CSCE 689: Special Topics in Modern Algorithms for Data Science

Lecture 17

Samson Zhou

Previously: Variance

- The variance of a random variable X over Ω is:

$$
\operatorname{Var}[X]=\mathrm{E}\left[X^{2}\right]-(\mathrm{E}[X])^{2}
$$

- Linearity of variance for independent random variables: $\operatorname{Var}[X+Y]=$ $\operatorname{Var}[X]+\operatorname{Var}[Y]$

Previously: Chebyshev's Inequality

- Let X be a random variable with expected value $\mu:=\mathrm{E}[X]$ and variance $\sigma^{2}:=\operatorname{Var}[X]$
- $\operatorname{Pr}[|X-\mathrm{E}[X]| \geq t] \leq \frac{\operatorname{Var}[X]}{t^{2}}$ becomes $\operatorname{Pr}[|X-\mathrm{E}[X]| \geq t] \leq \frac{\sigma^{2}}{t^{2}}$

$$
\operatorname{Pr}[|X-\mu| \geq k \sigma] \leq \frac{1}{k^{2}}
$$

- "Bounding the deviation of a random variable in terms of its variance"

Last Time: Distinct Elements (F_{0} Estimation)

- Given a set S of m elements from [n], let f_{i} be the frequency of element i. (How often it appears)
- Let F_{0} be the frequency moment of the vector:

$$
F_{0}=\left|\left\{i: f_{i} \neq 0\right\}\right|
$$

- Goal: Given a set S of m elements from [n] and an accuracy parameter ε, output a $(1+\varepsilon)$-approximation to F_{0}

Distinct Elements (F_{0} Estimation)

- Intuition: How is this done in practice?

Distinct Elements (F_{0} Estimation)

- Let S be a set of N numbers
- Suppose we form set S^{\prime} by sampling each item of S with probability $\frac{1}{2}$
- How many numbers are in S^{\prime} ?

Distinct Elements (F_{0} Estimation)

- Let S be a set of N numbers
- Suppose we form set S^{\prime} by sampling each item of S with probability $\frac{1}{2}$
- Can we use S^{\prime} to get a good estimate of N ?

Distinct Elements (F_{0} Estimation)

- Let S be a set of N numbers, suppose we form set S^{\prime} by sampling each item of S with probability $\frac{1}{2}$
- We have $\mathrm{E}\left[\left|S^{\prime}\right|\right]=\frac{N}{2}$ and $\operatorname{Var}\left[\left|S^{\prime}\right|\right] \leq \frac{N}{2}$

Distinct Elements (F_{0} Estimation)

- Claim: We have $\operatorname{Var}\left[\left|S^{\prime}\right|\right] \leq \frac{N}{2}$

Distinct Elements (F_{0} Estimation)

- Claim: We have $\operatorname{Var}\left[\left|S^{\prime}\right|\right] \leq \frac{N}{2}$
- Let X_{1}, \ldots, X_{N} be indicator random variables so that $X_{i}=1$ if the i-th element of S is sampled into S^{\prime} and otherwise $X_{i}=0$

Distinct Elements (F_{0} Estimation)

- Claim: We have $\operatorname{Var}\left[\left|S^{\prime}\right|\right] \leq \frac{N}{2}$
- Let X_{1}, \ldots, X_{N} be indicator random variables so that $X_{i}=1$ if the i-th element of S is sampled into S^{\prime} and otherwise $X_{i}=0$
- Let $X=X_{1}+\cdots+X_{N}$, so that $X=\left|S^{\prime}\right|$

Distinct Elements (F_{0} Estimation)

- Claim: We have $\operatorname{Var}\left[\left|S^{\prime}\right|\right] \leq \frac{N}{2}$
- Let X_{1}, \ldots, X_{N} be indicator random variables so that $X_{i}=1$ if the i-th element of S is sampled into S^{\prime} and otherwise $X_{i}=0$
- Let $X=X_{1}+\cdots+X_{N}$, so that $X=\left|S^{\prime}\right|$
- $\operatorname{Var}[X]=\operatorname{Var}\left[X_{1}\right]+\cdots+\operatorname{Var}\left[X_{N}\right]=N \cdot \operatorname{Var}\left[X_{i}\right]$

Distinct Elements (F_{0} Estimation)

- Claim: We have $\operatorname{Var}\left[\left|S^{\prime}\right|\right] \leq \frac{N}{2}$
- Let X_{1}, \ldots, X_{N} be indicator random variables so that $X_{i}=1$ if the i-th element of S is sampled into S^{\prime} and otherwise $X_{i}=0$
- Let $X=X_{1}+\cdots+X_{N}$, so that $X=\left|S^{\prime}\right|$
- $\operatorname{Var}[X]=\operatorname{Var}\left[X_{1}\right]+\cdots+\operatorname{Var}\left[X_{N}\right]=N \cdot \operatorname{Var}\left[X_{i}\right]$
- $\operatorname{Var}\left[X_{i}\right]=\mathrm{E}\left[X_{i}^{2}\right]-\mathrm{E}\left[X_{i}\right]^{2}$

Distinct Elements (F_{0} Estimation)

- Claim: We have $\operatorname{Var}\left[\left|S^{\prime}\right|\right] \leq \frac{N}{2}$
- Let X_{1}, \ldots, X_{N} be indicator random variables so that $X_{i}=1$ if the i-th element of S is sampled into S^{\prime} and otherwise $X_{i}=0$
- Let $X=X_{1}+\cdots+X_{N}$, so that $X=\left|S^{\prime}\right|$
- $\operatorname{Var}[X]=\operatorname{Var}\left[X_{1}\right]+\cdots+\operatorname{Var}\left[X_{N}\right]=N \cdot \operatorname{Var}\left[X_{i}\right]$
- $\operatorname{Var}\left[X_{i}\right]=\mathrm{E}\left[X_{i}^{2}\right]-\mathrm{E}\left[X_{i}\right]^{2}=\frac{1}{2}-\frac{1}{4}=\frac{1}{4}$

Distinct Elements (F_{0} Estimation)

- Claim: We have $\operatorname{Var}\left[\left|S^{\prime}\right|\right] \leq \frac{N}{2}$
- Let X_{1}, \ldots, X_{N} be indicator random variables so that $X_{i}=1$ if the i-th element of S is sampled into S^{\prime} and otherwise $X_{i}=0$
- Let $X=X_{1}+\cdots+X_{N}$, so that $X=\left|S^{\prime}\right|$
- $\operatorname{Var}[X]=\operatorname{Var}\left[X_{1}\right]+\cdots+\operatorname{Var}\left[X_{N}\right]=N \cdot \operatorname{Var}\left[X_{i}\right]$
- $\operatorname{Var}\left[X_{i}\right]=\mathrm{E}\left[X_{i}^{2}\right]-\mathrm{E}\left[X_{i}\right]^{2}=\frac{1}{2}-\frac{1}{4}=\frac{1}{4}$
- $\operatorname{Var}\left[\left|S^{\prime}\right|\right]=\frac{N}{4}$

Distinct Elements (F_{0} Estimation)

- What can we say about $\operatorname{Pr}\left[\left|\left|S^{\prime}\right|-\frac{N}{2}\right| \geq t\right]$?
- By Chebyshev's inequality, we have $\operatorname{Pr}\left[\left|\left|S^{\prime}\right|-\frac{N}{2}\right| \geq 100 \sqrt{N}\right] \leq \frac{1}{10}$

Distinct Elements (F_{0} Estimation)

- What can we say about $\operatorname{Pr}\left[\left|\left|S^{\prime}\right|-\frac{N}{2}\right| \geq t\right]$?
- By Chebyshev's inequality, we have $\operatorname{Pr}\left[\left|\left|S^{\prime}\right|-\frac{N}{2}\right| \geq 100 \sqrt{N}\right] \leq \frac{1}{10}$
- With probability at least $\frac{9}{10}$,

$$
\frac{N}{2}-100 \sqrt{N} \leq\left|S^{\prime}\right| \leq \frac{N}{2}+100 \sqrt{N}
$$

Distinct Elements (F_{0} Estimation)

- With probability at least $\frac{9}{10}$,

$$
\frac{N}{2}-100 \sqrt{N} \leq\left|S^{\prime}\right| \leq \frac{N}{2}+100 \sqrt{N}
$$

- Thus, with probability at least $\frac{9}{10}$,

$$
N-200 \sqrt{N} \leq 2\left|S^{\prime}\right| \leq N+200 \sqrt{N}
$$

Distinct Elements (F_{0} Estimation)

- With probability at least $\frac{9}{10}$,

$$
N-200 \sqrt{N} \leq 2\left|S^{\prime}\right| \leq N+200 \sqrt{N}
$$

- If $200 \sqrt{N} \leq \frac{N}{100}$, then $N-200 \sqrt{N} \leq 2\left|S^{\prime}\right| \leq N+200 \sqrt{N}$ implies

$$
0.99 N \leq 2\left|S^{\prime}\right| \leq 1.01 N
$$

- Very good approximation to N

Distinct Elements (F_{0} Estimation)

- What algorithm does this suggest?

Distinct Elements (F_{0} Estimation)

- What algorithm does this suggest?
- Sample each item of the universe with probability $\frac{1}{2}$, acquire new universe U^{\prime}
- Let S^{\prime} be the items in the data stream that are in U^{\prime}
- Output $2\left|S^{\prime}\right|$

Distinct Elements (F_{0} Estimation)

- Sample each item of the universe with probability $\frac{1}{2}$, acquire new universe U^{\prime}
- Let S^{\prime} be the items in the data stream that are in U^{\prime}
- Output $2\left|S^{\prime}\right|$
- What's the problem with this approach?

Distinct Elements (F_{0} Estimation)

- Let S be a set of N numbers
- Suppose we form set S^{\prime} by sampling each item of S with probability $\frac{1}{2}$
- Can we use S^{\prime} to get a good estimate of N ?

Distinct Elements (F_{0} Estimation)

- Let S be a set of N numbers
- Suppose we form set S^{\prime} by sampling each item of S with probabilit P
- Can we use S^{\prime} to get a good estimate of N ?

Distinct Elements (F_{0} Estimation)

- Let S be a set of N numbers, suppose we form set S^{\prime} by sampling each item of S with probability $\frac{1}{2}$
- We have $\mathrm{E}\left[\left|S^{\prime}\right|\right]=\frac{N}{2}$ and $\operatorname{Var}\left[\left|S^{\prime}\right|\right] \leq \frac{N}{2}$

Distinct Elements (F_{0} Estimation)

- Let S be a set of N numbers, suppose we form set S^{\prime} by sampling each item of S with probability p
- We have $\mathrm{E}\left[\left|S^{\prime}\right|\right]=p N$ and $\operatorname{Var}\left[\left|S^{\prime}\right|\right] \leq p N$

Distinct Elements (F_{0} Estimation)

- (S^{\prime} is formed by sampling each item of S with probability $\frac{1}{2}$) With probability at least $\frac{9}{10}$,

$$
\frac{N}{2}-100 \sqrt{N} \leq\left|S^{\prime}\right| \leq \frac{N}{2}+100 \sqrt{N}
$$

- Thus with probability at least $\frac{9}{10}$,

$$
N-200 \sqrt{N} \leq 2\left|S^{\prime}\right| \leq N+200 \sqrt{N}
$$

Distinct Elements (F_{0} Estimation)

- $\left(S^{\prime}\right.$ is formed by sampling each item of S with probability $\left.p\right)$ With probability at least $\frac{9}{10}$,

$$
p N-100 \sqrt{p N} \leq\left|S^{\prime}\right| \leq p N+100 \sqrt{p N}
$$

- Thus with probability at least $\frac{9}{10}$,

$$
N-\frac{100}{\sqrt{p}} \sqrt{N} \leq \frac{1}{p}\left|S^{\prime}\right| \leq N+\frac{100}{\sqrt{p}} \sqrt{N}
$$

Distinct Elements (F_{0} Estimation)

- (S^{\prime} is formed by sampling each item of S with probability p) With probability at least $\frac{9}{10}$,

$$
N-\frac{100}{\sqrt{p}} \sqrt{N} \leq \frac{1}{p}\left|S^{\prime}\right| \leq N+\frac{100}{\sqrt{p}} \sqrt{N}
$$

- If $\frac{100}{\sqrt{p}} \sqrt{N} \leq \varepsilon N$, then $N-\frac{100}{\sqrt{p}} \sqrt{N} \leq \frac{1}{p}\left|S^{\prime}\right| \leq N+\frac{100}{\sqrt{p}} \sqrt{N}$ implies

$$
(1-\varepsilon) N \leq \frac{1}{p}\left|S^{\prime}\right| \leq(1+\varepsilon) N
$$

Distinct Elements (F_{0} Estimation)

- In other words, with probability at least $\frac{9}{10^{\prime}}$, we have that $\frac{1}{p}\left|S^{\prime}\right|$ is a $(1+\varepsilon)$-approximation of N
- What is p ?

Distinct Elements (F_{0} Estimation)

- In other words, with probability at least $\frac{9}{10}$, we have that $\frac{1}{p}\left|S^{\prime}\right|$ is a $(1+\varepsilon)$-approximation of N
- What is p ?
- Recall, we required $\frac{100}{\sqrt{p}} \sqrt{N} \leq \varepsilon N$

Distinct Elements (F_{0} Estimation)

- In other words, with probability at least $\frac{9}{10^{\prime}}$, we have that $\frac{1}{p}\left|S^{\prime}\right|$ is a $(1+\varepsilon)$-approximation of N
- What is p ?
- Recall, we required $\frac{100}{\sqrt{p}} \sqrt{N} \leq \varepsilon N$, so $p \geq \frac{1000}{\varepsilon^{2} N}$

Distinct Elements (F_{0} Estimation)

- In other words, with probability at least $\frac{9}{10^{\prime}}$, we have that $\frac{1}{p}\left|S^{\prime}\right|$ is a $(1+\varepsilon)$-approximation of N
- What is p ?
- Recall, we required $\frac{100}{\sqrt{p}} \sqrt{N} \leq \varepsilon N$, so $p \geq \frac{1000}{\varepsilon^{2} N}$
- What is the problem here?

Distinct Elements (F_{0} Estimation)

- In other words, with probability at least $\frac{9}{10}$, we have that $\frac{1}{p}\left|S^{\prime}\right|$ is a $(1+\varepsilon)$-approximation of N
- What is p ?
- Recall, we required $\frac{100}{\sqrt{p}} \sqrt{N} \leq \varepsilon N$, so $p \geq \frac{1000}{\varepsilon^{2} N}$

Must know N to set p, but the goal is to find N !
-What is the problem here?

Distinct Elements (F_{0} Estimation)

- Observation: We do not need $p=\frac{1000}{\varepsilon^{2} N}$, it is also fine to have $p=\frac{2000}{\varepsilon^{2} N}$
- How do we find a "good" p ?

Finding p

- Observation: We do not need $p=\frac{1000}{\varepsilon^{2} N}$, it is also fine to have $p=\frac{2000}{\varepsilon^{2} N}$
- How do we find a "good" p ?
- What is a "good" p ?

Finding p

- What is a "good" p ?
- Not too many samples, i.e., S^{\prime} is small, but enough to find a good approximation to N
- For $p=\Theta\left(\frac{1}{\varepsilon^{2} N}\right)$:
- p is large enough to find a good approximation to N
- We have $\mathrm{E}\left[\left|S^{\prime}\right|\right]=p N=\Theta\left(\frac{1}{\varepsilon^{2}}\right)$

Finding p

- We want p such that $\mathrm{E}\left[\left|S^{\prime}\right|\right]=p N=\Theta\left(\frac{1}{\varepsilon^{2}}\right)$
- Intuition: $\operatorname{Try} p=1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots$, and see which one has

$$
\frac{1000}{\varepsilon^{2}} \leq\left|S^{\prime}\right| \leq \frac{2000}{\varepsilon^{2}}
$$

- With high probability, one of these guesses will have $\frac{1000}{\varepsilon^{2}} \leq\left|S^{\prime}\right| \leq$ $\frac{2000}{\varepsilon^{2}}$

Finding p

- Intuition: $\operatorname{Try} p=1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots$, and see which one has

$$
\frac{1000}{\varepsilon^{2}} \leq\left|S^{\prime}\right| \leq \frac{2000}{\varepsilon^{2}}
$$

- However, the wrong guesses will have too many samples

Finding p

- Intuition: $\operatorname{Try} p=1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \frac{1}{16}, \ldots$, and see which one has

$$
\frac{1000}{\varepsilon^{2}} \leq\left|S^{\prime}\right| \leq \frac{2000}{\varepsilon^{2}}
$$

- However, the wrong guesses will have too many samples
- Fix: Dynamically changing guess for p and subsampling

Finding p

- Algorithm: Set $U_{0}=[n]$ and for each i, sample each element of U_{i-1} into U_{i} with probability $\frac{1}{2}$
- Start index $i=0$ and track the number $\left|S \cap U_{i}\right|$ of elements of S in U_{i}
- If $\left|S \cap U_{i}\right|>\frac{2000}{\varepsilon^{2}} \log n$, then increment $i=i+1$
- At the end of the stream, output $2^{i} \cdot\left|S \cap U_{i}\right|$

Finding p

- Algorithm: Set $U_{0}=[n]$ and for each i, sample each element of U_{i-1} into U_{i} with probability $\frac{1}{2}$
- Start index $i=0$ and track the number $\left|S \cap U_{i}\right|$ of elements of S in U_{i}
- If $\left|S \cap U_{i}\right|>\frac{2000}{\varepsilon^{2}} \log n$, then increment $i=i+1\left(\frac{1}{p}\right)$
- At the end of the stream, output $2^{i} \cdot\left|S \cap U_{i}\right|$

Finding p

- Recall that $\frac{1}{p}\left|S^{\prime}\right|$ is a $(1+\varepsilon)$-approximation of N
- $2^{i} \cdot\left|S \cap U_{i}\right|$ is a $(1+\varepsilon)$-approximation of N
- At the end of the stream, output $2^{i} \cdot\left|S \cap U_{i}\right|$

Distinct Elements (F_{0} Estimation)

- Summary: Algorithm stores at most $\frac{2000}{\varepsilon^{2}} \log n$ elements from the stream, uses $\Theta\left(\frac{1}{\varepsilon^{2}} \log n\right)$ words of space

