can be easily parallelized across multiple servers

- Initalization: Create *b* buckets of counters and use a random hash function $h: [n] \rightarrow [b]$
- Algorithm: For each update x_i , increment the counter $h(x_i)$

<i>C</i> ₁	<i>C</i> ₂	<i>C</i> ₃	C ₄
0	0	0	0

• At the end of the stream, output the counter $h(x_i)$ as the estimate for x_i

<i>C</i> ₁	<i>C</i> ₂	<i>C</i> ₃	C ₄
0	0	0	0

c_1	<i>C</i> ₂	<i>C</i> ₃	<i>C</i> ₄
1	0	0	0

<i>C</i> ₁	<i>C</i> ₂	<i>C</i> ₃	C ₄
1	0	1	0

<i>C</i> ₁	<i>C</i> ₂	<i>C</i> ₃	C ₄
1	0	1	1

<i>C</i> ₁	<i>C</i> ₂	<i>C</i> ₃	C ₄
2	0	1	1

• What is the estimation for f_4 ?

 $h(x) = 3x + 2 \pmod{4}$

- What about f_3 ?
- What about f_5 ? What about f_1 ?

<i>C</i> ₁	<i>C</i> ₂	<i>C</i> ₃	C ₄
3	0	1	1

- Given a set S of m elements from [n], let \hat{f}_i be the estimated frequency for f_i
- Claim: We always have $\hat{f}_i \ge f_i$
- Suppose h(i) = a so that $c_a = \hat{f}_i$
- Note that c_a counts the number f_j of occurrences of any j with h(j) = a = h(i), including f_i itself

- Suppose h(i) = a so that $c_a = \hat{f}_i$
- Note that c_a counts the number f_j of occurrences of any j with h(j) = a = h(i), including f_i itself

•
$$c_a = \sum_{j:h(j)=a} f_a \ge f_i$$
 since $h(i) = a$

•
$$c_a = f_i + \sum_{j \neq i, \text{ with } j:h(j)=a} f_j$$

- $c_a = f_i + \sum_{j \neq i, \text{ with } j:h(j)=a} f_j$
- What is the expected error for f_i ?

- $c_a = f_i + \sum_{j \neq i, \text{ with } j:h(j)=a} f_j$
- What is the expected error for f_i ?
- $\mathbf{E}\left[\left|\sum_{j\neq i, \text{ with } j:h(j)=a} f_j\right|\right] \leq \sum_{j\neq i} \mathbf{E}\left[\left|f_j\right| \cdot I_{h(j)=h(i)}\right]$

- $c_a = f_i + \sum_{j \neq i, \text{ with } j:h(j)=a} f_j$
- What is the expected error for f_i ?
- $\mathbf{E}[\left|\sum_{j\neq i, \text{ with } j:h(j)=a} f_j\right|] \leq \sum_{j\neq i} \mathbf{E}[\left|f_j\right| \cdot I_{h(j)=h(i)}]$ = $\sum_{j\neq i} \mathbf{E}[I_{h(j)=h(i)}] \cdot |f_j|$

- $c_a = f_i + \sum_{j \neq i, \text{ with } j:h(j)=a} f_j$
- What is the expected error for f_i ?
- $\mathbf{E}[|\sum_{j \neq i, \text{ with } j:h(j)=a} f_j|] \leq \sum_{j \neq i} \mathbf{E}[|f_j| \cdot I_{h(j)=h(i)}]$ $= \sum_{j \neq i} \mathbf{E}[I_{h(j)=h(i)}] \cdot |f_j|$ $= \sum_{j \neq i} \Pr[h(j) = h(i)] \cdot |f_j|$

- $c_a = f_i + \sum_{j \neq i, \text{ with } j:h(j)=a} f_j$
- What is the expected error for f_i ?
- $\operatorname{E}\left[\left|\sum_{j\neq i, \text{ with } j:h(j)=a} f_{j}\right|\right] \leq \sum_{j\neq i} \operatorname{E}\left[\left|f_{j}\right| \cdot I_{h(j)=h(i)}\right]$ $= \sum_{j\neq i} \operatorname{E}\left[I_{h(j)=h(i)}\right] \cdot \left|f_{j}\right|$ $= \sum_{j\neq i} \Pr[h(j) = h(i)] \cdot \left|f_{j}\right|$ $= \sum_{j\neq i} \frac{1}{h} \cdot \left|f_{j}\right| = \frac{\|f\|_{1}}{h}$

- $c_a = f_i + \sum_{j \neq i, \text{ with } j:h(j)=a} f_j$
- What is the expected error for f_i ?
- $\operatorname{E}[|\sum_{j \neq i, \text{ with } j:h(j)=a} f_j|] \leq \sum_{j \neq i} \operatorname{E}[|f_j| \cdot I_{h(j)=h(i)}]$ $= \sum_{j \neq i} \operatorname{E}[I_{h(j)=h(i)}] \cdot |f_j|$ $= \sum_{j \neq i} \Pr[h(j) = h(i)] \cdot |f_j|$ $= \sum_{j \neq i} \frac{1}{b} \cdot |f_j| = \frac{\|f\|_1}{b}$ • Set $b = \frac{9k}{s}$, then the expected error is at most $\frac{\varepsilon \|f\|_1}{9k}$

• Set
$$b = \frac{9k}{\varepsilon}$$
, then the expected error is at most $\frac{\varepsilon \|f\|_1}{9k}$

- By Markov's inequality, the error for f_i is at most $\frac{\varepsilon \|f\|_1}{3k}$ with probability at least $\frac{2}{3}$
- How to ensure accuracy for all $i \in [n]$?

- By Markov's inequality, the error for f_i is at most $\frac{\varepsilon \|f\|_1}{3k}$ with probability at least $\frac{2}{3}$
- How to ensure accuracy for all $i \in [n]$?

• Repeat $\ell \coloneqq O(\log n)$ times to get estimates e_1, \dots, e_ℓ for each $i \in [n]$ and set $\hat{f}_i = \min(e_1, \dots, e_\ell)$