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Previously: Semi-streaming Model

• Recall that we have a graph 𝐺 = (𝑉 = 𝑛 , 𝐸)

• Suppose 𝐸 = 𝑚

• The edges of the graph arrive sequentially, i.e., insertion-only model

• We are allowed to use 𝑛 ⋅ polylog 𝑛  space

• Enough to store a matching, NOT enough to store entire graph, 
since 𝑚 can be as large as 𝑂 𝑛2



Last Time: Maximum Matching

• Greedy algorithm is a 2-approximation to the maximum matching 
that uses 𝑂(𝑛) space

• OPEN: Is it possible to achieve 𝐶-approximation to the maximum 
(cardinality) matching using 𝑛 ⋅ polylog 𝑛  space for 𝐶 < 2?



Last Time: Connectivity

• Connected graph: There exists a path between 𝑖 and 𝑗 for any pair 
𝑖, 𝑗 ⊆ 𝑉 = 𝑛  of vertices

• Goal: Given a graph 𝐺, determine whether 𝐺 is a connected graph



Last Time: Spanning Tree

• How to find a spanning tree in the offline setting?

• Minimum spanning tree algorithms (Kruskal, Prim)

• Kruskal: Greedily add minimum weight edge to spanning forest

• Prim: Greedily grow minimum spanning tree



Last Time: Connectivity

• Intuition: Greedily add edges to minimum spanning forest

• Algorithm: 

1. Initialize 𝐹 = ∅. 

2. For each edge 𝑒 = (𝑢, 𝑣):

1. If 𝐹 ∪ (𝑢, 𝑣) does not contain a cycle, add (𝑢, 𝑣) to 𝐹: 𝐹 ←
𝐹 ∪ 𝑢, 𝑣

2. If 𝐹 = 𝑛 − 1, return GRAPH IS CONNECTED

3. Return GRAPH IS NOT CONNECTED



Last Time: Connectivity

• Algorithm can keep at most 𝑛 edges, so the total space usage is 
𝑂(𝑛) words of space. 



Bipartiteness

• Bipartite graph: Graph can be partitioned into two disjoint sets 𝐿 
and 𝑅 so that every edge is between a vertex in 𝐿 and a vertex in 𝑅

• Goal: Given a graph 𝐺, determine whether 𝐺 is a bipartite graph
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Applications for Bipartiteness Testing

• Graph coloring: You want to color a graph such that no neighboring 
items share the same color



Applications for Bipartiteness Testing

• Circuit Design: In electrical engineering and VLSI (Very Large Scale 
Integration) design, you may want to know if a circuit can be 
optimally partitioned into two complementary parts, which can be 
achieved by testing the bipartiteness of the circuit's dependency 
graph



Bipartiteness

• What is a necessary and sufficient condition for bipartiteness?



Bipartiteness

• What is a necessary and sufficient condition for bipartiteness?

• A graph is bipartite if and only if it can be colored using two colors 
(a coloring of a graph is an assignment of colors to vertices such 
that no two vertices share the same color)

• A graph is bipartite if and only if it has no odd cycles



Bipartiteness

• How to perform bipartiteness testing in the central setting?



Bipartiteness

• How to perform bipartiteness testing in the central setting?

• Start at arbitrary vertex, run BFS, and assign alternating levels to 
different side until there is a contradiction
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Bipartiteness in the Streaming Model

• Bipartiteness is a monotone property, i.e., additional edges to a 
graph that is not bipartite will result in a graph that is not bipartite
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Bipartiteness in the Streaming Model

• Intuition: Greedily add edges to minimum spanning forest

• Algorithm: 

1. Initialize 𝐹 = ∅. 

2. For each edge 𝑒 = (𝑢, 𝑣):

1. If 𝐹 ∪ (𝑢, 𝑣) does not contain a cycle, add (𝑢, 𝑣) to 𝐹: 𝐹 ←
𝐹 ∪ 𝑢, 𝑣

2. If 𝐹 ∪ (𝑢, 𝑣) contains an odd cycle, return GRAPH IS NOT 
BIPARTITE

3. Return GRAPH IS BIPARTITE



Bipartiteness in the Streaming Model

• Algorithm maintains a tree (because it does not add any edges that 
would create cycles)

• Algorithm can keep at most 𝑛 edges, so the total space usage is 
𝑂(𝑛) words of space. 
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