CSCE 689: Special Topics in Modern Algorithms for Data Science

Lecture 19

Samson Zhou

Presentation Schedule

- November 27: Chunkai, Jung, Galaxy AI
- November 29: STMI, Anmol, Jason
- December 1: Bokun, Ayesha, Dawei, Lipai

Previously in the Streaming Model

- Reservoir sampling
- Heavy-hitters
- Misra-Gries
- CountMin
- CountSketch
- Moment estimation
- AMS algorithm
- Sparse recovery
- Distinct elements estimation

Reservoir Sampling

- Suppose we see a stream of elements from [n]. How do we uniformly sample one of the positions of the stream?

4772811014335129549364610

Heavy-Hitters (Frequent Items)

- Given a set S of m elements from [n], let f_{i} be the frequency of element i. (How often it appears)
- Let L_{p} be the norm of the frequency vector:

$$
L_{p}=\left(f_{1}^{p}+f_{2}^{p}+\cdots+f_{n}^{p}\right)^{1 / p}
$$

- Goal: Given a set S of m elements from [n] and a threshold ε, output the elements i such that $f_{i}>\varepsilon L_{p} \ldots$ and no elements j such that $f_{j}<\frac{\varepsilon}{2} L_{p}$ (we saw algorithms for $p=1$ and $p=2$)
- Motivation: DDoS prevention, iceberg queries

Frequency Moments (L_{p} Norm)

- Given a set S of m elements from [n], let f_{i} be the frequency of element i. (How often it appears)
- Let F_{p} be the frequency moment of the vector:

$$
F_{p}=f_{1}^{p}+f_{2}^{p}+\cdots+f_{n}^{p}
$$

- Goal: Given a set S of m elements from [n] and an accuracy parameter ε, output a $(1+\varepsilon)$-approximation to F_{p}
- Motivation: Entropy estimation, linear regression

Distinct Elements (F_{0} Estimation)

- Given a set S of m elements from [n], let f_{i} be the frequency of element i. (How often it appears)
- Let F_{0} be the frequency moment of the vector:

$$
F_{0}=\left|\left\{i: f_{i} \neq 0\right\}\right|
$$

- Goal: Given a set S of m elements from [n] and an accuracy parameter ε, output a $(1+\varepsilon)$-approximation to F_{0}
- Motivation: Traffic monitoring

Sparse Recovery

- Suppose we have an insertion-deletion stream of length $m=\Theta(n)$ and at the end we are promised there are at most k nonzero coordinates
- Goal: Recover the k nonzero coordinates and their frequencies

The Streaming Model

- So far, all questions have been statistical
- What other questions can be asked? (Think in general, outside of the streaming model)

The Streaming Model

- So far, all questions have been statistical
- What other questions can be asked? (Think in general, outside of the streaming model)
- Algebraic, geometric

The Streaming Model

- So far, all questions have been statistical
- What other questions can be asked? (Think in general, outside of the streaming model)
- Algebraic, geometric

Graph Theory

- Suppose we have a graph G with vertex set V and edge set E
- Let $V=[n]$ for simplicity, so each vertex is an integer from 1 to n
- Then each edge $e \in E$ can be written as $e=(u, v)$ for $u, v \in[n]$
- In other words, each edge is a pair of integers from 1 to n

Graph Theory

- For today, we will assume a simple, undirected, unweighted graph
- Graph has no self-loops, no multi-edges
- Edges are undirected
- Each edge has weight 1

Matchings

- A matching M is a subset of edges of E such that no two edges share a common vertex

Maximal Matching

- A maximal matching M of G such that any additional edges would no longer be a matching

Maximum Matching

- Find a matching M of G with the largest possible number of edges

Applications for Maximum Matching

- Fill the largest number of positions with applicants across a system

Maximum Matching

- How to find maximum matching?
- An alternating path is any path of edges that alternates between edges in and not in the matching
- An augmenting path is any alternating path of edges that does not start and does not end at a vertex in the matching
- "Flipping" all the edges in an augmenting path increases the matching size

Maximum Matching

- It turns out repeatedly finding augmenting paths is sufficient for finding a maximum matching
- Formally: If a matching is not a maximum matching, there exists an augmenting path to the matching
- Algorithms by Hopcroft and Karp (1973) and Edmonds (1965) for finding augmenting paths - can be done in polynomial time

Semi-streaming Model

- Recall that we have a graph $G=(V=[n], E)$
- Suppose $|E|=m$
- The edges of the graph arrive sequentially, i.e., insertion-only model
- We are allowed to use $n \cdot \operatorname{polylog}(n)$ space
- Enough to store a matching, NOT enough to store entire graph, since m can be as large as $O\left(n^{2}\right)$

Semi-streaming Model

- Can we run the augmenting paths algorithm?

Semi-streaming Model

- Can we run the augmenting paths algorithm? Not clear...
- In fact, Kapralov (2013) showed NO one-pass semi-streaming algorithm for maximum matching can achieve approximation better than $\frac{e}{e-1} \approx 1.582$

Maximal Matching

- What if we just wanted to find a maximal matching?

Maximal Matching

- What if we just wanted to find a maximal matching?
- Greedy algorithm: Add each unmatched edge e in the stream to the matching M

