CSCE 689: Special Topics in
Modern Algorithms for Data
Sclience

Lecture 11

Samson Zhou

Presentation Schedule

e September 25: Team DAP, Team Bokun, Team Jason
e September 27: Galaxy Al, Team STMI
e September 29: Jung, Anmol, Chunkai

Last Time: Misra Gries

* Goal: Given a set S of m elements from [n| and a parameter k,
output the items from [n| that have frequency at least %

* Initialize k items I/, ..., V}, with count ¢, ..., ¢, = 0

* For updates 1, ..., m:
* If V, = x; for some t, increment counter ¢;, i.e., ¢; = ¢ + 1
* Elseif ¢, = 0 forsome t, set V; = x;
* Else decrement all counters ¢;, i.e., ¢; = ¢; — 1forall j € |k]

Last Time: Misra Gries

* Drawbacks: Misra-Gries may return false positives, i.e., items that
are not frequent

* In fact, no algorithm using o(n) space can output ONLY the items
with frequency at Ieast%

* Intuition: Hard to decide whether coordinate has frequency % or

= -1
k

Last Time: (&, k)-Frequent Items Problem

* Goal: Given a set S of m elements from [n], an accuracy parameter
¢ € (0,1), and a parameter k, output a list that includes:

* The items from [n] that have frequency at Ieast%

* No items with frequency less than (1 — e)%

_ast Time: Misra Gries for (g, k)-Frequent
tems Problem

* Setr = [ﬂ

* Initialize r items V4, ..., . with count ¢4, ..., ¢, =0

* For updates 1, ..., m:
* If V, = x; for some t, increment counter ¢, i.e., ¢; = ¢; + 1
* Elseif c; = 0 for some t, set V;, = x;
* Else decrement all counters ¢;, i.e., ¢; = ¢; — 1forall j € [r]

* Output coordinates V, with ¢, > (1 — ¢) - %

_ast Time: Misra Gries for (g, k)-Frequent
tems Problem

e Claim: For all estimated frequencies ﬁ by Misra-Gries, we have

em
fi-—<fi<f
°Ifﬁ2—thenﬁ>ﬁ-——and|fﬁ<(1—e) —thenﬁ<ﬁ
Em
k

* Returning coordinates V; withc; > (1 — ¢) - % means:
* [with f; = %will be returned

* NOiwith f; < (1 —¢) -%will be returned

_ast Time: Misra Gries for (g, k)-Frequent
tems Problem

* Summary: Misra-Gries can be used to solve the (¢, k)-frequent
items problem

* Misra-Gries uses O (glog n) bits of space

* Misra-Gries is a deterministic algorithm

* Misra-Gries never overestimates the true frequency

Insertion-Deletion Streams

 Stream of length m = ©(n)
* Universe of size [n], underlying vector f € R™
* Each update increases or decreases a coordinate in [

0 0 0 0 0 0 0

o ”
* “Decrease fg

0 0 0 0 0 -1 0

Insertion-Deletion Streams

* Database Management: In database management, insertion-
deletion streams are used to track changes made to the database
over time

* Transaction logs often utilize this concept to record insertions and
deletions to ensure data integrity and support features like rollbacks
and recovery

Insertion-Deletion Streams

* \Version Control Systems: Insertion-deletion streams track changes
made to files, enabling users to see what has been added (inserted)
or removed (deleted) in each version

* Crucial for collaboration and managing software development
projects, central to version control systems

git C) z: o Bitbucket

GItHUb Dropbox

Insertion-Deletion Streams

e Traffic Flow and Transportation Systems: Insertion-deletion streams
are used to analyze traffic patterns and changes in transportation
systems

* This helps in optimizing traffic flow, managing congestion, and
improving transportation infrastructure

Frequent Items on Insertion-Deletion Streams

* Misra-Gries on Insertion-Deletion Streams
* “Increase f;”

* “Increase f3”

* “Increase f,”

* “Increase f,”

* “Decrease f,”

* “Decrease f,”

* “Decrease f3”

CountMin

* Another algorithm for the (¢, k)-frequent items problem
e Can be used on insertion-deletion streams

* Can be easily parallelized across multiple servers

CountMin

e |[nitalization: Create b buckets of counters and use a random hash
function h: [n| — [b]

e Algorithm: For each update x;, increment the counter h(x;)
0 0 0 0

* At the end of the stream, output the counter h(x;) as the estimate
for x;

CountMin

A R i A & fe f
0 0 0 0 0 0 0

1

0 0 0 0

CountMin

A R i A & fe f
1 0 0 0 0 0 0

h(x) = 3x + 2 (mod 4) 1

0 0 0 0

CountMin

A R i A & fe f
1 0 0 0 0 0 0

h(x) = 3x + 2 (mod 4) / 1

0 0 0 0

CountMin

A R i A & fe f
1 0 0 0 0 0 0

h(x) = 3x + 2 (mod 4) / 1

1 0 0 0

CountMin

A R i A & fe f
1 0 0 0 0 0 0

h(x) = 3x + 2 (mod 4) 3

1 0 0 0

CountMin

A R i A & fe f
1 0 1 0 0 0 0

h(x) = 3x + 2 (mod 4) 3

A 4
1 0 1 0

CountMin

A R i A & fe f
1 0 1 0 0 0 0

h(x) = 3x + 2 (mod 4) 2

1 0 1 0

CountMin

A R i A & fe f
1 1 1 0 0 0 0

h(x) = 3x + 2 (mod 4) 2

1 0 1 1

CountMin

A R i A & fe f
1 1 1 0 0 0 0

h(x) = 3x + 2 (mod 4) 1

1 0 1 1

CountMin

A R i A & fe f
2 1 1 0 0 0 0

h(x) = 3x + 2 (mod 4) / 1

2 0 1 1

CountMin

A R i A & fe f
2 1 1 0 0 0 0

h(x) = 3x + 2 (mod 4) 5

2 0 1 1

CountMin

A R i A & fe f
2 1 1 0 1 0 0

h(x) = 3x + 2 (mod 4) / 5

3 0 1 1

CountMin
A B s fs fi
2 1 1 0 1 0 0

* What is the estimation for f,?
* What about f3?
* What about f5? What about f;?

3 0 1 1

h(x) = 3x 4+ 2 (mod 4)

CountMin

* Given a set S of m elements from [n], let f; be the estimated
frequency for f;

e Claim: We always have ﬁ > f;

+ Suppose (i) = a so that ¢, = f;

* Note that ¢, counts the number f; of occurrences of any j with
h(j) = a = h(i), including f; itself

CountMin

* Suppose h(i) = a so thatc, = f;

* Note that ¢, counts the number f; of occurrences of any j with
h(j) = a = h(i), including f; itself

* Cq = Xjn(j)=afa = fisince h(i) = a

Ca = fi + Xjsi with j-h(j)=a i

CountMin Error Analysis

*Cq =fi + Zjii, withj:h(j)zafj
 What is the expected error for f;?

CountMin Error Analysis

*Cq =fi + Zjii, withj:h(j)zafj
 What is the expected error for f;?

* E”Zjii, withj:h(j):afj” = z:jvtiE“fjl 'Ih(j)=h(i)]

CountMin Error Analysis

*Cq = fi + Zjii, withj:h(j)zafj

 What is the expected error for f;?

* E”Zjii, withj:h(j):afj” = z:jvtiE_|fj| ’Ih(j)=h(i)_
= Zj2iE[Iny=nw] - |

CountMin Error Analysis

* Cq = fi + 2jsi with j:n(j)=afj

 What is the expected error for f;?

) E”Zjii, withj:h(j)=afj|] = ZfiiE:lfjl 'Ih(j)=h(i):
= ZjiE|In(y=no) - |
= % Pr{h(j) = h(D] - |f;]

CountMin Error Analysis

*Cq = fi + Zjii, withj:h(j)zafj

 What is the expected error for f;?

* E”Zjii, withj:h(j):afj” = z:jvtiE_|fj| 'Ih(j)=h(i)_
= Zj2iE[Iny=nw] - |

— zjilPr[h(j) = h(®] - |fjl

111l
]ilb ‘fj‘ b -

CountMin Error Analysis

*Cca=fit Zjii, withj:h(j):afj
 What is the expected error for f;?
* E”Zjii, withj:h(j):afj” = z:jvtiE_|fj| In(j=n@).
= ZjziE[Ingy=na | - |
— Z]ilpr[h(j) — h(l)] ' ‘f]‘
114
b

]ilb ‘f]‘ —

9%k
e Seth = — then the expected error is at most ellrlly

CountMin Error Analysis

9k :
e Seth = — then the expected error is at most 8”9];”1

ellfll4 with

* By Markov’s inequality, the error for f; is at most

. 2
probability at least 2

* How to ensure accuracy for all i € [n]?

CountMin Error Analysis

* By Markov’s inequality, the error for f; is at most glgfllll with

. 2
probability at least 3

* How to ensure accuracy for all i € [n]?

* Repeat £ := O(logn) times to get estimates e, ..., e, foreach i €
In] and set f; = min(e4, ..., €,)

	Slide 1: CSCE 689: Special Topics in Modern Algorithms for Data Science
	Slide 2: Presentation Schedule
	Slide 3: Last Time: Misra Gries
	Slide 4: Last Time: Misra Gries
	Slide 5: Last Time: open paren script epsilon ,k close paren -Frequent Items Problem
	Slide 6: Last Time: Misra Gries for open paren script epsilon ,k close paren -Frequent Items Problem
	Slide 7: Last Time: Misra Gries for open paren script epsilon ,k close paren -Frequent Items Problem
	Slide 8: Last Time: Misra Gries for open paren script epsilon ,k close paren -Frequent Items Problem
	Slide 9: Insertion-Deletion Streams
	Slide 10: Insertion-Deletion Streams
	Slide 11: Insertion-Deletion Streams
	Slide 12: Insertion-Deletion Streams
	Slide 13: Frequent Items on Insertion-Deletion Streams
	Slide 14: CountMin
	Slide 15: CountMin
	Slide 16: CountMin
	Slide 17: CountMin
	Slide 18: CountMin
	Slide 19: CountMin
	Slide 20: CountMin
	Slide 21: CountMin
	Slide 22: CountMin
	Slide 23: CountMin
	Slide 24: CountMin
	Slide 25: CountMin
	Slide 26: CountMin
	Slide 27: CountMin
	Slide 28: CountMin
	Slide 29: CountMin
	Slide 30: CountMin
	Slide 31: CountMin Error Analysis
	Slide 32: CountMin Error Analysis
	Slide 33: CountMin Error Analysis
	Slide 34: CountMin Error Analysis
	Slide 35: CountMin Error Analysis
	Slide 36: CountMin Error Analysis
	Slide 37: CountMin Error Analysis
	Slide 38: CountMin Error Analysis

