CSCE 689: Special Topics in Modern Algorithms for Data Science

Lecture 23

Samson Zhou

Presentation Schedule

- November 27: Chunkai, Jung, Galaxy Al
- November 29: STMI, Anmol, Jason
- December 1: Bokun, Ayesha, Dawei, Lipai

Last Time: *k*-Clustering

- Goal: Given input dataset X, partition X so that "similar" points are in the same cluster and "different" points are in different clusters
- There can be at most *k* different clusters

Last Time: k-Clustering

• Define clustering cost Cost(X, C) to be a function of ${\operatorname{dist}(x,C)}_{x\in C}$

(·)^z

 $(\cdot)^{Z}$

 $(\cdot)^{z}$

- k-center: $Cost(X, C) = \max_{x \in X} dist(x, C)$ k-median: $Cost(X, C) = \sum_{x \in X} dist(x, C)$
- k-means: $Cost(X, C) = \sum_{x \in X} (dist(x, C))^2$
- (k, z)-clustering: $Cost(X, C) = \sum_{x \in X} (dist(x, C))^{z}$

• Merge-and-reduce framework

• Suppose there exists a $(1 + \varepsilon)$ -coreset construction for (k, z)-clustering that uses $f\left(k, \frac{1}{\varepsilon}\right)$ weighted input points $\int \tilde{o}\left(\frac{k^2}{\varepsilon^2}\right)$ • Partition the stream into blocks containing $f\left(k, \frac{\log n}{\varepsilon}\right)$ points

• Partition the stream into blocks containing $f\left(k, \frac{\log n}{s}\right)$ points

• Create a $\left(1 + \frac{\varepsilon}{\log n}\right)$ -coreset for each block • Create a $\left(1 + \frac{\varepsilon}{\log n}\right)$ -coreset for the set of points formed by the union of two coresets for each block Reduce

- Partition the stream into blocks containing $f\left(k, \frac{\log n}{c}\right)$ points
- Create a $\left(1 + \frac{\varepsilon}{\log n}\right)$ -coreset for each block
- Create a $\left(1 + \frac{\varepsilon}{\log n}\right)$ -coreset for the set of points formed by the union of two coresets for each block

- There are $O(\log n)$ levels
- Each coreset is a $\left(1 + \frac{\varepsilon}{\log n}\right)$ -coreset of two coresets
- Total approximation is $\left(1 + \frac{\varepsilon}{\log n}\right)^{\log n} = (1 + O(\varepsilon))$

Previously: Bernstein's Inequality

• Bernstein's inequality: Let $X_1, ..., X_n \in [-M, M]$ be independent random variables and let $X = X_1 + \cdots + X_n$ have mean μ and variance σ^2 . Then for any $t \ge 0$:

 $\Pr[|X - \mu| \ge t] \le 2e^{-\frac{t^2}{2\sigma^2 + \frac{4}{3}Mt}}$

• Example: Suppose M = 1 and let $t = k\sigma$. Then $\Pr[|X - \mu| \ge k\sigma] \le 2\exp\left(-\frac{k^2}{4}\right)$

- Consider a fixed set $X = \{x_1, ..., x_n\}$ of n numbers
- Suppose we sample each point x_i with some probability p_i and rescale by $\frac{1}{p_i}$
- What is the expected sum?

- Let y_i be the contribution of the sample corresponding to x_i
- $y_i = 0$ with probability $1 p_i$ • $y_i = \frac{1}{p_i} \cdot x_i$ with probability p_i
- $\mathrm{E}[y_i] = x_i$
- $E[y_1 + \dots + y_n] = x_1 + \dots + x_n$

- Suppose we sample each point x_i with some probability p_i and rescale by $\frac{1}{p_i}$
- What is the expected sum? $E[y_1 + \cdots + y_n] = x_1 + \ldots + x_n$

- Suppose we sample each point x_i with some probability p_i and rescale by $\frac{1}{p_i}$
- What is the expected sum? $E[y_1 + \cdots + y_n] = x_1 + \ldots + x_n$
- What can we say about concentration?

- Suppose we sample each point x_i with some probability p_i and rescale by $\frac{1}{p_i}$
- Suppose $p_i = p$ for all $i \in [n]$
- What can we say about concentration?

- Suppose $x_1 = \cdots = x_n = 1$
- Suppose $p_i = p$ for all $i \in [n]$
- What can we say about concentration?
- Can we get a 2-approximation with high probability?

• Bernstein's inequality: Let $y_1, ..., y_n \in [-M, M]$ be independent random variables and let $y = y_1 + \cdots + y_n$ have mean μ and variance σ^2 . Then for any $t \ge 0$:

 $\Pr[|y - \mu| \ge t] \le 2e^{-\frac{\sigma^2}{2\sigma^2 + \frac{4}{3}Mt}}$

• Bernstein's inequality: Let $y_1, ..., y_n \in [-M, M]$ be independent random variables and let $y = y_1 + \cdots + y_n$ have mean μ and variance σ^2 . Then for any $t \ge 0$:

$$\Pr[|y - \mu| \ge t] \le 2e^{-\frac{2\sigma^2 + \frac{4}{3}Mt}{2\sigma^2 + \frac{4}{3}Mt}}$$

• Set
$$M = \frac{1}{p}$$
, $t = \frac{n}{2}$, and $\sigma^2 = \frac{n}{p}$. Then
 $\Pr\left[|y - \mu| \ge \frac{n}{2}\right] \le 2\exp\left(-\frac{(n/2)^2}{2(n/p) + (4/3)(n/2p)}\right)$

- Suppose $x_1 = \cdots = x_n = 1$
- Suppose $p_i = p$ for all $i \in [n]$
- What can we say about concentration?
- Can get a 2-approximation even for $p = \Theta\left(\frac{1}{n}\right)$

- Suppose $x_1 = \cdots = x_n = 1$
- Suppose $p_i = p$ for all $i \in [n]$
- What can we say about concentration?
- Can get a 2-approximation even for $p = \Theta\left(\frac{1}{n}\right)$
- How many samples do we expect?

- Suppose $x_1 = \cdots = x_n = 1$
- Suppose $p_i = p$ for all $i \in [n]$
- What can we say about concentration?
- Can get a 2-approximation even for $p = \Theta\left(\frac{1}{n}\right)$
- How many samples do we expect? $np = \Theta(1)$

- Suppose $x_1, ..., x_n \in [1, 2]$
- Suppose $p_i = p$ for all $i \in [n]$
- Can we get a 2-approximation with high probability?

• Bernstein's inequality: Let $y_1, ..., y_n \in [-M, M]$ be independent random variables and let $y = y_1 + \cdots + y_n$ have mean μ and variance σ^2 . Then for any $t \ge 0$:

$$\Pr[|y - \mu| \ge t] \le 2e^{-\frac{2\sigma^2 + \frac{4}{3}Mt}{3}}$$

• Set
$$M = \frac{2}{p}$$
, $t = \frac{x}{2}$, and $\sigma^2 \approx \frac{4n}{p}$. Then
 $\Pr\left[|y - \mu| \ge \frac{x}{2}\right] \le 2\exp\left(-\frac{(x/2)^2}{2(4n/p) + (4/3)(x/p)}\right)$

- Suppose $x_1, ..., x_n \in [1, 2]$
- Suppose $p_i = p$ for all $i \in [n]$

• For
$$\Pr\left[|y - \mu| \ge \frac{x}{2}\right] \le 2\exp\left(-\frac{(x/2)^2}{2(4n/p) + (4/3)(x/p)}\right)$$
, we require $\frac{8n}{p} \approx \left(\frac{x}{2}\right)^2$ and x can be as small as n , so $p \approx \frac{2}{n}$

- Suppose $x_1, ..., x_n \in [1, 2]$
- Suppose $p_i = p$ for all $i \in [n]$
- What can we say about concentration?
- Can get a 2-approximation for $p \approx \frac{2}{n}$
- How many samples do we expect? np is now slightly larger

- Suppose $x_1, ..., x_n \in [1, 100]$
- Suppose $p_i = p$ for all $i \in [n]$
- Can we get a 2-approximation with high probability?

• Bernstein's inequality: Let $y_1, ..., y_n \in [-M, M]$ be independent random variables and let $y = y_1 + \cdots + y_n$ have mean μ and variance σ^2 . Then for any $t \ge 0$:

$$\Pr[|y - \mu| \ge t] \le 2e^{-\frac{2\sigma^2 + \frac{4}{3}Mt}{3}}$$

• Set
$$M = \frac{100}{p}$$
, $t = \frac{x}{2}$, and $\sigma^2 \approx \frac{10000n}{p}$. Then
 $\Pr\left[|y - \mu| \ge \frac{x}{2}\right] \le 2\exp\left(-\frac{(x/2)^2}{2(10000n/p) + (4/3)(100x/p)}\right)$

- Suppose $x_1, ..., x_n \in [1, 100]$
- Suppose $p_i = p$ for all $i \in [n]$

• For
$$\Pr\left[|y-\mu| \ge \frac{x}{2}\right] \le 2\exp\left(-\frac{(x/2)^2}{2(10000n/p)+(4/3)(100x/p)}\right)$$
,
we require $\frac{20000n}{p} \approx \left(\frac{x}{2}\right)^2$ and x can be as small as n , so we
need $p \approx \frac{80000}{n}$

- Suppose $x_1, ..., x_n \in [1, 100]$
- Suppose $p_i = p$ for all $i \in [n]$
- What can we say about concentration?
- Can get a 2-approximation even for $p \approx \frac{80000}{r}$
- How many samples do we expect? np is now WAY larger

- Suppose $x_1, ..., x_n \in [1, n]$
- Suppose $p_i = p$ for all $i \in [n]$
- Can we get a 2-approximation with high probability?

• Bernstein's inequality: Let $y_1, ..., y_n \in [-M, M]$ be independent random variables and let $y = y_1 + \cdots + y_n$ have mean μ and variance σ^2 . Then for any $t \ge 0$:

$$\Pr[|y - \mu| \ge t] \le 2e^{-\frac{2\sigma^2 + \frac{4}{3}Mt}{3}}$$

• Set
$$M = \frac{n}{p}$$
, $t = \frac{x}{2}$, and $\sigma^2 \approx \frac{n^2}{p}$. Then
 $\Pr\left[|y - \mu| \ge \frac{x}{2}\right] \le 2\exp\left(-\frac{(x/2)^2}{2(n^2/p) + (4/3)(nx/2p)}\right)$

- Suppose $x_1, ..., x_n \in [1, n]$
- Suppose $p_i = p$ for all $i \in [n]$

• For
$$\Pr\left[|y - \mu| \ge \frac{x}{2}\right] \le 2\exp\left(-\frac{(x/2)^2}{2(n^2/p) + (4/3)(nx/2p)}\right)$$
, we require $\frac{2n^2}{p} \approx \left(\frac{x}{2}\right)^2$ and x can be as small as n , so we need $p \approx 1$

- Suppose $x_1, \dots, x_n \in [1, n]$
- Suppose $p_i = p$ for all $i \in [n]$
- What can we say about concentration?
- Can get a 2-approximation for $p \approx 1$
- How many samples do we expect? *np* is now *n*

- Suppose $x_1, ..., x_n \in [1, n]$
- Suppose $p_i = p$ for all $i \in [n]$
- Do we really need *p* to be a constant?

- Suppose $x_1, ..., x_n \in [1, n]$
- Suppose $p_i = p$ for all $i \in [n]$
- Do we really need *p* to be a constant? YES!

- Suppose we sample each point x_i with some probability p_i and rescale by $\frac{1}{p_i}$
- What is the expected sum? $E[y_1 + \cdots + y_n] = x_1 + \ldots + x_n$
- What can we say about concentration?

- Consider a fixed set $X = \{x_1, ..., x_n\}$ of n numbers
- What if we choose the probability p_i different for each x_i ?

- Consider a fixed set $X = \{x_1, ..., x_n\}$ of n numbers
- What if we choose the probability p_i different for each x_i ?

• Choose p_i proportional to x_i

- Consider a fixed set $X = \{x_1, ..., x_n\}$ of n numbers
- What if we choose the probability p_i different for each x_i ?

• Choose p_i proportional to x_i

• Let
$$x = x_1 + \dots + x_n$$
, set $p_i = \frac{x_i}{x}$

• Bernstein's inequality: Let $y_1, ..., y_n \in [-M, M]$ be independent random variables and let $y = y_1 + \cdots + y_n$ have mean μ and variance σ^2 . Then for any $t \ge 0$:

$$\Pr[|y - \mu| \ge t] \le 2e^{-\frac{1}{2\sigma^2 + \frac{4}{3}Mt}}$$

• Set
$$t = \frac{x}{2}$$
. What about *M* and σ^2 ?

•
$$y_i \leq \frac{1}{p} \cdot x_i = \frac{x}{x_i} \cdot x_i = x$$

• Can set M = x in Bernstein's inequality

• What is the variance for each y_i ?

•
$$\operatorname{Var}[y_i] \leq \frac{1}{p_i} \cdot x_i^2 \leq x_i \cdot x$$

• $\operatorname{Var}[y] = \operatorname{Var}[y_1] + \dots + \operatorname{Var}[y_n] \leq x \cdot (x_1 + \dots + x_n) = x^2$
• What is the variance for y under uniform sampling? $\frac{nx_i^2}{p}$
• What is the variance for each y_i under uniform sampling? $\frac{x_i^2}{p}$

• Bernstein's inequality: Let $y_1, ..., y_n \in [-M, M]$ be independent random variables and let $y = y_1 + \cdots + y_n$ have mean μ and variance σ^2 . Then for any $t \ge 0$:

$$\Pr[|y - \mu| \ge t] \le 2e^{-\frac{2\sigma^2 + \frac{4}{3}Mt}{3}}$$

• Set
$$M = x$$
, $t = \frac{x}{2}$, and $\sigma^2 \approx x^2$. Then

$$\Pr\left[|y - \mu| \ge \frac{x}{2}\right] \le 2\exp\left(-\frac{(x/2)^2}{2x^2 + (4/3)(x^2/2)}\right)$$

- Suppose $x_1, \dots, x_n \in [1, n]$
- Suppose $p_i = \frac{x_i}{x}$ for all $i \in [n]$
- Can get a 2-approximation for importance sampling
- How many samples do we expect? $\frac{x_1}{x} + \dots + \frac{x_n}{x} = 1$, so just a constant number of samples!