CSCE 689: Special Topics in Modern Algorithms for Data Science

Lecture 14

Samson Zhou

Presentation Schedule

- September 25: Team DAP, Team Bokun, Team Jason
- September 27: Galaxy AI, Team STMI
- September 29: Jung, Anmol, Chunkai

Recall: Euclidean Space and L_{2} Norm

- For $z \in R^{n}$, the L_{2} norm of z is denoted by $\|z\|_{2}$ and defined as:

$$
\|z\|_{2}=\sqrt{z_{1}^{2}+z_{2}^{2}+\cdots+z_{n}^{2}}
$$

- For $x, y \in R^{n}$, the distance function D is denoted by $\|\cdot\|_{2}$ and defined as $\|x-y\|_{2}$

Recall: CountSketch Summary

- CountSketch solves the L_{2} heavy-hitters problem: Given a set S of m elements from [n] that induces a frequency vector $f \in R^{n}$ and a threshold parameter $\varepsilon \in(0,1)$, output a list that includes:
- The items from $[n]$ that have frequency at least $\varepsilon \cdot\|f\|_{2}$
- No items with frequency less than $\frac{\varepsilon}{2} \cdot\|f\|_{2}$
- Space usage: $O\left(\frac{1}{\varepsilon^{2}} \log ^{2} n\right)$ bits of space

L_{2} Estimation

- Goal: Given a set S of m elements from [n] that induces a frequency vector $f \in R^{n}$ and an accuracy parameter $\varepsilon \in(0,1)$, output a $(1+\varepsilon)$-approximation to $\|f\|_{2}$
- Find Z such that $(1-\varepsilon) \cdot\|f\|_{2} \leq Z \leq(1+\varepsilon) \cdot\|f\|_{2}$
- Find Z^{\prime} such that $(1-\varepsilon) \cdot\|f\|_{2}^{2} \leq Z^{\prime} \leq(1+\varepsilon) \cdot\|f\|_{2}^{2}$

F_{2} Moment Estimation

- Goal: Find Z^{\prime} such that $(1-\varepsilon) \cdot\|f\|_{2}^{2} \leq Z^{\prime} \leq(1+\varepsilon) \cdot\|f\|_{2}^{2}$

F_{2} Moment Estimation

- Goal: Find Z^{\prime} such that $(1-\varepsilon) \cdot\|f\|_{2}^{2} \leq Z^{\prime} \leq(1+\varepsilon) \cdot\|f\|_{2}^{2}$

17773771411115117175177

F_{2} Moment Estimation

- Goal: Find Z^{\prime} such that $(1-\varepsilon) \cdot\|f\|_{2}^{2} \leq Z^{\prime} \leq(1+\varepsilon) \cdot\|f\|_{2}^{2}$

17773771411115117175177

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
10	0	1	1	2	0	9

Johnson-Lindenstrauss Lemma

- Distributional Johnson-Lindenstrauss Lemma: Given $\Pi \in R^{m \times n}$ with $m=O\left(\frac{\log 1 / \delta}{\varepsilon^{2}}\right)$ and each entry drawn from $\frac{1}{\sqrt{m}} N(0,1)$, then for any $x \in R^{n}$ and setting $y=\Pi x$, then with probability at least $1-\delta$

$$
(1-\varepsilon)\|x\|_{2} \leq\|y\|_{2} \leq(1+\varepsilon)\|x\|_{2}
$$

F_{2} Moment Estimation

- Algorithm: Generate $\Pi \in R^{m \times n}$ with $m=O\left(\frac{\log 1 / \delta}{\varepsilon^{2}}\right)$ and each entry drawn from $\frac{1}{\sqrt{m}} N(0,1)$. Set $g=\Pi \cdot f$
- Whenever there is an update to a coordinate of f, update g

F_{2} Moment Estimation

- Algorithm: Generate $\Pi \in R^{m \times n}$ with $m=O\left(\frac{\log 1 / \delta}{\varepsilon^{2}}\right)$ and each entry drawn from $\frac{1}{\sqrt{m}} N(0,1)$. Set $g=\Pi \cdot f$

17773771411115117175177

- Whenever there is an update to a coordinate of f, update g

F_{2} Moment Estimation

- Algorithm: Generate $\Pi \in R^{m \times n}$ with $m=O\left(\frac{\log 1 / \delta}{\varepsilon^{2}}\right)$ and each entry drawn from $\frac{1}{\sqrt{m}} N(0,1)$. Set $g=\Pi \cdot f$

17773771411115117175177

- Whenever there is an update to a coordinate of f, update g
- $f=f+e_{1}$
- $f=f+e_{7}$
- $f=f+e_{7}$

F_{2} Moment Estimation

- Algorithm: Generate $\Pi \in R^{m \times n}$ with $m=O\left(\frac{\log 1 / \delta}{\varepsilon^{2}}\right)$ and each entry drawn from $\frac{1}{\sqrt{m}} N(0,1)$. Set $g=\Pi \cdot f$

17773771411115117175177

- Whenever there is an update to a coordinate of f, update g
- $f=f+e_{1}, g=g+\Pi e_{1}$
- $f=f+e_{7}, g=g+\Pi e_{7}$
- $f=f+e_{7}, g=g+\Pi e_{7}$

AMS Algorithm

- Generate a random sign vector $s \in\{-1,+1\}^{n}$
- Maintain $Z=\langle s, f\rangle$
- Output $W:=Z^{2}$
1
1
2
1
2
1
1
1
2
1
1
2
2
2
1

AMS Algorithm

- What values of Z did you get?
- $Z=\langle s, f\rangle=s_{1} f_{1}+s_{2} f_{2}+\cdots+s_{n} f_{n}$
- What values of W did you get?
- $W=Z^{2}=\sum_{i, j} s_{i} S_{j} f_{i} f_{j}$

AMS Algorithm

- What values of W did you get?
- $W=Z^{2}=\sum_{i, j} s_{i} s_{j} f_{i} f_{j}$

f_{1}	f_{2}	f_{3}	f_{4}	f_{5}	f_{6}	f_{7}
9	6	0	0	0	0	0

AMS Algorithm

- What is $\mathrm{E}[W]$?
- $Z=\langle s, f\rangle=s_{1} f_{1}+s_{2} f_{2}+\cdots+s_{n} f_{n}$
- $W=Z^{2}=\sum_{i, j} s_{i} S_{j} f_{i} f_{j}$
- $\mathrm{E}[W]=\sum_{i, j} \mathrm{E}\left[s_{i} S_{j} f_{i} f_{j}\right]=\sum_{i} \mathrm{E}\left[f_{i}^{2}\right]=\|f\|_{2}^{2}$

AMS Algorithm

- What is $\operatorname{Var}[W]$?

- $Z=\langle s, f\rangle=s_{1} f_{1}+s_{2} f_{2}+\cdots+s_{n} f_{n}$
- $W^{2}=Z^{4}=\sum_{a, b, c, d} s_{a} s_{b} s_{c} s_{d} f_{a} f_{b} f_{c} f_{d}$
- $\mathrm{E}\left[W^{2}\right]=\sum_{a, b, c, d} \mathrm{E}\left[s_{a} s_{b} s_{c} s_{d} f_{a} f_{b} f_{c} f_{d}\right]=\sum_{i} \mathrm{E}\left[f_{i}^{4}\right]+6 \sum_{i \neq j} \mathrm{E}\left[f_{i}^{2} f_{j}^{2}\right] \leq$ $6\|f\|_{2}^{4}$

AMS Algorithm

- By Chebyshev's inequality, W will be a 9-approximation to $\|f\|_{2}^{2}$ with probability $\frac{2}{3}$

AMS Algorithm

- How to get $(1+\varepsilon)$-approximation?
- Repeat $O\left(\frac{1}{\varepsilon^{2}}\right)$ times and take the average

AMS Algorithm

- Space of algorithm: $O\left(\frac{1}{\varepsilon^{2}}\right)$ words of space or $O\left(\frac{1}{\varepsilon^{2}} \log m\right)$ bits of space

