CSCE 689: Special Topics in Modern Algorithms for Data Science

Lecture 13

Samson Zhou

Presentation Schedule

- September 25: Team DAP, Team Bokun, Team Jason
- September 27: Galaxy AI, Team STMI
- September 29: Jung, Anmol, Chunkai

Last Time: L_2 Heavy-Hitters

- Goal: Given a set S of m elements from [n] that induces a frequency vector $f \in \mathbb{R}^n$ and a threshold parameter $\varepsilon \in (0, 1)$, output a list that includes:
 - The items from [n] that have frequency at least $\varepsilon \cdot ||f||_2$
 - No items with frequency less than $\frac{\varepsilon}{2} \cdot \|f\|_2$

Last Time: CountSketch, i.e., CountMin and the Power of Random Signs

- Initalization: Create b buckets of counters and use a random hash function $h: [n] \to [b]$ and a uniformly random sign function $s: [n] \to \{-1, +1\}$, i.e., $\Pr[s(i) = +1] = \Pr[s(i) = -1] = \frac{1}{2}$
- Algorithm: For each insertion (or deletion) to x_i , change the counter $h(x_i)$ by $s(x_i)$ (or $-s(x_i)$)

c_1	c_2	<i>c</i> ₃	c_4
0	0	0	0

• At the end of the stream, output the quantity $s(x_i) \cdot h(x_i)$ as the estimate for x_i

CountSketch

• Given a set S of m elements from [n], let $\widehat{f_i}$ be the estimated frequency for f_i

- Suppose h(i) = a so that $\hat{f}_i = s(i) \cdot c_a$
- Note that c_a includes the signed number $s(j) \cdot f_j$ of occurrences of any j with h(j) = a = h(i), including f_i itself

CountSketch

- Suppose h(i) = a so that $c_a = \widehat{f}_i$
- Note that c_a includes the signed number $s(j) \cdot f_j$ of occurrences of any j with h(j) = a = h(i), including f_i itself
- $c_a = \sum_{j:h(j)=a} s(j) \cdot f_a$
- Estimated frequency f_i of i is $\hat{f}_i = s(i) \cdot c_a$
- s(i) $c_a = s(i) \cdot s(i) \cdot f_i + \sum_{j \neq i, \text{ with } j:h(j)=a} s(i) \cdot s(j) \cdot f_j$

- $c_a = s(i) \cdot s(i) \cdot f_i + \sum_{j \neq i, \text{ with } j:h(j)=a} s(i) \cdot s(j) \cdot f_j$
- Since $s(i) \in \{-1, +1\}$, we have $s(i) \cdot s(i) = 1$
- What is the expected error for f_i ?

- $c_a = s(i) \cdot s(i) \cdot f_i + \sum_{j \neq i, \text{ with } j: h(j) = a} s(i) \cdot s(j) \cdot f_j$
- What is the expectation of the error term for f_i ?
- $E\left[\sum_{j\neq i, \text{ with } j:h(j)=a} s(i) \cdot s(j) \cdot f_j\right] = \sum_{j\neq i} E\left[s(i) \cdot s(j) \cdot f_j \cdot I_{h(j)=h(i)}\right]$

- $c_a = s(i) \cdot s(i) \cdot f_i + \sum_{j \neq i, \text{ with } j:h(j)=a} s(i) \cdot s(j) \cdot f_j$
- What is the expectation of the error term for f_i ?
- $E\left[\sum_{j\neq i, \text{ with } j:h(j)=a} s(i) \cdot s(j) \cdot f_j\right] = 0$

- $c_a = s(i) \cdot s(i) \cdot f_i + \sum_{j \neq i, \text{ with } j:h(j)=a} s(i) \cdot s(j) \cdot f_j$
- What is the expectation of the error term for f_i ?
- $E\left[\sum_{j\neq i, \text{ with } j:h(j)=a} s(i) \cdot s(j) \cdot f_j\right] = 0$
- What is the variance of the error term for f_i ?

• Variance is at most the 2nd moment of the error term

•
$$E\left[\left(\sum_{j\neq i, \text{ with } j:h(j)=a} s(i) \cdot s(j) \cdot f_j\right)^2\right]$$

• Variance is at most the 2nd moment of the error term

•
$$E\left[\left(\sum_{j\neq i, \text{ with } j:h(j)=a} s(i) \cdot s(j) \cdot f_j\right)^2\right] = \sum_{j\neq i} E\left[\left|f_j\right|^2 \cdot I_{h(j)=h(i)}\right]$$

• Variance is at most the 2nd moment of the error term

•
$$E\left[\left(\sum_{j\neq i, \text{ with } j:h(j)=a} s(i) \cdot s(j) \cdot f_j\right)^2\right] = \sum_{j\neq i} E\left[\left|f_j\right|^2 \cdot I_{h(j)=h(i)}\right]$$

= $\sum_{j\neq i} E\left[I_{h(j)=h(i)}\right] \cdot \left|f_j\right|^2$

Variance is at most the 2nd moment of the error term

•
$$\mathbb{E}\left[\left(\sum_{j\neq i, \text{ with } j:h(j)=a} s(i) \cdot s(j) \cdot f_j\right)^2\right] = \sum_{j\neq i} \mathbb{E}\left[\left|f_j\right|^2 \cdot I_{h(j)=h(i)}\right]$$

 $= \sum_{j\neq i} \mathbb{E}\left[I_{h(j)=h(i)}\right] \cdot \left|f_j\right|^2$
 $= \sum_{j\neq i} \Pr[h(j) = h(i)] \cdot \left|f_j\right|^2$

Variance is at most the 2nd moment of the error term

•
$$E\left[\left(\sum_{j\neq i, \text{ with } j:h(j)=a} s(i) \cdot s(j) \cdot f_j\right)^2\right] = \sum_{j\neq i} E\left[\left|f_j\right|^2 \cdot I_{h(j)=h(i)}\right]$$

$$= \sum_{j\neq i} E\left[I_{h(j)=h(i)}\right] \cdot \left|f_j\right|^2$$

$$= \sum_{j\neq i} \Pr[h(j) = h(i)] \cdot \left|f_j\right|^2$$

$$= \sum_{j\neq i} \frac{1}{b} \cdot \left|f_j\right|^2 \le \frac{\|f\|_2^2}{b}$$

• Variance is at most the 2nd moment of the error term

•
$$E\left[\left(\sum_{j\neq i, \text{ with } j:h(j)=a} s(i) \cdot s(j) \cdot f_j\right)^2\right] = \sum_{j\neq i} E\left[\left|f_j\right|^2 \cdot I_{h(j)=h(i)}\right]$$

$$= \sum_{j\neq i} E\left[I_{h(j)=h(i)}\right] \cdot \left|f_j\right|^2$$

$$= \sum_{j\neq i} \Pr[h(j) = h(i)] \cdot \left|f_j\right|^2$$

$$= \sum_{j\neq i} \frac{1}{b} \cdot \left|f_j\right|^2 \le \frac{\|f\|_2^2}{b}$$

• Set $b = \frac{9k^2}{\varepsilon^2}$, then the variance is at most $\frac{\varepsilon^2 \|f\|_2^2}{9k^2}$

• Set $b = \frac{9k^2}{\varepsilon^2}$, then the variance is at most $\frac{\varepsilon^2 ||f||_2^2}{9k^2}$

• By Chebyshev's inequality, the error for f_i is at most $\frac{\varepsilon}{k} \|f\|_2$ with probability at least $\frac{2}{3}$

• How to ensure accuracy for all $i \in [n]$?

• By Chebyshev's inequality, the error for f_i is at most $\frac{\varepsilon}{k} ||f||_2$ with probability at least $\frac{2}{3}$

• How to ensure accuracy for all $i \in [n]$?

• Repeat $\ell \coloneqq O(\log n)$ times to get estimates e_1, \dots, e_ℓ for each $i \in [n]$ and set $\widehat{f_i} = \operatorname{median}(e_1, \dots, e_\ell)$

• Claim: For all estimated frequencies $\hat{f_i}$ by CountSketch, we have

$$f_i - \frac{\varepsilon ||f||_2}{k} \le \widehat{f}_i \le f_i + \frac{\varepsilon ||f||_2}{k}$$

CountSketch Summary

- CountSketch solves the L_2 heavy-hitters problem: Given a set S of m elements from [n] that induces a frequency vector $f \in \mathbb{R}^n$ and a threshold parameter $\varepsilon \in (0,1)$, output a list that includes:
 - The items from [n] that have frequency at least $\varepsilon \cdot ||f||_2$
 - No items with frequency less than $\frac{\varepsilon}{2} \cdot ||f||_2$
- Space usage: $O\left(\frac{1}{\varepsilon^2}\log^2 n\right)$ bits of space