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Last Time: Sparse Recovery

* Suppose we have an insertion-deletion stream of length m = 0(n)
and at the end we are promised there are at most k nonzero
coordinates

e Goal: Recover the k nonzero coordinates and their frequencies



Last Time: Sparse Recovery

e Suppose at the end we are promised there are at most kK nonzero
coordinates

e Algorithm: Keep 2k running sum of different linear combinations of
all the coordinates

* We have 2k equations and 2k unknown variables

* Correctness can be shown (not quite linear algebra)



Last Time: Sparse Recovery

e Suppose at the end we are promised there are at most kK nonzero
coordinates

e Algorithm: Keep 2k running sum of different linear combinations of
all the coordinates

* Space: O(k) words of space



Previously: Chebyshev’s Inequality

* Let X be a random variable with expected value u := E[X] and
variance % = Var[X]

2
Var[ ! becomes Pr(|X —E[X]| = t] <<

= £2

* Pr{lX —E[X]| = t] <

1
Pr[|X — u| = ko] < )

* “Bounding the deviation of a random variable in terms of its variance”



Distinct Elements (F, Estimation)

* Given a set S of m elements from [n], let f; be the frequency of
element i. (How often it appears)

* Let F, be the frequency moment of the vector:

Fo =1|{i: fi # 0}]

* Goal: Given a set S of m elements from [n]| and an accuracy
parameter &, output a (1 + €)-approximation to Fj































































Distinct Elements (F, Estimation)

* How many different fruits left in fruit basket?



Distinct Elements (F, Estimation)

* How many different fruits left in fruit basket? 8



Distinct Elements (Fy Estimation

e Ad allocation: Distinct IP addresses clicking an ad
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Distinct Elements (F, Estimation)

e Traffic monitoring: Distinct IP addresses visiting a site or number of
unique search engine queries
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Distinct Elements (F, Estimation)

e Computational biology: Counting number of distinct motifs in DNA
segquencing

* Sequence motifs are short, recurring patterns in DNA that are
presumed to have a biological function



Distinct Elements (F, Estimation)

e Let S be a set of N numbers

« Suppose we form set S’ by sampling each item of S with probability%

 How many numbers are in S'?



Distinct Elements (F, Estimation)

e Let S be a set of N numbers

« Suppose we form set S’ by sampling each item of S with probability%

« Can we use S’ to get a good estimate of N?



Distinct Elements (F, Estimation)

* Let S be a set of N numbers, suppose we form set S’ by sampling
each item of S with probability%

* We have E[|S']] = %and Var[|S'|] < %



Distinct Elements (F, Estimation)

N
572

 What can we say about Pr [ = t]?

* By Chebyshev’s inequality, we have Pr[ 1S7] — %| > 100\/ﬁ] < 1—10



Distinct Elements (F, Estimation)

N
572

 What can we say about Pr [ = t]?

* By Chebyshev’s inequality, we have Pr[ 1S7] — %| > 100\/ﬁ] < 1—10

* With probability at least 1—90,

N N
> 100VN < |S']| < R 100V N



Distinct Elements (F, Estimation)
* With probability at least %,

N N
> 100VN < |S']| < R 100V N

* Thus with probability at least %,

N — 200VN < 2|S’| < N + 200vVN
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