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Presentation Schedule

• November 27: Chunkai, Jung, Galaxy AI

• November 29: STMI, Anmol, Jason

• December 1: Bokun, Team DAP



Previously: Distinct Elements (𝐹0 Estimation)

• Algorithm: Set 𝑈0 = [𝑛] and for each 𝑖, sample each element of 𝑈𝑖−1 

into 𝑈𝑖 with probability 
1

2

• Start index 𝑖 = 0 and track the number |𝑆 ∩ 𝑈𝑖| of elements of 𝑆 in 𝑈𝑖

• If 𝑆 ∩ 𝑈𝑖 >
2000

𝜀2 log 𝑛, then increment 𝑖 = 𝑖 + 1

• At the end of the stream, output 2𝑖 ⋅ 𝑆 ∩ 𝑈𝑖
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Last Time: Sparse Recovery

• Suppose we have an insertion-deletion stream of length 𝑚 = Θ 𝑛  
and at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Goal: Recover the 𝑘 nonzero coordinates and their frequencies



Last Time: Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Algorithm: Keep 2𝑘 running sum of different linear combinations of 
all the coordinates

• We have 2𝑘 equations and 2𝑘 unknown variables

• Correctness can be shown (not quite linear algebra)



Last Time: Sparse Recovery

• Suppose at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Algorithm: Keep 2𝑘 running sum of different linear combinations of 
all the coordinates

• Space: 𝑂(𝑘) words of space



𝐿0 Sampling

• Given a set 𝑆 of 𝑚 elements from [𝑛], let 𝑁 be the number of distinct 
elements in 𝑆

• Goal: Return a random sample, so that each item from 𝑆 is chosen 

with probability 
1

𝑁
±

1

poly(𝑁)
, say 

1

𝑁
±

1

𝑁1000

• Motivation: Data summarization



𝐿0 Sampling

• Remember reservoir sampling? Does that work?



𝐿0 Sampling

• Remember reservoir sampling? Does that work? NO!
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𝐿0 Sampling

• Algorithm: What techniques have we learned? What is a good starting 
point?
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• Algorithm: Set 𝑈0 = [𝑛] and for each 𝑖, sample each element of 𝑈𝑖−1 

into 𝑈𝑖 with probability 
1

2

• Start index 𝑖 = 0 and track the number |𝑆 ∩ 𝑈𝑖| of elements of 𝑆 in 𝑈𝑖

• If 𝑆 ∩ 𝑈𝑖 >
2000
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• At the end of the stream, output 2𝑖 ⋅ 𝑆 ∩ 𝑈𝑖



𝐿0 Sampling

• Algorithm: Run distinct elements algorithm and at the end of the 
stream, output a random element of 𝑆 ∩ 𝑈𝑖



Insertion-Deletion Streams

• How to perform 𝐿0 estimation?

• How to perform 𝐿0 sampling?



Distinct Elements (𝐹0 Estimation)

• Different, simpler algorithm on insertion-only streams



Distinct Elements (𝐹0 Estimation)

• Let ℎ: [𝑛] → [0,1] be a random hash function with a real-valued 
output

• Initialize 𝑠 = 1

• For 𝑥1, … , 𝑥𝑚:

• 𝑠 ← min 𝑠, ℎ 𝑥𝑖

• Return 𝑍 =
1

𝑠
− 1

0 1

𝑠
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Distinct Elements (𝐹0 Estimation)

• Let ℎ: [𝑛] → [0,1] be a random hash function with a real-valued 
output

• Initialize 𝑠 = 1

• For 𝑥1, … , 𝑥𝑚:

• 𝑠 ← min 𝑠, ℎ 𝑥𝑖

• Return 𝑍 =
1

𝑠
− 1

0 1

𝑠

ℎ 𝑥1ℎ 𝑥2 ℎ 𝑥3ℎ 𝑥4 ℎ 𝑥5



Distinct Elements (𝐹0 Estimation)

• After all stream updates are processed, 𝑠 is the minimum of 𝑁 points 
chosen uniformly at random from 0,1 , where 𝑁 is the number of 
distinct elements

• Intuition: The larger the value of 𝑁, the smaller we expect 𝑠 to be



Distinct Elements (𝐹0 Estimation)

• Can show: 𝐸 𝑠 =
1

𝑁+1

• Also can show that 𝑠 − 𝐸 𝑠 ≤ 𝜀 ⋅ 𝐸 𝑠  implies 1 − 2𝜀 𝑁 ≤ 𝑍 ≤
1 + 4𝜀 𝑁

• Can show: Var 𝑠 ≤
1

𝑁+1 2 so by taking the mean of 𝑂
1

𝜀2  

independent instances, we get that 𝑠 − 𝐸 𝑠 ≤ 𝜀 ⋅ 𝐸 𝑠  with 

probability 
2

3



Distinct Elements (𝐹0 Estimation)

• Space guarantee: 𝑂
1

𝜀2  independent instance, each independent 

instance keeps a single word of space
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