
CSCE 689: Special Topics in
Modern Algorithms for Data

Science
Lecture 12

Samson Zhou

Presentation Schedule

• September 25: Team DAP, Team Bokun, Team Jason

• September 27: Galaxy AI, Team STMI

• September 29: Jung, Anmol, Chunkai

Last Time: (𝜀, 𝑘)-Frequent Items Problem

• Goal: Given a set 𝑆 of 𝑚 elements from [𝑛], an accuracy parameter
𝜀 ∈ (0, 1), and a parameter 𝑘, output a list that includes:

• The items from [𝑛] that have frequency at least
𝑚

𝑘

• No items with frequency less than 1 − 𝜀
𝑚

𝑘

(𝜀, 𝑘)-Frequent Items Problem

• Goal: Given a set 𝑆 of 𝑚 elements from [𝑛] that induces a
frequency vector 𝑓 ∈ 𝑅𝑛, an accuracy parameter 𝜀 ∈ (0, 1), and a
parameter 𝑘, output a list that includes:

• The items from [𝑛] that have frequency at least
𝑓 1

𝑘

• No items with frequency less than 1 − 𝜀
𝑓 1

𝑘

CountMin

• Initalization: Create 𝑏 buckets of counters and use a random hash
function ℎ: 𝑛 → [𝑏]

• Algorithm: For each update 𝑥𝑖, increment the counter ℎ 𝑥𝑖

• At the end of the stream, output the counter ℎ 𝑥𝑖 as the estimate
for 𝑥𝑖

𝑐1 𝑐2 𝑐3 𝑐4

0 0 0 0

CountMin for (𝜀, 𝑘)-Frequent Items Problem

• Claim: For all estimated frequencies ෡𝑓𝑖 by CountMin, we have

• If 𝑓𝑖 ≥
𝑓 1

𝑘
, then ෡𝑓𝑖 ≥ 𝑓𝑖 −

𝜀 𝑓 1

𝑘
 and if 𝑓𝑖 < 1 − 𝜀 ⋅

𝑓 1

𝑘
, then

෡𝑓𝑖 < 𝑓𝑖 −
𝜀 𝑓 1

𝑘

• Returning coordinates 𝑉𝑡 with 𝑐𝑡 ≥ 1 − 𝜀 ⋅
𝑓 1

𝑘
 means:

• 𝑖 with 𝑓𝑖 ≥
𝑓 1

𝑘
 will be returned

• NO 𝑖 with 𝑓𝑖 < 1 − 𝜀 ⋅
𝑓 1

𝑘
 will be returned

𝑓𝑖 −
𝜀 𝑓 1

𝑘
≤ ෡𝑓𝑖 ≤ 𝑓𝑖 +

𝜀 𝑓 1

𝑘

CountMin for (𝜀, 𝑘)-Frequent Items Problem

• Summary: CountMin can be used to solve the (𝜀, 𝑘)-frequent items
problem on an insertion-deletion stream

• CountMin uses 𝑂
𝑘

𝜀
log2 𝑛 bits of space

• CountMin is a randomized algorithm

• CountMin never underestimates the true frequency for insertion-
only streams

Recall: Euclidean Space and 𝐿2 Norm

• For 𝑧 ∈ 𝑅𝑛, the 𝐿2 norm of 𝑧 is denoted by 𝑧 2 and defined as:

𝑧 2 = 𝑧1
2 + 𝑧2

2 + ⋯ + 𝑧𝑛
2

• For 𝑥, 𝑦 ∈ 𝑅𝑛, the distance
function 𝐷 is denoted by ⋅ 2
and defined as 𝑥 − 𝑦 2

Trivia Question #7 (Norms)

• For 𝑥 ∈ 𝑅𝑛, which of the following is (the most) true?

• 𝑥 2 > 𝑥 1

• 𝑥 2 ≥ 𝑥 1

• 𝑥 2 = 𝑥 1

• 𝑥 2 ≤ 𝑥 1

• 𝑥 2 < 𝑥 1

• None of these are true characterizations of the relationship between
𝑥 2 and 𝑥 1

Trivia Question #8 (Norms)

• For 𝑥 ∈ 𝑅𝑛, how much large can 𝑥 1/ 𝑥 2 be?

• 𝑂 𝑛

• 𝑂 𝑛

• 𝑂 log 𝑛

• 𝑂 1

(𝜀, 𝑘)-Frequent Items Problem

• Goal: Given a set 𝑆 of 𝑚 elements from [𝑛] that induces a frequency
vector 𝑓 ∈ 𝑅𝑛, an accuracy parameter 𝜀 ∈ (0, 1), and a parameter 𝑘,
output a list that includes:

• The items from [𝑛] that have frequency at least
𝑓 1

𝑘

• No items with frequency less than 1 − 𝜀
𝑓 1

𝑘

𝐿2 Heavy-Hitters

• Goal: Given a set 𝑆 of 𝑚 elements from [𝑛] that induces a frequency
vector 𝑓 ∈ 𝑅𝑛, an accuracy parameter 𝜀 ∈ (0, 1), and a parameter 𝑘,
output a list that includes:

• The items from [𝑛] that have frequency at least
𝑓 2

𝑘

• No items with frequency less than 1 − 𝜀
𝑓 2

𝑘

𝐿2 Heavy-Hitters

• Goal: Given a set 𝑆 of 𝑚 elements from [𝑛] that induces a frequency
vector 𝑓 ∈ 𝑅𝑛 and a threshold parameter 𝜀 ∈ (0, 1), output a list that
includes:

• The items from [𝑛] that have frequency at least 𝜀 ⋅ 𝑓 2

• No items with frequency less than
𝜀

2
⋅ 𝑓 2

𝐿2 Estimation

• Goal: Given a set 𝑆 of 𝑚 elements from [𝑛] that induces a
frequency vector 𝑓 ∈ 𝑅𝑛 and an accuracy parameter 𝜀 ∈ (0, 1),
output a (1 + 𝜀)-approximation to 𝑓 2

• Find 𝑍 such that 1 − 𝜀 ⋅ 𝑓 2 ≤ 𝑍 ≤ 1 + 𝜀 ⋅ 𝑓 2

• Find 𝑍′ such that 1 − 𝜀 ⋅ 𝑓 2
2 ≤ 𝑍′ ≤ 1 + 𝜀 ⋅ 𝑓 2

2

𝐿2 Estimation

• How to do?

𝐿2 Estimation

• How to do?

• Sorry, won’t reveal until next lecture (wait, don’t we already have
a tool for this)?

• Assume for now we are given 𝑓 2

Revisiting CountMin

• Initalization: Create 𝑏 buckets of counters and use a random hash
function ℎ: 𝑛 → [𝑏]

• Algorithm: For each insertion (or deletion) to 𝑥𝑖, increment (or
decrement) the counter ℎ 𝑥𝑖

• At the end of the stream, output the counter ℎ 𝑥𝑖 as the estimate
for 𝑥𝑖

𝑐1 𝑐2 𝑐3 𝑐4

0 0 0 0

CountMin and the Power of Random Signs

• Initalization: Create 𝑏 buckets of counters and use a random hash
function ℎ: 𝑛 → [𝑏] and a uniformly random sign function 𝑠: 𝑛 →

{−1, +1}, i.e., Pr 𝑠 𝑖 = +1 = Pr 𝑠 𝑖 = −1 =
1

2

• Algorithm: For each insertion (or deletion) to 𝑥𝑖, change the counter
ℎ 𝑥𝑖 by 𝑠 𝑥𝑖 (or −𝑠 𝑥𝑖)

• At the end of the stream, output the quantity s 𝑥𝑖 ⋅ ℎ 𝑥𝑖 as the
estimate for 𝑥𝑖

𝑐1 𝑐2 𝑐3 𝑐4

0 0 0 0

CountSketch

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7

0 0 0 0 0 0 0

1
𝑐1 𝑐2 𝑐3 𝑐4

0 0 0 0

CountSketch

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7

1 0 0 0 0 0 0

1
𝑐1 𝑐2 𝑐3 𝑐4

0 0 0 0

ℎ 𝑥 = 3𝑥 + 2 (mod 4)
𝑠 𝑥 = +1 for 𝑥 ∈ 1,2,3
𝑠 𝑥 = −1 for 𝑥 ∈ {4,5}

CountSketch

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7

1 0 0 0 0 0 0

1
𝑐1 𝑐2 𝑐3 𝑐4

0 0 0 0

ℎ 𝑥 = 3𝑥 + 2 (mod 4)
𝑠 𝑥 = +1 for 𝑥 ∈ 1,2,3
𝑠 𝑥 = −1 for 𝑥 ∈ {4,5}

CountSketch

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7

1 0 0 0 0 0 0

1
𝑐1 𝑐2 𝑐3 𝑐4

1 0 0 0

ℎ 𝑥 = 3𝑥 + 2 (mod 4)
𝑠 𝑥 = +1 for 𝑥 ∈ 1,2,3
𝑠 𝑥 = −1 for 𝑥 ∈ {4,5}

CountSketch

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7

1 0 0 0 0 0 0

3
𝑐1 𝑐2 𝑐3 𝑐4

1 0 0 0

ℎ 𝑥 = 3𝑥 + 2 (mod 4)
𝑠 𝑥 = +1 for 𝑥 ∈ 1,2,3
𝑠 𝑥 = −1 for 𝑥 ∈ {4,5}

CountSketch

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7

1 0 1 0 0 0 0

3
𝑐1 𝑐2 𝑐3 𝑐4

1 0 1 0

ℎ 𝑥 = 3𝑥 + 2 (mod 4)
𝑠 𝑥 = +1 for 𝑥 ∈ 1,2,3
𝑠 𝑥 = −1 for 𝑥 ∈ {4,5}

CountSketch

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7

1 0 1 0 0 0 0

2
𝑐1 𝑐2 𝑐3 𝑐4

1 0 1 0

ℎ 𝑥 = 3𝑥 + 2 (mod 4)
𝑠 𝑥 = +1 for 𝑥 ∈ 1,2,3
𝑠 𝑥 = −1 for 𝑥 ∈ {4,5}

CountSketch

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7

1 1 1 0 0 0 0

2
𝑐1 𝑐2 𝑐3 𝑐4

1 0 1 1

ℎ 𝑥 = 3𝑥 + 2 (mod 4)
𝑠 𝑥 = +1 for 𝑥 ∈ 1,2,3
𝑠 𝑥 = −1 for 𝑥 ∈ {4,5}

CountSketch

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7

1 1 1 0 0 0 0

1
𝑐1 𝑐2 𝑐3 𝑐4

1 0 1 1

ℎ 𝑥 = 3𝑥 + 2 (mod 4)
𝑠 𝑥 = +1 for 𝑥 ∈ 1,2,3
𝑠 𝑥 = −1 for 𝑥 ∈ {4,5}

CountSketch

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7

2 1 1 0 0 0 0

1
𝑐1 𝑐2 𝑐3 𝑐4

2 0 1 1

ℎ 𝑥 = 3𝑥 + 2 (mod 4)
𝑠 𝑥 = +1 for 𝑥 ∈ 1,2,3
𝑠 𝑥 = −1 for 𝑥 ∈ {4,5}

CountSketch

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7

2 1 1 0 0 0 0

5
𝑐1 𝑐2 𝑐3 𝑐4

2 0 1 1

ℎ 𝑥 = 3𝑥 + 2 (mod 4)
𝑠 𝑥 = +1 for 𝑥 ∈ 1,2,3
𝑠 𝑥 = −1 for 𝑥 ∈ {4,5}

CountSketch

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7

2 1 1 0 1 0 0

5
𝑐1 𝑐2 𝑐3 𝑐4

1 0 1 1

ℎ 𝑥 = 3𝑥 + 2 (mod 4)
𝑠 𝑥 = +1 for 𝑥 ∈ 1,2,3
𝑠 𝑥 = −1 for 𝑥 ∈ {4,5}

CountSketch

𝑓1 𝑓2 𝑓3 𝑓4 𝑓5 𝑓6 𝑓7

2 1 1 0 1 0 0

𝑐1 𝑐2 𝑐3 𝑐4

1 0 1 1

ℎ 𝑥 = 3𝑥 + 2 (mod 4)
𝑠 𝑥 = +1 for 𝑥 ∈ 1,2,3
𝑠 𝑥 = −1 for 𝑥 ∈ {4,5}

• What is the estimation for 𝑓4?

• What about 𝑓3?

• What about 𝑓5? What about 𝑓1?

	Slide 1: CSCE 689: Special Topics in Modern Algorithms for Data Science
	Slide 2: Presentation Schedule
	Slide 3: Last Time: open paren script epsilon ,k close paren -Frequent Items Problem
	Slide 4: open paren script epsilon ,k close paren -Frequent Items Problem
	Slide 5: CountMin
	Slide 6: CountMin for open paren script epsilon ,k close paren -Frequent Items Problem
	Slide 7: CountMin for open paren script epsilon ,k close paren -Frequent Items Problem
	Slide 8: Recall: Euclidean Space and cap L sub 2 Norm
	Slide 9: Trivia Question #7 (Norms)
	Slide 10: Trivia Question #8 (Norms)
	Slide 11: open paren script epsilon ,k close paren -Frequent Items Problem
	Slide 12: cap L sub 2 Heavy-Hitters
	Slide 13: cap L sub 2 Heavy-Hitters
	Slide 14: cap L sub 2 Estimation
	Slide 15: cap L sub 2 Estimation
	Slide 16: cap L sub 2 Estimation
	Slide 17: Revisiting CountMin
	Slide 18: CountMin and the Power of Random Signs
	Slide 19: CountSketch
	Slide 20: CountSketch
	Slide 21: CountSketch
	Slide 22: CountSketch
	Slide 23: CountSketch
	Slide 24: CountSketch
	Slide 25: CountSketch
	Slide 26: CountSketch
	Slide 27: CountSketch
	Slide 28: CountSketch
	Slide 29: CountSketch
	Slide 30: CountSketch
	Slide 31: CountSketch

