CSCE 689: Special Topics in
Modern Algorithms for Data
Sclience
Lecture 12

Samson Zhou

Presentation Schedule

e September 25: Team DAP, Team Bokun, Team Jason
e September 27: Galaxy Al, Team STMI
e September 29: Jung, Anmol, Chunkai

Last Time: (&, k)-Frequent Items Problem

* Goal: Given a set S of m elements from [n], an accuracy parameter
¢ € (0,1), and a parameter k, output a list that includes:

* The items from [n] that have frequency at Ieast%

* No items with frequency less than (1 — e)%

(¢, k)-Frequent Items Problem

* Goal: Given a set S of m elements from [n] that induces a
frequency vector f € R™, an accuracy parameter € € (0,1), and a
parameter k, output a list that includes:

IDALEY
k

* The items from |n] that have frequency at least

11l
k

* No items with frequency less than (1 — &)

CountMin

e |[nitalization: Create b buckets of counters and use a random hash
function h: [n| — [b]

e Algorithm: For each update x;, increment the counter h(x;)
0 0 0 0

* At the end of the stream, output the counter h(x;) as the estimate
for x;

CountMin for (&, k)-Frequent Items Problem

e Claim: For all estimated frequencies ﬁ by CountMin, we have

f— ||f||1 <fl <f+ €||f||1
«If f; = ”];{”1 then f; > f; — s||f||1 and if f; < (1 —&)- ”flll , then
fl < f — 8||f||1
* Returning coordinates V; withc; > (1 — ¢) - ”];”1 means:
[with f; > ”];{”1 will be returned

IIfI|1

*NOiwithf; < (1—¢)- will be returned

CountMin for (&, k)-Frequent Items Problem

* Summary: CountMin can be used to solve the (¢, k)-frequent items
problem on an insertion-deletion stream

* CountMin uses O (Slog2 n) bits of space

e CountMin is a randomized algorithm

* CountMin never underestimates the true frequency for insertion-
only streams

Recall: Euclidean Space and L, Norm

* For z € R™, the L, norm of z is denoted by ||z||, and defined as:

Pythagorean theorem.

z]|, = \/212 - ZZ2 + -+ Z«,% 2(1)

2(2)

* Forx,y € R", the distance
function D is denoted by ||-||, Izll, = VZ(D? + 2(2)?
and defined as [|x — y||,

VA

Trivia Question #7 (Norms)

* For x € R™, which of the following is (the most) true?

2 >

[
R R R R
[\
IV
R R R R

° 2 = 1

* [lx]l> < [1x]l4

* None of these are true characterizations of the relationship between
x> and {|x|[4

Trivia Question #8 (Norms)

* For x € R™, how much large can ||x||{ /|| x||, be?

* 0(n)

* 0(vn)

* O(logn)
¢ 0(1)

(¢, k)-Frequent Items Problem

* Goal: Given a set S of m elements from [n] that induces a frequency
vector f € R™, an accuracy parameter € € (0, 1), and a parameter k,
output a list that includes:

IDALEY
k

* The items from |n] that have frequency at least

11l
k

* No items with frequency less than (1 — &)

L, Heavy-Hitters

* Goal: Given a set S of m elements from [n] that induces a frequency
vector f € R™, an accuracy parameter € € (0, 1), and a parameter k,
output a list that includes:

AP
k

* The items from |n] that have frequency at least

AP
k

* No items with frequency less than (1 — &)

L, Heavy-Hitters

* Goal: Given a set S of m elements from [n] that induces a frequency
vector f € R™ and a threshold parameter € € (0, 1), output a list that
includes:

* The items from [n] that have frequency at least € - |[f]|,
* No items with frequency less than g £l

L, Estimation

* Goal: Given a set S of m elements from [n] that induces a
frequency vector f € R™ and an accuracy parameter € € (0, 1),
output a (1 + &)-approximation to ||f]|,

* Find Zsuchthat (1 — &) - [Ifll, =Z = (1 + &) - |If]l>

* Find Z' such that (1 — &) - [IflI3 < Z' < (1 + &) - Il

L, Estimation

e How to do?

L, Estimation

e How to do?

* Sorry, won’t reveal until next lecture (wait, don’t we already have
a tool for this)?

* Assume for now we are given |||l

Revisiting CountMin

e |[nitalization: Create b buckets of counters and use a random hash
function h: [n| — [b]

* Algorithm: For each insertion (or deletion) to x;, increment (or
decrement) the counter h(x;)

0 0 0 0

* At the end of the stream, output the counter h(x;) as the estimate
for x;

CountMin and the Power of Random Signs

e |[nitalization: Create b buckets of counters and use a random hash
function h: [n] — [b] and a uniformly random sign function s: [n] —

{—1,+1},i.e, Pr[s(i) = +1] = Pr[s(i) = —1] :%

* Algorithm: For each insertion (or deletion) to x;, change the counter
h(x;) by s(x;) (or —s(x;))

0 0 0 0

* At the end of the stream, output the quantity s(x;) - h(x;) as the
estimate for x;

CountSketch

A R i A & fe f
0 0 0 0 0 0 0

1

0 0 0 0

CountSketch

A R i A & fe f
1 0 0 0 0 0 0

h(x) = 3x + 2 (mod 4) 1

s(x) = +1forx € {1,2,3}

s(x) = —1forx € {4,5}
0 0 0 0

CountSketch

A R i A & fe f
1 0 0 0 0 0 0

h(x) = 3x + 2 (mod 4) 1
s(x) = +1forx € {1,2,3}
s(x) = —1for x € {4,5}

I
0 0 0 0

CountSketch

A R i A & fe f
1 0 0 0 0 0 0

h(x) = 3x + 2 (mod 4) 1
s(x) = +1forx € {1,2,3}
s(x) = —1for x € {4,5}

I
1 0 0 0

CountSketch

A R i A & fe f
1 0 0 0 0 0 0

h(x) = 3x + 2 (mod 4) 3
s(x) = +1forx € {1,2,3}

s(x) = —1forx € {4,5}
1 0 0 0

CountSketch

A R i A & fe f
1 0 1 0 0 0 0

h(x) = 3x + 2 (mod 4) 3
s(x) = +1forx € {1,2,3}

s(x) = —1forx € {4,5} !
1 0 1 0

CountSketch

A R i A & fe f
1 0 1 0 0 0 0

h(x) = 3x + 2 (mod 4) 2

s(x) = +1forx € {1,2,3}

s(x) = —1forx € {4,5}
1 0 1 0

CountSketch

A R i A & fe f
1 1 1 0 0 0 0

h(x) = 3x + 2 (mod 4) 2

s(x) = +1forx € {1,2,3}
s(x) = —1forx € {4,5}

1 0 1 1

CountSketch

A R i A & fe f
1 1 1 0 0 0 0

h(x) = 3x + 2 (mod 4) 1

s(x) = +1forx € {1,2,3}

s(x) = —1forx € {4,5}
1 0 1 1

CountSketch

A R i A & fe f
2 1 1 0 0 0 0

h(x) = 3x + 2 (mod 4) 1
s(x) = +1forx € {1,2,3}
s(x) = —1for x € {4,5}

I
2 0 1 1

CountSketch

A R i A & fe f
2 1 1 0 0 0 0

h(x) = 3x + 2 (mod 4) 5
s(x) = +1forx € {1,2,3}

s(x) = —1forx € {4,5}
2 0 1 1

CountSketch

A R i A & fe f
2 1 1 0 1 0 0

h(x) = 3x + 2 (mod 4) 5
s(x) = +1forx € {1,2,3}
s(x) = —1for x € {4,5}

I
1 0 1 1

CountSketch
A £ s fi s fs £
2 1 1 0 1 . 0

* What is the estimation for f,?

h(X) = 3x + 2 (mod 4) What about f3?
s(x) = +1forx € {1,2,3} * What about f5? What about f;?
s(x) = —1forx € {4,5}

1 0 1 1

	Slide 1: CSCE 689: Special Topics in Modern Algorithms for Data Science
	Slide 2: Presentation Schedule
	Slide 3: Last Time: open paren script epsilon ,k close paren -Frequent Items Problem
	Slide 4: open paren script epsilon ,k close paren -Frequent Items Problem
	Slide 5: CountMin
	Slide 6: CountMin for open paren script epsilon ,k close paren -Frequent Items Problem
	Slide 7: CountMin for open paren script epsilon ,k close paren -Frequent Items Problem
	Slide 8: Recall: Euclidean Space and cap L sub 2 Norm
	Slide 9: Trivia Question #7 (Norms)
	Slide 10: Trivia Question #8 (Norms)
	Slide 11: open paren script epsilon ,k close paren -Frequent Items Problem
	Slide 12: cap L sub 2 Heavy-Hitters
	Slide 13: cap L sub 2 Heavy-Hitters
	Slide 14: cap L sub 2 Estimation
	Slide 15: cap L sub 2 Estimation
	Slide 16: cap L sub 2 Estimation
	Slide 17: Revisiting CountMin
	Slide 18: CountMin and the Power of Random Signs
	Slide 19: CountSketch
	Slide 20: CountSketch
	Slide 21: CountSketch
	Slide 22: CountSketch
	Slide 23: CountSketch
	Slide 24: CountSketch
	Slide 25: CountSketch
	Slide 26: CountSketch
	Slide 27: CountSketch
	Slide 28: CountSketch
	Slide 29: CountSketch
	Slide 30: CountSketch
	Slide 31: CountSketch

