CSCE 689: Special Topics in Modern Algorithms for Data Science
 Lecture 2

Samson Zhou

Last Time: Class Logistics

- Course materials: https://samsonzhou.github.io/csce689-2023
- LaTeX summary of lectures 20\%
- Midterm presentation 35\%
- Final project 45\%

Last Time: Probability Basics

- Conditional distribution: $\operatorname{Pr}[X=x \mid Y=y]$ is the probability that X achieves the value x when Y achieves the value y

$$
\operatorname{Pr}[X=x \mid Y=y]=\frac{\operatorname{Pr}[X=x, Y=y]}{\operatorname{Pr}[Y=y]}
$$

- Implies Bayes' theorem
- Random variables X and Y are independent if $\operatorname{Pr}[X=x]=$ $\operatorname{Pr}[X=x \mid Y=y]$ for all possible outcomes $x \in \Omega_{X}, y \in \Omega_{Y}$

Warm-Up Question

- Suppose S_{1} is a "bad" event that occurs with probability $\frac{0}{n}$
- Suppose S_{2} is a "bad" event that occurs with probability $\frac{1}{n}$
- Suppose S_{3} is a "bad" event that occurs with probability $\frac{2}{n}$
- What is the probability that none of the bad events occurs?

Warm-Up Question

- Suppose S_{1} is a "bad" event that occurs with probability $\frac{0}{n}$
- Suppose S_{2} is a "bad" event that occurs with probability $\frac{1}{n}$
- Suppose S_{3} is a "bad" event that occurs with probability $\frac{2}{n}$
- What is a lower bound on the probability that none of the bad events occur?

Warm-Up Question

- Suppose S_{1} is a "bad" event that occurs with probability $\frac{0}{n}$
- Suppose S_{2} is a "bad" event that occurs with probability $\frac{1}{n}$
- Suppose S_{3} is a "bad" event that occurs with probability $\frac{2}{n}$
- What is a lower bound on the probability that none of the bad events occur? $1-\frac{3}{n}$

Last Time: Union Bound (Boole's Inequality)

- Let S_{1}, \ldots, S_{k} be a set of events that occur with probability p_{1}, \ldots, p_{k}
- The probability that at least one of the events S_{1}, \ldots, S_{k} occurs is at most $p_{1}+\cdots+p_{k}$
- Implication: the probability that NONE of the events S_{1}, \ldots, S_{k} occur is at least $1-\left(p_{1}+\cdots+p_{k}\right)$

Last Time: Union Bound

- $\operatorname{Pr}[A \cup B]=\operatorname{Pr}[A]+\operatorname{Pr}[B]-\operatorname{Pr}[A \cap B]$

- Proof by induction

Today

- Hashing
- Abstraction: balls-in-bins
- Birthday paradox

Trivia Question \#1 (Birthday Paradox)

- Suppose we have a fair n-sided die. "On average", how many times should we roll the die before we see a repeated outcome among the rolls? Example: 1, 5, 2, 4, 5
- $\Theta(1)$
- $\Theta(\log n)$
- $\Theta(\sqrt{n})$
- $\Theta(n)$

Trivia Question \#2 (Limits)

- Let $c>0$ be a constant. What is $\lim _{n \rightarrow \infty}\left(1-\frac{c}{n}\right)^{n}$?
- 0
- $\frac{1}{c}$
- $\frac{1}{2 c}$
- $\frac{1}{e^{c}}$
- 1

Hashing

- Suppose we have a number of files, how do we consistently store them in memory?

Hashing

- Suppose we have a number of files, how do we consistently store them in memory?

Hashing

- Suppose we have a number of files, how do we consistently store them in memory?

0 Anmol Anand	
1	Zhitong Chen
2	Lipai Huang
3	Ryan King
4	Ayesha Qamar
5	Shima Salehi
6	
7	
8	
9	

Hashing

- Suppose we have a number of files, how do we consistently store them in memory?

Hashing

- Suppose we have a number of files, how do we consistently store them in memory?

Hashing

- Suppose we have a number of files, how do we consistently store them in memory?

$$
h(x)
$$

Hash Tables

- We have a set of m items from some large universe that we want to store into a database (images, text documents, IP addresses) with n locations
- Goal: query (x) to check if the database contains x in $O(1)$ time
- Hash function $h: U \rightarrow[n]$ maps items from the universe to a location in the database

Collisions

- Hash function $h: U \rightarrow[n]$ maps items from the universe to a location in the database
- For $|U| \gg n$, many items map to the same location
- Collision: when multiple items should be stored in the same location

Dealing with Collisions

- Many ways of dealing with collisions
- Store multiple items in the same location as a linked list
- Bump item to the next available spot
- Bump item to the next available spot using another hash function
- Power-of-two-choices

Dealing with Collisions

- Suppose we store multiple items in the same location as a linked list

- If the maximum number of collisions in a location is c, then could traverse a linked list of size c for a query
- Query runtime: $O(c)$

Dealing with Collisions

- Goal: minimize c, the maximum number of collisions in a location
- In the worst case, all items could hash to the same location, $c=m$
- Assume the hash function h is chosen "randomly"

Random Hash Function

- Let $h: U \rightarrow[n]$ be a random hash function, so that for each $x \in U$, we have that $\operatorname{Pr}[h(x)=i]=\frac{1}{n}$, for all $i \in[n]$
- Assume independence, i.e., $h(x)$ and $h(y)$ are independent for any $x, y \in U$
- Suppose we insert m elements into a hash table with n locations using a random hash function. How do we analyze the number of pairwise collisions?

Birthday Paradox

- Suppose we have a room with 367 people. What is the probability that two people share the same birthday?

Birthday Paradox

- Suppose we have a room with 367 people. What is the probability that two people share the same birthday?
- Suppose we have a room with 23 people. What is the probability that two people share the same birthday?

Birthday Paradox

- Suppose we have a fair n-sided die that we roll $k=1,2,3,4, \ldots$ times. What is the probability we DO NOT see a repeated outcome among the rolls?

Birthday Paradox

- Suppose we have a fair n-sided die that we roll $k=1,2,3,4, \ldots$ times. What is the probability we DO NOT see a repeated outcome among the rolls?

$$
\left(1-\frac{0}{n}\right)
$$

Birthday Paradox

- Suppose we have a fair n-sided die that we roll $k=1,2,3,4, \ldots$ times. What is the probability we DO NOT see a repeated outcome among the rolls?

$$
\left(1-\frac{0}{n}\right)\left(1-\frac{1}{n}\right)
$$

Birthday Paradox

- Suppose we have a fair n-sided die that we roll $k=1,2,3,4, \ldots$ times. What is the probability we DO NOT see a repeated outcome among the rolls?

$$
\left(1-\frac{0}{n}\right)\left(1-\frac{1}{n}\right)\left(1-\frac{2}{n}\right)
$$

Birthday Paradox

- Suppose we have a fair n-sided die that we roll $k=1,2,3,4, \ldots$ times. What is the probability we DO NOT see a repeated outcome among the rolls?

$$
\left(1-\frac{0}{n}\right)\left(1-\frac{1}{n}\right) \ldots\left(1-\frac{k-1}{n}\right)
$$

Birthday Paradox

- Suppose we have a fair n-sided die that we roll $k=1,2,3,4, \ldots$ times. What is the probability we DO NOT see a repeated outcome among the rolls?

$$
\left(1-\frac{0}{n}\right)\left(1-\frac{1}{n}\right) \ldots\left(1-\frac{k-1}{n}\right)<\frac{1}{2} \quad \text { for } \quad k=O(\sqrt{n})
$$

Birthday Paradox

- Suppose we have a fair n-sided die. "On average", how many times should we roll the die before we see a repeated outcome among the rolls?
- $O(\sqrt{n})$
- But is it $\Theta(\sqrt{n})$?

Birthday Paradox

- Suppose we have a fair n-sided die that we roll $k=1,2,3,4, \ldots$ times. What is the probability we DO NOT see a repeated outcome among the rolls?
- Let S_{i} be the event that the i-th roll is a repeated outcome, conditioned on the previous rolls not being a repeated outcome
- $\operatorname{Pr}\left[S_{i}\right]=\frac{i-1}{n}$
- $\operatorname{Pr}\left[S_{1} \cup \cdots \cup S_{k}\right] \leq ? ?$?

Birthday Paradox

- Suppose we have a fair n-sided die that we roll $k=1,2,3,4, \ldots$ times. What is the probability we DO NOT see a repeated outcome among the rolls?
- Let S_{i} be the event that the i-th roll is a repeated outcome, conditioned on the previous rolls not being a repeated outcome
- $\operatorname{Pr}\left[S_{i}\right]=\frac{i-1}{n}$
- $\operatorname{Pr}\left[S_{1} \cup \cdots \cup S_{k}\right] \leq \frac{0}{n}+\ldots+\frac{k-1}{n} \leq \frac{k^{2}}{n}$

Birthday Paradox

- Suppose we have a fair n-sided die that we roll $k=1,2,3,4, \ldots$ times. What is the probability we DO NOT see a repeated outcome among the rolls?
- Let S_{i} be the event that the i-th roll is a repeated outcome, conditioned on the previous rolls not being a repeated outcome
- $\operatorname{Pr}\left[S_{i}\right]=\frac{i-1}{n}$
- $\operatorname{Pr}\left[S_{1} \cup \cdots \cup S_{k}\right] \leq \frac{0}{n}+\ldots+\frac{k-1}{n} \leq \frac{k^{2}}{n}$

Birthday Paradox

- Suppose we have a fair n-sided die. "On average", how many times should we roll the die before we see a repeated outcome among the rolls?
- $\Theta(\sqrt{n})$

Trivia Question \#1 (Birthday Paradox)

- Suppose we have a fair n-sided die. "On average", how many times should we roll the die before we see a repeated outcome among the rolls? Example: 1, 5, 2, 4, 5
- $\Theta(1)$
- $\Theta(\log n)$
- $\Theta(\sqrt{n})$
- $\Theta(n)$

Trivia Question \#2 (Limits)

- Let $c>0$ be a constant. What is $\lim _{n \rightarrow \infty}\left(1-\frac{c}{n}\right)^{n}$?
- 0
- $\frac{1}{c}$
- $\frac{1}{2 c}$
- $\frac{1}{e^{c}}$
- 1

