
CSCE 689: Special Topics in
Modern Algorithms for Data

Science
Lecture 20

Samson Zhou

Presentation Schedule

• November 27: Chunkai, Jung, Galaxy AI

• November 29: STMI, Anmol, Jason

• December 1: Bokun, Ayesha, Dawei, Lipai

Last Time: Semi-streaming Model

• Recall that we have a graph 𝐺 = (𝑉 = 𝑛 , 𝐸)

• Suppose 𝐸 = 𝑚

• The edges of the graph arrive sequentially, i.e., insertion-only model

• We are allowed to use 𝑛 ⋅ polylog 𝑛 space

• Enough to store a matching, NOT enough to store entire graph,
since 𝑚 can be as large as 𝑂 𝑛2

Last Time: Maximum Matching

• How to find maximum matching?

• An alternating path is any path of edges that alternates between
edges in and not in the matching

• An augmenting path is any alternating path of edges that does not
start and does not end at a vertex in the matching

• “Flipping” all the edges in an augmenting path increases the
matching size

Maximal Matching

• A maximal matching is a matching 𝑀 of 𝐺 such that any additional
edges would no longer be a matching

Maximal Matching

• What if we just wanted to find a maximal matching?

• Greedy algorithm: Add each unmatched edge 𝑒 in the stream to the
matching 𝑀

Maximal Matching

• Claim: Each maximal matching is a 2-approximation to the
maximum matching

5

1 2

34

6

5

1 2

34

6

Maximal Matching

• Claim: Each maximal matching is a 2-approximation to the
maximum matching

• Observation: Each edge 𝑒′ of 𝑀′ can be incident to at most 2 edges
of 𝑀∗

• Observation: Each edge 𝑒 of the maximum matching 𝑀∗ must be
incident to some edge 𝑒′ of any maximal matching 𝑀′

Maximal Matching

• Claim: Each maximal matching is a 2-approximation to the
maximum matching

• Intuition: Each edge 𝑒 of the maximum matching 𝑀∗ must be
incident to some edge 𝑒′ of any maximal matching 𝑀′ BUT each
edge 𝑒′ of 𝑀′ can be incident to at most 2 edges of 𝑀∗

Maximal Matching

• Charging argument: Give each edge 𝑒′ of the maximal matching 𝑀′
two dollars

Maximal Matching

• Charging argument: Give each edge 𝑒′ of the maximal matching 𝑀′
two dollars

• Observation: Each edge 𝑒′ of 𝑀′ can be incident to at most 2 edges
of 𝑀∗

• Enough money for each edge 𝑒′ to pay for the adjacent edges in 𝑀∗

• Observation: Each edge 𝑒 of the maximum matching 𝑀∗ must be
incident to some edge 𝑒′ of any maximal matching 𝑀′

• All edges of 𝑀∗ have been paid by some edge of 𝑀′

Maximal Matching

• For each edge 𝑒′ of 𝑀′, let 𝑁1 𝑒′ and 𝑁2 𝑒′ be the incident edges
of 𝑀∗ (we can say 𝑁2 𝑒′ is empty if 𝑒′ is not incident to two edges)

2 𝑀′ = Σ𝑒′∈𝑀′2 𝑒′

≥ Σ𝑒′∈𝑀′ 𝑁1 𝑒′ + 𝑁2 𝑒′

≥ Σ𝑒∈𝑀∗ 𝑒
= |𝑀∗|

Matchings in the Semi-Streaming Model

• Geedy algorithm is a 2-approximation to the maximum matching
that uses 𝑂(𝑛) space

Matchings in the Semi-Streaming Model

• In a weighted graph, each edge can have weights in 1, … , 𝑁 for
some 𝑁 = poly(𝑛)

• The weight of a matching is the sum of the weights of the edges

• Can we run the greedy algorithm? NO / YES

Matchings in the Semi-Streaming Model

• For 𝑖 = 0,1, … , log(1+𝜀) 𝑁, let 𝑆𝑖 be the substream that contains
edges with weights between (1 + 𝜀)𝑖 and (1 + 𝜀)𝑖+1

• Let 𝑀𝑖 be a maximal matching obtained by using greedy algorithm
on 𝑆𝑖

• Let 𝑀 be obtained by greedily adding edges in 𝑀𝑖 for 𝑖 =
log(1+𝜀) 𝑁 , … , 1,0

• Intuition: Each edge 𝑒 of matching 𝑀 can “block” at most two
edges of 𝑀𝑖, each of these two edges can “block” at most two
edges in the best matching 𝑀∗

Matchings in the Semi-Streaming Model

• For 𝑖 = 0,1, … , log(1+𝜀) 𝑁, let 𝑆𝑖 be the substream that contains
edges with weights between (1 + 𝜀)𝑖 and (1 + 𝜀)𝑖+1

• Let 𝑀𝑖 be a maximal matching obtained by using greedy algorithm
on 𝑆𝑖

• Let 𝑀 be obtained by greedily adding edges in 𝑀𝑖 for 𝑖 =
log(1+𝜀) 𝑁 , … , 1,0

• Algorithm is a (4 + 𝜀)-approximation to the maximum weighted
matching in the semi-streaming model [CrouchStubbs14]

Matchings in the Semi-Streaming Model

• Greedy algorithm is a 2-approximation to the maximum matching
that uses 𝑂(𝑛) space

• OPEN: Is it possible to achieve 𝐶-approximation to the maximum
(cardinality) matching using 𝑛 ⋅ polylog 𝑛 space for 𝐶 < 2?

Matchings in the Semi-Streaming Model

• In a weighted graph, each edge can have weights in 1, … , 𝑁 for
some 𝑁 = poly(𝑛)

• The weight of a matching is the sum of the weights of the edges

• OPEN: Is it possible to achieve 𝐶-approximation to the maximum
weighted matching using 𝑛 ⋅ polylog 𝑛 space for 𝐶 < 2?

• Algorithm: There exists a (2 + 𝜀)-approximation to the maximum
weighted matching in the semi-streaming model
[PazSchwartzman17]

Matchings in the Semi-Streaming Model

• A function is submodular if it satisfies the “diminishing gains”
property: 𝑓 𝑆 ∪ 𝑥 − 𝑓 𝑆 ≥ 𝑓 𝑇 ∪ 𝑥 − 𝑓 𝑇 for all 𝑇 ⊆ 𝑆, 𝑥

• Maximize a submodular function across all matchings on a graph

• OPEN: Is it possible to achieve 𝐶-approximation to the maximum
submodular matching using 𝑛 ⋅ polylog 𝑛 space for 𝐶 < 2?

• Algorithm: There exists a 3 + 2 2 ≈ 5.828-approximation to the
maximum weighted matching in the semi-streaming model
[LevinWajc21]

Connectivity

• Connected graph: There exists a path between 𝑖 and 𝑗 for any pair
𝑖, 𝑗 ⊆ 𝑉 = 𝑛 of vertices

• Goal: Given a graph 𝐺, determine whether 𝐺 is a connected graph

5

1 2

34

6

5

1 2

34

6

Connectivity

• Transportation networks: Analyzing the connectivity of
transportation networks, e.g., roads, railways, flight routes, is
critical for optimizing routes, planning public transportation,
identifying congested areas, and ensuring efficient travel

Connectivity

• Electrical power grids: Determining the connectivity of an electric
power grid is essential for ensuring a reliable and resilient power
supply. Identifying isolated components helps in quickly restoring
power after outages.

Spanning Forest

• Spanning tree: A subgraph of 𝐺 that is a tree and contains all the
vertices of the graph 𝐺

• Spanning forest: A subgraph of 𝐺 that is a union of trees that
contains all the vertices of the graph 𝐺

Spanning Forest

• Spanning tree: A subgraph of 𝐺 that is a tree and contains all the
vertices of the graph 𝐺

• Spanning forest: A subgraph of 𝐺 that is a union of trees that
contains all the vertices of the graph 𝐺

• Observation: A graph 𝐺 is connected if and only if 𝐺 has a spanning
tree

5

1 2

34

6

5

1 2

34

6

5

1 2

34

6

Spanning Tree

• How to find a spanning tree in the offline setting?

Spanning Tree

• How to find a spanning tree in the offline setting?

• Minimum spanning tree algorithms (Kruskal, Prim)

• Kruskal: Greedily add minimum weight edge to spanning forest

• Prim: Greedily grow minimum spanning tree

Connectivity

• Intuition: Greedily add edges to minimum spanning forest

• Algorithm:

1. Initialize 𝐹 = ∅.

2. For each edge 𝑒 = (𝑢, 𝑣):

1. If 𝐹 ∪ (𝑢, 𝑣) does not contain a cycle, add (𝑢, 𝑣) to 𝐹: 𝐹 ←
𝐹 ∪ 𝑢, 𝑣

2. If 𝐹 = 𝑛 − 1, return GRAPH IS CONNECTED

3. Return GRAPH IS NOT CONNECTED

Connectivity

• Algorithm can keep at most 𝑛 edges, so the total space usage is
𝑂(𝑛) words of space.

	Slide 1: CSCE 689: Special Topics in Modern Algorithms for Data Science
	Slide 2: Presentation Schedule
	Slide 3: Last Time: Semi-streaming Model
	Slide 4: Last Time: Maximum Matching
	Slide 5: Maximal Matching
	Slide 6: Maximal Matching
	Slide 7: Maximal Matching
	Slide 8
	Slide 9
	Slide 10: Maximal Matching
	Slide 11: Maximal Matching
	Slide 12: Maximal Matching
	Slide 13: Maximal Matching
	Slide 14: Maximal Matching
	Slide 15: Matchings in the Semi-Streaming Model
	Slide 16: Matchings in the Semi-Streaming Model
	Slide 17: Matchings in the Semi-Streaming Model
	Slide 18: Matchings in the Semi-Streaming Model
	Slide 19: Matchings in the Semi-Streaming Model
	Slide 20: Matchings in the Semi-Streaming Model
	Slide 21: Matchings in the Semi-Streaming Model
	Slide 22: Connectivity
	Slide 23
	Slide 24
	Slide 25: Connectivity
	Slide 26: Connectivity
	Slide 27: Spanning Forest
	Slide 28: Spanning Forest
	Slide 29
	Slide 30
	Slide 31
	Slide 32: Spanning Tree
	Slide 33: Spanning Tree
	Slide 34: Connectivity
	Slide 35: Connectivity

