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Presentation Schedule

• November 27: Chunkai, Jung, Galaxy AI

• November 29: STMI, Anmol, Jason

• December 1: Bokun, Ayesha, Dawei, Lipai
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Clustering

• Goal: Given input dataset 𝑋, partition 𝑋 so that “similar” points are in 
the same cluster and “different” points are in different clusters



𝑘-Clustering

• Goal: Given input dataset 𝑋, partition 𝑋 so that “similar” points are in 
the same cluster and “different” points are in different clusters

• There can be at most 𝑘 different clusters

𝑘 = 3
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• Assign a “center” 𝑐𝑖 to each cluster

• Have a cost function induced by 𝑐𝑖 for all of the points 𝑃𝑖  assigned to 
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𝑘-Clustering

• Question: How do we measure the “quality” of each clustering?

• Have a cost function induced by 𝑐𝑖 for all of the points 𝑃𝑖  assigned to 
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• Define Cost 𝑃𝑖 , 𝑐𝑖  to be a function of dist 𝑥, 𝑐𝑖 𝑥∈𝑃𝑖

• Suppose the set of centers is 𝐶 = 𝑐1, … , 𝑐𝑘

• Define clustering cost Cost 𝑋, 𝐶  to be a function of 
dist 𝑥, 𝐶 𝑥∈𝐶
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• Define clustering cost Cost 𝑋, 𝐶  to be a function of 
dist 𝑥, 𝐶 𝑥∈𝐶
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𝑘-Clustering

• Define clustering cost Cost 𝑋, 𝐶  to be a function of 
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𝑘-Clustering

• Define clustering cost Cost 𝑋, 𝐶  to be a function of 
dist 𝑥, 𝐶 𝑥∈𝐶

• 𝑘-center: Cost 𝑋, 𝐶 = max
𝑥∈𝑋

dist(𝑥, 𝐶)

• 𝑘-median: Cost 𝑋, 𝐶 = σ𝑥∈𝑋 dist 𝑥, 𝐶

• 𝑘-means: Cost 𝑋, 𝐶 = σ𝑥∈𝑋 dist 𝑥, 𝐶
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𝑘-Clustering

• Define clustering cost Cost 𝑋, 𝐶  to be a function of 
dist 𝑥, 𝐶 𝑥∈𝐶

• 𝑘-center: Cost 𝑋, 𝐶 = max
𝑥∈𝑋

dist(𝑥, 𝐶)

• 𝑘-median: Cost 𝑋, 𝐶 = σ𝑥∈𝑋 dist 𝑥, 𝐶

• 𝑘-means: Cost 𝑋, 𝐶 = σ𝑥∈𝑋 dist 𝑥, 𝐶
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• (𝑘, 𝑧)-clustering: Cost 𝑋, 𝐶 = σ𝑥∈𝑋 dist 𝑥, 𝐶
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Euclidean 𝑘-Clustering

• For Euclidean 𝑘-clustering, input points 𝑋 = 𝑥1, … , 𝑥𝑛 are in 
ℝ𝑑 (for us, they will be in [Δ]𝑑≔ 1,2, … , Δ 𝑑)

• dist 𝑥, 𝑦 = 𝑥1 − 𝑦1
2 + ⋯ + 𝑥𝑑 − 𝑦𝑑

2 is the Euclidean 
distance

• (𝑘, 𝑧)-clustering problem:

min
𝐶: 𝐶 ≤𝑘

 Cost 𝑋, 𝐶 = min
𝐶: 𝐶 ≤𝑘

Σ𝑥∈𝑋 dist 𝑥, 𝐶
𝑧
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𝑘-center: Cost 𝑋, 𝐶 = max
𝑥∈𝑋

dist 𝑥, 𝐶 = 5
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𝑘-median: Cost 𝑋, 𝐶 = σ𝑥∈𝑋 dist 𝑥, 𝐶 = 4 + 5 + 5 + 3 + 4 + 5 = 26
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𝑘-means: Cost 𝑋, 𝐶 = σ𝑥∈𝑋 dist 𝑥, 𝐶
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 = 16 + 25 + 25 + 9 + 16 + 25

= 116



• Subset 𝑋′ of representative 
points of 𝑋 for a specific 
clustering objective

• Cost 𝑋, 𝐶 ≈ Cost(𝑋′, 𝐶) 
for all sets 𝐶 with 𝐶 = 𝑘

Coreset
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Coreset (Formal Definition)

• Given a set 𝑋 and an accuracy parameter ε > 0, we say a set 
𝑋′ with weight function 𝑤 is an (1 + 𝜀)-multiplicative 
coreset for a cost function Cost, if for all queries 𝐶 with 
𝐶 ≤ 𝑘, we have

1 − ε Cost(𝑋, 𝐶) ≤ Cost(𝑋′, 𝐶, 𝑤) ≤ 1 + ε Cost(𝑋, 𝐶)

(𝑘, 𝑧)-clustering: Cost 𝑋′, 𝐶, 𝑤 = σ𝑥∈𝑋′ 𝑤 𝑥 ⋅ dist 𝑥, 𝐶
𝑧



(𝑘, 𝑧)-Clustering in the Streaming Model

• Merge-and-reduce framework

• Suppose there exists a (1 + 𝜀)-coreset construction for 

(𝑘, 𝑧)-clustering that uses 𝑓 𝑘,
1

𝜀
 weighted input points 

• Partition the stream into blocks containing 𝑓 𝑘,
log 𝑛

𝜀
 points

෨𝑂
𝑘2

𝜀2



(𝑘, 𝑧)-Clustering in the Streaming Model

• Partition the stream into blocks containing 𝑓 𝑘,
log 𝑛

𝜀
 points

• Create a 1 +
𝜀

log 𝑛
-coreset for each block

• Create a 1 +
𝜀

log 𝑛
-coreset for the set of points formed by 

the union of two coresets for each block

Merge

Reduce
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(𝑘, 𝑧)-Clustering in the Streaming Model

• There are 𝑂 log 𝑛  levels

• Each coreset is a 1 +
𝜀

log 𝑛
-coreset of two coresets

• Total approximation is 1 +
𝜀

log 𝑛

log 𝑛
= (1 + 𝑂 𝜀 )



(𝑘, 𝑧)-Clustering in the Streaming Model

• Suppose there exists a (1 + 𝜀)-coreset construction for 

(𝑘, 𝑧)-clustering that uses 𝑓 𝑘,
1

𝜀
 weighted input points 

• Partition the stream into blocks containing 𝑓 𝑘,
log 𝑛

𝜀
 points

• Total space is 𝑓 𝑘,
log 𝑛

𝜀
⋅ 𝑂(log 𝑛) points

For 𝑘-means clustering, this is ෨𝑂
𝑘2

𝜀2 ⋅ log3 𝑛  points
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