CSCE 689: Special Topics in Modern Algorithms for Data Science

Lecture 16

Samson Zhou

Last Time: Sparse Recovery

- Suppose we have an insertion-deletion stream of length $m = \Theta(n)$ and at the end we are promised there are at most k nonzero coordinates
- Goal: Recover the *k* nonzero coordinates and their frequencies

Last Time: Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Algorithm: Keep 2k running sum of different linear combinations of all the coordinates
- We have 2k equations and 2k unknown variables
- Correctness can be shown (not quite linear algebra)

Last Time: Sparse Recovery

- Suppose at the end we are promised there are at most k nonzero coordinates
- Algorithm: Keep 2k running sum of different linear combinations of all the coordinates
- Space: O(k) words of space

Previously: Chebyshev's Inequality

• Let X be a random variable with expected value $\mu \coloneqq E[X]$ and variance $\sigma^2 \coloneqq Var[X]$

•
$$\Pr[|X - E[X]| \ge t] \le \frac{\operatorname{Var}[X]}{t^2}$$
 becomes $\Pr[|X - E[X]| \ge t] \le \frac{\sigma^2}{t^2}$
 $\Pr[|X - \mu| \ge k\sigma] \le \frac{1}{k^2}$

• "Bounding the deviation of a random variable in terms of its variance"

- Given a set *S* of *m* elements from [n], let f_i be the frequency of element *i*. (How often it appears)
- Let F_0 be the frequency moment of the vector:

 $F_0 = |\{i : f_i \neq 0\}|$

• Goal: Given a set *S* of *m* elements from [n] and an accuracy parameter ε , output a $(1 + \varepsilon)$ -approximation to F_0

• How many different fruits left in fruit basket?

Distinct Elements (*F*⁰ Estimation)

• How many different fruits left in fruit basket? 8

• Ad allocation: Distinct IP addresses clicking an ad

Distinct Elements (F₀ Estimation)

• Traffic monitoring: Distinct IP addresses visiting a site or number of unique search engine queries

Distinct Elements (*F*⁰ Estimation)

Computational biology: Counting number of distinct motifs in DNA sequencing

 Sequence motifs are short, recurring patterns in DNA that are presumed to have a biological function

• Let *S* be a set of *N* numbers

• Suppose we form set S' by sampling each item of S with probability $\frac{1}{2}$

• How many numbers are in *S*'?

• Let *S* be a set of *N* numbers

• Suppose we form set S' by sampling each item of S with probability $\frac{1}{2}$

• Can we use S' to get a good estimate of N?

• Let *S* be a set of *N* numbers, suppose we form set *S'* by sampling each item of *S* with probability $\frac{1}{2}$

• We have
$$E[|S'|] = \frac{N}{2}$$
 and $Var[|S'|] \le \frac{N}{2}$

- What can we say about $\Pr\left[|S'| \frac{N}{2}| \ge t\right]$?
- By Chebyshev's inequality, we have $\Pr\left[\left||S'| \frac{N}{2}\right| \ge 100\sqrt{N}\right] \le \frac{1}{10}$

- What can we say about $\Pr\left[|S'| \frac{N}{2}| \ge t\right]$?
- By Chebyshev's inequality, we have $\Pr\left[\left||S'| \frac{N}{2}\right| \ge 100\sqrt{N}\right] \le \frac{1}{10}$
- With probability at least $\frac{9}{10}$,

$$\frac{N}{2} - 100\sqrt{N} \le |S'| \le \frac{N}{2} + 100\sqrt{N}$$

• With probability at least $\frac{9}{10}$,

$$\frac{N}{2} - 100\sqrt{N} \le |S'| \le \frac{N}{2} + 100\sqrt{N}$$

• Thus with probability at least $\frac{9}{10}$,

 $N - 200\sqrt{N} \le 2|S'| \le N + 200\sqrt{N}$