
CSCE 689: Special Topics in
Modern Algorithms for Data

Science
Lecture 21

Samson Zhou

Presentation Schedule

• November 27: Chunkai, Jung, Galaxy AI

• November 29: STMI, Anmol, Jason

• December 1: Bokun, Ayesha, Dawei, Lipai

Previously: Semi-streaming Model

• Recall that we have a graph 𝐺 = (𝑉 = 𝑛 , 𝐸)

• Suppose 𝐸 = 𝑚

• The edges of the graph arrive sequentially, i.e., insertion-only model

• We are allowed to use 𝑛 ⋅ polylog 𝑛 space

• Enough to store a matching, NOT enough to store entire graph,
since 𝑚 can be as large as 𝑂 𝑛2

Last Time: Maximum Matching

• Greedy algorithm is a 2-approximation to the maximum matching
that uses 𝑂(𝑛) space

• OPEN: Is it possible to achieve 𝐶-approximation to the maximum
(cardinality) matching using 𝑛 ⋅ polylog 𝑛 space for 𝐶 < 2?

Last Time: Connectivity

• Connected graph: There exists a path between 𝑖 and 𝑗 for any pair
𝑖, 𝑗 ⊆ 𝑉 = 𝑛 of vertices

• Goal: Given a graph 𝐺, determine whether 𝐺 is a connected graph

Last Time: Spanning Tree

• How to find a spanning tree in the offline setting?

• Minimum spanning tree algorithms (Kruskal, Prim)

• Kruskal: Greedily add minimum weight edge to spanning forest

• Prim: Greedily grow minimum spanning tree

Last Time: Connectivity

• Intuition: Greedily add edges to minimum spanning forest

• Algorithm:

1. Initialize 𝐹 = ∅.

2. For each edge 𝑒 = (𝑢, 𝑣):

1. If 𝐹 ∪ (𝑢, 𝑣) does not contain a cycle, add (𝑢, 𝑣) to 𝐹: 𝐹 ←
𝐹 ∪ 𝑢, 𝑣

2. If 𝐹 = 𝑛 − 1, return GRAPH IS CONNECTED

3. Return GRAPH IS NOT CONNECTED

Last Time: Connectivity

• Algorithm can keep at most 𝑛 edges, so the total space usage is
𝑂(𝑛) words of space.

Bipartiteness

• Bipartite graph: Graph can be partitioned into two disjoint sets 𝐿
and 𝑅 so that every edge is between a vertex in 𝐿 and a vertex in 𝑅

• Goal: Given a graph 𝐺, determine whether 𝐺 is a bipartite graph

5

1 2

34

6

5

12

3

4

6

5

1 2

34

6

5

1 2

34

6

Applications for Bipartiteness Testing

• Graph coloring: You want to color a graph such that no neighboring
items share the same color

Applications for Bipartiteness Testing

• Circuit Design: In electrical engineering and VLSI (Very Large Scale
Integration) design, you may want to know if a circuit can be
optimally partitioned into two complementary parts, which can be
achieved by testing the bipartiteness of the circuit's dependency
graph

Bipartiteness

• What is a necessary and sufficient condition for bipartiteness?

Bipartiteness

• What is a necessary and sufficient condition for bipartiteness?

• A graph is bipartite if and only if it can be colored using two colors
(a coloring of a graph is an assignment of colors to vertices such
that no two vertices share the same color)

• A graph is bipartite if and only if it has no odd cycles

Bipartiteness

• How to perform bipartiteness testing in the central setting?

Bipartiteness

• How to perform bipartiteness testing in the central setting?

• Start at arbitrary vertex, run BFS, and assign alternating levels to
different side until there is a contradiction

5

1 2

34

6

5

1 2

34

6

5

1

2

3

4

6

5

1

2

3

4

6

Bipartiteness in the Streaming Model

• Bipartiteness is a monotone property, i.e., additional edges to a
graph that is not bipartite will result in a graph that is not bipartite

Bipartiteness in the Streaming Model

• Bipartiteness is a monotone property, i.e., additional edges to a
graph that is not bipartite will result in a graph that is not bipartite

Bipartiteness in the Streaming Model

• Intuition: Greedily add edges to minimum spanning forest

• Algorithm:

1. Initialize 𝐹 = ∅.

2. For each edge 𝑒 = (𝑢, 𝑣):

1. If 𝐹 ∪ (𝑢, 𝑣) does not contain a cycle, add (𝑢, 𝑣) to 𝐹: 𝐹 ←
𝐹 ∪ 𝑢, 𝑣

2. If 𝐹 ∪ (𝑢, 𝑣) contains an odd cycle, return GRAPH IS NOT
BIPARTITE

3. Return GRAPH IS BIPARTITE

Bipartiteness in the Streaming Model

• Algorithm maintains a tree (because it does not add any edges that
would create cycles)

• Algorithm can keep at most 𝑛 edges, so the total space usage is
𝑂(𝑛) words of space.

	Slide 1: CSCE 689: Special Topics in Modern Algorithms for Data Science
	Slide 2: Presentation Schedule
	Slide 3: Previously: Semi-streaming Model
	Slide 4: Last Time: Maximum Matching
	Slide 5: Last Time: Connectivity
	Slide 6: Last Time: Spanning Tree
	Slide 7: Last Time: Connectivity
	Slide 8: Last Time: Connectivity
	Slide 9: Bipartiteness
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14: Applications for Bipartiteness Testing
	Slide 15: Applications for Bipartiteness Testing
	Slide 16: Bipartiteness
	Slide 17: Bipartiteness
	Slide 18: Bipartiteness
	Slide 19: Bipartiteness
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24: Bipartiteness in the Streaming Model
	Slide 25: Bipartiteness in the Streaming Model
	Slide 26: Bipartiteness in the Streaming Model
	Slide 27: Bipartiteness in the Streaming Model

