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Presentation Schedule

• November 27: Chunkai, Jung, Galaxy AI

• November 29: STMI, Anmol, Jason

• December 1: Bokun, Ayesha, Dawei, Lipai



Previously in the Streaming Model

• Reservoir sampling

• Heavy-hitters

• Misra-Gries

• CountMin

• CountSketch

• Moment estimation

• AMS algorithm

• Sparse recovery

• Distinct elements estimation



Reservoir Sampling

• Suppose we see a stream of elements from [𝑛]. How do we uniformly 
sample one of the positions of the stream?
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Heavy-Hitters (Frequent Items)

• Given a set 𝑆 of 𝑚 elements from [𝑛], let 𝑓𝑖 be the frequency of 
element 𝑖. (How often it appears)

• Let 𝐿𝑝 be the norm of the frequency vector:

• Goal: Given a set 𝑆 of 𝑚 elements from [𝑛] and a threshold 𝜀, 
output the elements 𝑖 such that 𝑓𝑖 > 𝜀 𝐿𝑝...and no elements 𝑗 such 

that 𝑓𝑗 <
𝜀

2
 𝐿𝑝 (we saw algorithms for 𝑝 = 1 and 𝑝 = 2)

• Motivation: DDoS prevention, iceberg queries

𝐿𝑝 = 𝑓1
𝑝

+ 𝑓2
𝑝

+ ⋯ + 𝑓𝑛
𝑝 1/𝑝



Frequency Moments (𝐿𝑝 Norm)

• Given a set 𝑆 of 𝑚 elements from [𝑛], let 𝑓𝑖 be the frequency of 
element 𝑖. (How often it appears)

• Let 𝐹𝑝 be the frequency moment of the vector:

• Goal: Given a set 𝑆 of 𝑚 elements from [𝑛] and an accuracy 
parameter 𝜀, output a (1 + 𝜀)-approximation to 𝐹𝑝

• Motivation: Entropy estimation, linear regression

𝐹𝑝 = 𝑓1
𝑝

+ 𝑓2
𝑝

+ ⋯ + 𝑓𝑛
𝑝



Distinct Elements (𝐹0 Estimation)

• Given a set 𝑆 of 𝑚 elements from [𝑛], let 𝑓𝑖 be the frequency of 
element 𝑖. (How often it appears)

• Let 𝐹0 be the frequency moment of the vector:

• Goal: Given a set 𝑆 of 𝑚 elements from [𝑛] and an accuracy 
parameter 𝜀, output a (1 + 𝜀)-approximation to 𝐹0

• Motivation: Traffic monitoring

𝐹0 = |{𝑖 ∶ 𝑓𝑖 ≠ 0}|



Sparse Recovery

• Suppose we have an insertion-deletion stream of length 𝑚 = Θ 𝑛  
and at the end we are promised there are at most 𝑘 nonzero 
coordinates

• Goal: Recover the 𝑘 nonzero coordinates and their frequencies



The Streaming Model

• So far, all questions have been statistical

• What other questions can be asked? (Think in general, outside of 
the streaming model)
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The Streaming Model

• So far, all questions have been statistical

• What other questions can be asked? (Think in general, outside of 
the streaming model)

• Algebraic, geometric

TODAY



Graph Theory

• Suppose we have a graph 𝐺 with vertex set 𝑉 and edge set 𝐸

• Let 𝑉 = [𝑛] for simplicity, so each vertex is an integer from 1 to 𝑛

• Then each edge 𝑒 ∈ 𝐸 can be written as 𝑒 = (𝑢, 𝑣) for 𝑢, 𝑣 ∈ [𝑛]

• In other words, each edge is a pair of integers from 1 to 𝑛



Graph Theory

• For today, we will assume a simple, undirected, unweighted graph

• Graph has no self-loops, no multi-edges

• Edges are undirected

• Each edge has weight 1
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Matchings

• A matching 𝑀 is a subset of edges of 𝐸 such that no two edges 
share a common vertex
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Maximal Matching

• A maximal matching 𝑀 of 𝐺 such that any additional edges would 
no longer be a matching
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Maximum Matching

• Find a matching 𝑀 of 𝐺 with the largest possible number of edges
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Applications for Maximum Matching

• Fill the largest number of positions with applicants across a system



Maximum Matching

• How to find maximum matching?

• An alternating path is any path of edges that alternates between 
edges in and not in the matching

• An augmenting path is any alternating path of edges that does not 
start and does not end at a vertex in the matching

• “Flipping” all the edges in an augmenting path increases the 
matching size
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Maximum Matching

• It turns out repeatedly finding augmenting paths is sufficient for 
finding a maximum matching

• Formally: If a matching is not a maximum matching, there exists an 
augmenting path to the matching

• Algorithms by Hopcroft and Karp (1973) and Edmonds (1965) for 
finding augmenting paths – can be done in polynomial time



Semi-streaming Model

• Recall that we have a graph 𝐺 = (𝑉 = 𝑛 , 𝐸)

• Suppose 𝐸 = 𝑚

• The edges of the graph arrive sequentially, i.e., insertion-only model

• We are allowed to use 𝑛 ⋅ polylog 𝑛  space

• Enough to store a matching, NOT enough to store entire graph, 
since 𝑚 can be as large as 𝑂 𝑛2



Semi-streaming Model

• Can we run the augmenting paths algorithm?



Semi-streaming Model

• Can we run the augmenting paths algorithm? Not clear…

• In fact, Kapralov (2013) showed NO one-pass semi-streaming 
algorithm for maximum matching can achieve approximation better 
than 

𝑒

𝑒−1
≈ 1.582



Maximal Matching

• What if we just wanted to find a maximal matching?



Maximal Matching

• What if we just wanted to find a maximal matching?

• Greedy algorithm: Add each unmatched edge 𝑒 in the stream to the 
matching 𝑀
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