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Presentation Schedule

* November 27: Chunkai, Jung, Galaxy Al
* November 29: STMI, Anmol, Jason
e December 1: Bokun, Team DAP



Previously: Distinct Elements (F, Estimation)

* Algorithm: Set U, = [n] and for each i, sample each element of U;_4
into U; with probability%

e Start index i = 0 and track the number |S N U;| of elements of S in U;
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logn, thenincrementi =i+ 1

* At the end of the stream, output 2 - |S N U]



Previously: Distinct Elements (F, Estimation)

* (S"is formed by sampling each item of S with probability p) With
probability at least %,

pN — 100,/pN < |S'| < pN + 100,/pN

* Thus with probability at least %,
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Previously: Distinct Elements (F, Estimation)

* (S"is formed by sampling each item of S with probability p) With
probability at least i,
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Last Time: Sparse Recovery

* Suppose we have an insertion-deletion stream of length m = 0(n)
and at the end we are promised there are at most k nonzero
coordinates

e Goal: Recover the k nonzero coordinates and their frequencies



Last Time: Sparse Recovery

* Suppose at the end we are promised there are at most kK nonzero
coordinates

e Algorithm: Keep 2k running sum of different linear combinations of
all the coordinates

* We have 2k equations and 2k unknown variables

* Correctness can be shown (not quite linear algebra)



Last Time: Sparse Recovery

* Suppose at the end we are promised there are at most kK nonzero
coordinates

e Algorithm: Keep 2k running sum of different linear combinations of
all the coordinates

* Space: O(k) words of space



Ly Sampling

* Given a set S of m elements from [n], let N be the number of distinct
elementsin $

* Goal: Return a random sample, so that each item from S is chosen
: . 1 1 1 1
with probability " +

say — +

poly(N)’ N — N1000

* Motivation: Data summarization



Ly Sampling

* Remember reservoir sampling? Does that work?



Ly Sampling

* Remember reservoir sampling? Does that work? NO!
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Ly Sampling

e Algorithm: What techniques have we learned? What is a good starting
point?



Previously: Distinct Elements (F, Estimation)

* Algorithm: Set U, = [n] and for each i, sample each element of U;_4
into U; with probability%

e Start index i = 0 and track the number |S N U;| of elements of S in U;
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* At the end of the stream, output 2 - |S N U]



Ly Sampling

e Algorithm: Run distinct elements algorithm and at the end of the
stream, output a random element of S N U;



Insertion-Deletion Streams

* How to perform L, estimation?

* How to perform L, sampling?



Distinct Elements (F, Estimation)

* Different, simpler algorithm on insertion-only streams



Distinct Elements (F, Estimation)

* Let h: [n] — [0,1] be a random hash function with a real-valued
output

e |nitialize s = 1
* For x4, ..., Xy
* S « min(s, h(xl-))

-ReturnZzl—l

S
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Distinct Elements (F, Estimation)

* Let h: [n] — [0,1] be a random hash function with a real-valued
output

e |nitialize s = 1
* For x4, ..., Xy
* S « min(s, h(xl-))

-ReturnZzl—l
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Distinct Elements (F, Estimation)

* Let h: [n] — [0,1] be a random hash function with a real-valued
output

e |nitialize s = 1
* For x4, ..., Xy
* S « min(s, h(xl-))
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Distinct Elements (F, Estimation)

* Let h: [n] — [0,1] be a random hash function with a real-valued
output

e |nitialize s = 1
* For x4, ..., Xy
* S « min(s, h(xl-))

-ReturnZzl—l
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Distinct Elements (F, Estimation)

* Let h: [n] — [0,1] be a random hash function with a real-valued
output

e |nitialize s = 1
* For x4, ..., Xy
* S « min(s, h(xl-))

-ReturnZzl—l
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Distinct Elements (F, Estimation)

* Let h: [n] — [0,1] be a random hash function with a real-valued
output

e |nitialize s = 1
* For x4, ..., Xy
* S « min(s, h(xl-))

-ReturnZzl—l
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Distinct Elements (F, Estimation)

* Let h: [n] — [0,1] be a random hash function with a real-valued
output

e |nitialize s = 1
* For x4, ..., Xy
* S « min(s, h(xl-))

-ReturnZzl—l
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Distinct Elements (F, Estimation)

* Let h: [n] — [0,1] be a random hash function with a real-valued
output

e |nitialize s = 1
* For x4, ..., Xy
* S « min(s, h(xl-))

-ReturnZzl—l
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Distinct Elements (F, Estimation)

* Let h: [n] — [0,1] be a random hash function with a real-valued
output

e |nitialize s = 1
* For x4, ..., Xy
* S « min(s, h(xl-))

-ReturnZzl—l

S
S
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Distinct Elements (F, Estimation)

» After all stream updates are processed, s is the minimum of N points
chosen uniformly at random from [0,1], where N is the number of
distinct elements

* Intuition: The larger the value of N, the smaller we expect s to be



Distinct Elements (F, Estimation)

* Can show: E[s| = ﬁ

* Also can show that |s — E[s]| < - E|s] implies (1 — 2e)N < Z <
(1+ 4¢)N

 Can show: Var|s| < so by taking the mean of O (i)

(N+1)2 c2
independent instances, we get that |s — E[s|| < ¢ - E[s] with

probability%



Distinct Elements (F, Estimation)

1

e Space guarantee: O (5_2) independent instance, each independent

instance keeps a single word of space
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