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Last Time: k-Clustering

* Goal: Given input dataset X, partition X so that “similar” points are in
the same cluster and “different” points are in different clusters

* There can be at most k different clusters




Last Time: k-Clustering

* Define clustering cost Cost(X, C) to be a function of

tdist(x, C) }xec 9
ok

* k-center: Cost(X,C) = max dist(x, C)
X
* k-median: Cost(X, C) = ),y dist(x, C) ,
| 2
» k-means: Cost(X, C) = X ex(dist(x, 0)) ()
* (k, z)-clustering: Cost(X, C) = Xex(dist(x, C))Z |




Last Time: (k, z)-Clustering in the Streaming
Model

* Merge-and-reduce framework

* Suppose there exists a (1 + £)-coreset construction for
(k, z)-clustering that uses [ (k, l) weighted input points

E

o(E)

* Partition the stream into blocks containing f (k,

logn

) points
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Last Time: (k, z)-Clustering in the Streaming
Model

logn

* Partition the stream into blocks containing f (k, ) points

E
E

* Create a (1 -+ )-coreset for each block

logn
€

* Create a (1 + og n)-coreset for the set of points formed by
/the union of two coresets for each block

Reduce [
Merge



Last Time: (k, z)-Clustering in the Streaming
Model

logn

* Partition the stream into blocks containing f (k, ; ) points

E

* Create a (1 -+ )-coreset for each block

logn
€

* Create a (1 + og n)-coreset for the set of points formed by

the union of two coresets for each block
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Last Time: (k, z)-Clustering in the Streaming
Model

* There are O(log n) levels

E

 Each coresetis a (1 | oz n)-coreset of two coresets

E

)" = @+ o))

* Total approximation is (1 +

logn
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Previously: Bernstein’s Inequality

* Bernstein’s inequality: Let X4, ..., X,, € |—M, M| be independent
random variables and let X = X; + --- + X,, have mean u and
variance a*. Then for any t > 0: .

L

7}
Pri|X —ul = t] < 2e 20°+3Mt

 Example: Suppose M = 1 and lett = ko. Then ,
k
Pr[|X — u| = ko] < 2exp (— Z)



Sampling for Sum Estimation

* Consider a fixed set X = {x4, ..., x,;} of n numbers

* Suppose we sample each point x; with some probability p;

1
and rescale by —

Di

* What is the expected sum?



Sampling for Sum Estimation

* Let y; be the contribution of the sample corresponding to x;

* yv; = 0 with probability 1 — p;
.y, = pli - x; with probability p;

* Ely;] = x;

’E:yl‘l“l'yn] =x1+ +xn



Sampling for Sum Estimation

* Consider a fixed set X = {x4, ..., x,;} of n numbers

* Suppose we sample each point x; with some probability p;

1
and rescale by —

Di

* What is the expected sum? E|y; + -+ y,,| = x; + ... + x,,



Sampling for Sum Estimation

* Consider a fixed set X = {x4, ..., x,;} of n numbers

* Suppose we sample each point x; with some probability p;

1
and rescale by —

Di

* What is the expected sum? E|y; + -+ y,,| = x; + ... + x,,
* What can we say about concentration?



Uniform Sampling for Sum Estimation

* Consider a fixed set X = {x4, ..., x,;} of n numbers

* Suppose we sample each point x; with some probability p;

1
and rescale by —

Di
* Suppose p; = p foralli € [n]

* What can we say about concentration?



Uniform Sampling for Sum Estimation

*Supposexq = =x, =1
* Suppose p; = p foralli € [n]

* What can we say about concentration?
* Can we get a 2-approximation with high probability?



Uniform Sampling for Sum Estimation

* Bernstein’s inequality: Let y4, ..., y,, € [—M, M| be independent
random variables and let y = y; + --- + y,, have mean u and variance
a?.Then for any t > 0: .2

)
Prlly — u| = t] < 2e 20 +3Mt




Uniform Sampling for Sum Estimation

* Bernstein’s inequality: Let y4, ..., y,, € [—M, M| be independent
random variables and let y = y; + --- + y,, have mean u and variance
a?.Then for any t > 0: .2

)
Prlly — u| = t] < 2e 20 +3Mt

e Set M =%,t =§,and g - =§.Then
n (7’1/2)2
Pr{ly - ul 23] < ZeXp< 2(n/p) + (4/3><n/2p>)



Uniform Sampling for Sum Estimation

*Supposexq = =x, =1
* Suppose p; = p forall i € [n]

* What can we say about concentration?

* Can get a 2-approximation even forp = 0 (1)

n



Uniform Sampling for Sum Estimation

*Supposexq = =x, =1
* Suppose p; = p forall i € [n]

* What can we say about concentration?

* Can get a 2-approximation even forp = 0 (1)

n
* How many samples do we expect?



Uniform Sampling for Sum Estimation

*Supposexq = =x, =1
* Suppose p; = p forall i € [n]

* What can we say about concentration?

* Can get a 2-approximation even forp = 0 (1)

n
* How many samples do we expect? np = 0(1)



Uniform Sampling for Sum Estimation

* Suppose x4, ..., X, € |1,2]
* Suppose p; = p foralli € [n]

* Can we get a 2-approximation with high probability?



Uniform Sampling for Sum Estimation

* Bernstein’s inequality: Let y4, ..., y,, € [—M, M| be independent
random variables and let y = y; + --- + y,, have mean u and variance
a?.Then for any t > 0: .2

2
Prlly — u|l = t] < 2e 20 +3Mt

esetM =2 t =% and 02 ~ 2 Then
p 2 p
X (x/2)? )
Pr|ly —ul = =| < 2ex (
Iy —ul 23] < 200 2(4n/p) + (4/3)(x/p)



Uniform Sampling for Sum Estimation

* Suppose x4, ..., X, € |1,2]
* Suppose p; = p forall i € [n]

. _ X (x/2)*
For Pr [ly ,Ll| = 2] = Zexp( 2(4n/p)+(4/3)(x/p))' we
2

. 8n X
require —= ~ (E) and x can be assmallasn, sop = ~



Uniform Sampling for Sum Estimation

* Suppose x4, ..., X, € |1,2]
* Suppose p; = p forall i € [n]

* What can we say about concentration?

2

* Can get a 2-approximation for p = -

* How many samples do we expect? np is now slightly larger



Uniform Sampling for Sum Estimation

* Suppose xq, ..., x, € [1,100]
* Suppose p; = p foralli € [n]

* Can we get a 2-approximation with high probability?



Uniform Sampling for Sum Estimation

* Bernstein’s inequality: Let y4, ..., y,, € [—M, M| be independent
random variables and let y = y; + --- + y,, have mean u and variance
a?.Then for any t > 0:

t2
202+éMt
Prlly — u|l = t] < 2e 3
eset M =22 ¢t =% and 02 ~ 22°2%°" Then
p 2 p

(x/2)7 )

X
Pr [Iy —Hl = 5] = Zexp ( 2(10000n/p) + (4/3)(100x/p)



Uniform Sampling for Sum Estimation

* Suppose xq, ..., x, € [1,100]
* Suppose p; = p forall i € [n]

. (x/2)?

For PI‘[|)’ ul = ] 2€X p( 2(10000n/p)+(4/3)(1OOX/29))'

20000 (g 2
~\2

we require and x can be as small as n, so we
80000

n

heed p =~



Uniform Sampling for Sum Estimation

* Suppose xq, ..., x, € [1,100]
* Suppose p; = p forall i € [n]

* What can we say about concentration?
80000
n
* How many samples do we expect? np is now WAY larger

* Can get a 2-approximation even for p =



Uniform Sampling for Sum Estimation

* Suppose x4, ..., X, € |1,1]
* Suppose p; = p foralli € [n]

* Can we get a 2-approximation with high probability?



Uniform Sampling for Sum Estimation

* Bernstein’s inequality: Let y4, ..., y,, € [—M, M| be independent
random variables and let y = y; + --- + y,, have mean u and variance
a?.Then for any t > 0: .2

2
Prlly — u|l = t] < 2e 20 +3Mt

.
N (x/2)*
Pr [Iy — | = —] = Zexp( 2(n2/p) + (4/3)(nX/2P)>



Uniform Sampling for Sum Estimation

* Suppose x4, ..., X, € |1,1]
* Suppose p; = p forall i € [n]

. B x (x/2)?
For Pr [ly ,Ll| . 2] = Zexp( Z(nz/p)+(4/3)(nx/2p))' we
. 2n? x\ 2
require ey ~ (E) and x can be as small as n, so we need

p~1



Uniform Sampling for Sum Estimation

* Suppose x4, ..., X, € |1,1]
* Suppose p; = p forall i € [n]

* What can we say about concentration?
* Can get a 2-approximation forp =~ 1
* How many samples do we expect? np is now n



Uniform Sampling for Sum Estimation

* Suppose x4, ..., X, € |1,1]
* Suppose p; = p forall i € [n]

* Do we really need p to be a constant?



Uniform Sampling for Sum Estimation

* Suppose xq, ..., X, € |1, 1]
* Suppose p; = p forall i € [n]

* Do we really need p to be a constant? YES!

11111111111111111111nn



Sampling for Sum Estimation

* Consider a fixed set X = {x4, ..., x,;} of n numbers

* Suppose we sample each point x; with some probability p;

1
and rescale by —

Di

* What is the expected sum? E|y; + -+ y,,| = x; + ... + x,,
* What can we say about concentration?



Sampling for Sum Estimation

* Consider a fixed set X = {x4, ..., x,;} of n numbers

* What if we choose the probability p; different for each x;?



Sampling for Sum Estimation

* Consider a fixed set X = {x4, ..., x,;} of n numbers
* What if we choose the probability p; different for each x;?

* Choose p; proportional to x;



Importance Sampling for Sum Estimation

* Consider a fixed set X = {x4, ..., x,;} of n numbers
* What if we choose the probability p; different for each x;?

* Choose p; proportional to x;

*letx = x; + -+ x,, setp; =%



Importance Sampling for Sum Estimation

* Bernstein’s inequality: Let y4, ..., y,, € [—M, M| be independent
random variables and let y = y; + --- + y,, have mean u and variance
a?.Then for any t > 0: .2

2
Prlly — u|l = t] < 2e 20 +3Mt

e Sett = g What about M and g2?



Importance Sampling for Sum Estimation

* Can set M = x in Bernstein’s inequality



Importance Sampling for Sum Estimation

* What is the variance for each y;?

 Var|y;] <p— x? < x

 Var[y] = Var[y,] + -+ Var[y,] < x- (x; + -+ x,) = x?

2

p
2

* What is the variance for each y; under uniform sampling? %‘



Importance Sampling for Sum Estimation

* Bernstein’s inequality: Let y4, ..., y,, € [—M, M| be independent
random variables and let y = y; + --- + y,, have mean u and variance
a?.Then for any t > 0: .2

2
Prlly — u|l = t] < 2e 20 +3Mt

eSetM = x, t =§,and g’ =~ x?.Then

(x/2)7 )

X
Prly =l = 5| < 2exp ( 237+ (4/3)(x7/2)



Importance Sampling for Sum Estimation

* Suppose x4, ..., X, € |1,1]

* Suppose p; = %for all i € [n]

* Can get a 2-approximation for importance sampling
X

X .
* How many samples do we expect? xl x" = 1,sojusta
constant number of samples!
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