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Presentation Schedule

• November 27: Chunkai, Jung, Galaxy AI

• November 29: STMI, Anmol, Jason

• December 1: Bokun, Ayesha, Dawei, Lipai





Last Time: 𝑘-Clustering

• Goal: Given input dataset 𝑋, partition 𝑋 so that “similar” points are in 
the same cluster and “different” points are in different clusters

• There can be at most 𝑘 different clusters

𝑘 = 3



Last Time: 𝑘-Clustering

• Define clustering cost Cost 𝑋, 𝐶  to be a function of 
dist 𝑥, 𝐶 𝑥∈𝐶

• 𝑘-center: Cost 𝑋, 𝐶 = max
𝑥∈𝑋

dist(𝑥, 𝐶)

• 𝑘-median: Cost 𝑋, 𝐶 = σ𝑥∈𝑋 dist 𝑥, 𝐶

• 𝑘-means: Cost 𝑋, 𝐶 = σ𝑥∈𝑋 dist 𝑥, 𝐶
2

• (𝑘, 𝑧)-clustering: Cost 𝑋, 𝐶 = σ𝑥∈𝑋 dist 𝑥, 𝐶
𝑧
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Last Time: (𝑘, 𝑧)-Clustering in the Streaming 
Model

• Merge-and-reduce framework

• Suppose there exists a (1 + 𝜀)-coreset construction for 

(𝑘, 𝑧)-clustering that uses 𝑓 𝑘,
1

𝜀
 weighted input points 

• Partition the stream into blocks containing 𝑓 𝑘,
log 𝑛

𝜀
 points

෨𝑂
𝑘2

𝜀2



Last Time: (𝑘, 𝑧)-Clustering in the Streaming 
Model

• Partition the stream into blocks containing 𝑓 𝑘,
log 𝑛

𝜀
 points

• Create a 1 +
𝜀

log 𝑛
-coreset for each block

• Create a 1 +
𝜀

log 𝑛
-coreset for the set of points formed by 

the union of two coresets for each block

Merge

Reduce



Last Time: (𝑘, 𝑧)-Clustering in the Streaming 
Model

• Partition the stream into blocks containing 𝑓 𝑘,
log 𝑛

𝜀
 points

• Create a 1 +
𝜀

log 𝑛
-coreset for each block

• Create a 1 +
𝜀

log 𝑛
-coreset for the set of points formed by 

the union of two coresets for each block



Last Time: (𝑘, 𝑧)-Clustering in the Streaming 
Model

• There are 𝑂 log 𝑛  levels

• Each coreset is a 1 +
𝜀

log 𝑛
-coreset of two coresets

• Total approximation is 1 +
𝜀

log 𝑛

log 𝑛
= (1 + 𝑂 𝜀 )



Previously: Bernstein’s Inequality

• Bernstein’s inequality: Let 𝑋1, … , 𝑋𝑛 ∈ [−𝑀, 𝑀] be independent 
random variables and let 𝑋 = 𝑋1 + ⋯ + 𝑋𝑛 have mean 𝜇 and 
variance 𝜎2. Then for any 𝑡 ≥ 0:

• Example: Suppose 𝑀 = 1 and let 𝑡 = 𝑘𝜎. Then

Pr 𝑋 − 𝜇 ≥ 𝑘𝜎 ≤ 2exp −
𝑘2

4

Pr 𝑋 − 𝜇 ≥ 𝑡 ≤ 2𝑒
−

𝑡2

2𝜎2+
4
3

𝑀𝑡



Sampling for Sum Estimation

• Consider a fixed set 𝑋 = {𝑥1, … , 𝑥𝑛} of 𝑛 numbers

• Suppose we sample each point 𝑥𝑖  with some probability 𝑝𝑖 

and rescale by 
1

𝑝𝑖

• What is the expected sum?



Sampling for Sum Estimation

• Let 𝑦𝑖 be the contribution of the sample corresponding to 𝑥𝑖  

• 𝑦𝑖 = 0 with probability 1 − 𝑝𝑖 

• 𝑦𝑖 =
1

𝑝𝑖
⋅ 𝑥𝑖  with probability 𝑝𝑖 

• E 𝑦𝑖 = 𝑥𝑖

• E 𝑦1 + ⋯ + 𝑦𝑛 = 𝑥1 +  … + 𝑥𝑛



Sampling for Sum Estimation

• Consider a fixed set 𝑋 = {𝑥1, … , 𝑥𝑛} of 𝑛 numbers

• Suppose we sample each point 𝑥𝑖  with some probability 𝑝𝑖 

and rescale by 
1

𝑝𝑖

• What is the expected sum? E 𝑦1 + ⋯ + 𝑦𝑛 = 𝑥1 +  … + 𝑥𝑛



Sampling for Sum Estimation

• Consider a fixed set 𝑋 = {𝑥1, … , 𝑥𝑛} of 𝑛 numbers

• Suppose we sample each point 𝑥𝑖  with some probability 𝑝𝑖 

and rescale by 
1

𝑝𝑖

• What is the expected sum? E 𝑦1 + ⋯ + 𝑦𝑛 = 𝑥1 +  … + 𝑥𝑛

• What can we say about concentration?



Uniform Sampling for Sum Estimation

• Consider a fixed set 𝑋 = {𝑥1, … , 𝑥𝑛} of 𝑛 numbers

• Suppose we sample each point 𝑥𝑖  with some probability 𝑝𝑖 

and rescale by 
1

𝑝𝑖

• Suppose 𝑝𝑖 = 𝑝 for all 𝑖 ∈ [𝑛] 

• What can we say about concentration?



Uniform Sampling for Sum Estimation

• Suppose 𝑥1 = ⋯ = 𝑥𝑛 = 1

• Suppose 𝑝𝑖 = 𝑝 for all 𝑖 ∈ [𝑛] 

• What can we say about concentration?

• Can we get a 2-approximation with high probability?



Uniform Sampling for Sum Estimation

• Bernstein’s inequality: Let 𝑦1, … , 𝑦𝑛 ∈ [−𝑀, 𝑀] be independent 
random variables and let 𝑦 = 𝑦1 + ⋯ + 𝑦𝑛 have mean 𝜇 and variance 
𝜎2. Then for any 𝑡 ≥ 0:

Pr 𝑦 − 𝜇 ≥ 𝑡 ≤ 2𝑒
−

𝑡2

2𝜎2+
4
3

𝑀𝑡



Uniform Sampling for Sum Estimation

• Bernstein’s inequality: Let 𝑦1, … , 𝑦𝑛 ∈ [−𝑀, 𝑀] be independent 
random variables and let 𝑦 = 𝑦1 + ⋯ + 𝑦𝑛 have mean 𝜇 and variance 
𝜎2. Then for any 𝑡 ≥ 0:

• Set 𝑀 =
1

𝑝
 , 𝑡 =

𝑛

2
, and 𝜎2 =

𝑛

𝑝
. Then

Pr 𝑦 − 𝜇 ≥
𝑛

2
≤ 2exp −

𝑛/2 2

2 𝑛/𝑝 + (4/3)(𝑛/2𝑝)

Pr 𝑦 − 𝜇 ≥ 𝑡 ≤ 2𝑒
−

𝑡2

2𝜎2+
4
3

𝑀𝑡



Uniform Sampling for Sum Estimation

• Suppose 𝑥1 = ⋯ = 𝑥𝑛 = 1

• Suppose 𝑝𝑖 = 𝑝 for all 𝑖 ∈ [𝑛] 

• What can we say about concentration?

• Can get a 2-approximation even for 𝑝 = Θ
1

𝑛



Uniform Sampling for Sum Estimation

• Suppose 𝑥1 = ⋯ = 𝑥𝑛 = 1

• Suppose 𝑝𝑖 = 𝑝 for all 𝑖 ∈ [𝑛] 

• What can we say about concentration?

• Can get a 2-approximation even for 𝑝 = Θ
1

𝑛

• How many samples do we expect?



Uniform Sampling for Sum Estimation

• Suppose 𝑥1 = ⋯ = 𝑥𝑛 = 1

• Suppose 𝑝𝑖 = 𝑝 for all 𝑖 ∈ [𝑛] 

• What can we say about concentration?

• Can get a 2-approximation even for 𝑝 = Θ
1

𝑛

• How many samples do we expect? 𝑛𝑝 = Θ 1



Uniform Sampling for Sum Estimation

• Suppose 𝑥1, … , 𝑥𝑛 ∈ [1,2]

• Suppose 𝑝𝑖 = 𝑝 for all 𝑖 ∈ [𝑛]

• Can we get a 2-approximation with high probability?



Uniform Sampling for Sum Estimation

• Bernstein’s inequality: Let 𝑦1, … , 𝑦𝑛 ∈ [−𝑀, 𝑀] be independent 
random variables and let 𝑦 = 𝑦1 + ⋯ + 𝑦𝑛 have mean 𝜇 and variance 
𝜎2. Then for any 𝑡 ≥ 0:

• Set 𝑀 =
2

𝑝
 , 𝑡 =

𝑥

2
, and 𝜎2 ≈

4𝑛

𝑝
. Then

Pr 𝑦 − 𝜇 ≥
𝑥

2
≤ 2exp −

𝑥/2 2

2 4𝑛/𝑝 + (4/3)(𝑥/𝑝)

Pr 𝑦 − 𝜇 ≥ 𝑡 ≤ 2𝑒
−

𝑡2

2𝜎2+
4
3

𝑀𝑡



Uniform Sampling for Sum Estimation

• Suppose 𝑥1, … , 𝑥𝑛 ∈ [1,2]

• Suppose 𝑝𝑖 = 𝑝 for all 𝑖 ∈ [𝑛]

• For Pr 𝑦 − 𝜇 ≥
𝑥

2
≤ 2exp −

𝑥/2 2

2 4𝑛/𝑝 +(4/3)(𝑥/𝑝)
, we 

require 
8𝑛

𝑝
≈

𝑥

2

2
 and 𝑥 can be as small as 𝑛, so 𝑝 ≈

2

𝑛



Uniform Sampling for Sum Estimation

• Suppose 𝑥1, … , 𝑥𝑛 ∈ [1,2]

• Suppose 𝑝𝑖 = 𝑝 for all 𝑖 ∈ [𝑛]

• What can we say about concentration?

• Can get a 2-approximation for 𝑝 ≈
2

𝑛

• How many samples do we expect? 𝑛𝑝 is now slightly larger



Uniform Sampling for Sum Estimation

• Suppose 𝑥1, … , 𝑥𝑛 ∈ [1,100]

• Suppose 𝑝𝑖 = 𝑝 for all 𝑖 ∈ [𝑛]

• Can we get a 2-approximation with high probability?



Uniform Sampling for Sum Estimation

• Bernstein’s inequality: Let 𝑦1, … , 𝑦𝑛 ∈ [−𝑀, 𝑀] be independent 
random variables and let 𝑦 = 𝑦1 + ⋯ + 𝑦𝑛 have mean 𝜇 and variance 
𝜎2. Then for any 𝑡 ≥ 0:

• Set 𝑀 =
100

𝑝
 , 𝑡 =

𝑥

2
, and 𝜎2 ≈

10000𝑛

𝑝
. Then

Pr 𝑦 − 𝜇 ≥
𝑥

2
≤ 2exp −

𝑥/2 2

2 10000𝑛/𝑝 + (4/3)(100𝑥/𝑝)

Pr 𝑦 − 𝜇 ≥ 𝑡 ≤ 2𝑒
−

𝑡2

2𝜎2+
4
3

𝑀𝑡



Uniform Sampling for Sum Estimation

• Suppose 𝑥1, … , 𝑥𝑛 ∈ [1,100]

• Suppose 𝑝𝑖 = 𝑝 for all 𝑖 ∈ [𝑛]

• For Pr 𝑦 − 𝜇 ≥
𝑥

2
≤ 2exp −

𝑥/2 2

2 10000𝑛/𝑝 +(4/3)(100𝑥/𝑝)
, 

we require 
20000𝑛

𝑝
≈

𝑥

2

2
 and 𝑥 can be as small as 𝑛, so we 

need 𝑝 ≈
80000

𝑛



Uniform Sampling for Sum Estimation

• Suppose 𝑥1, … , 𝑥𝑛 ∈ [1,100]

• Suppose 𝑝𝑖 = 𝑝 for all 𝑖 ∈ [𝑛]

• What can we say about concentration?

• Can get a 2-approximation even for 𝑝 ≈
80000

𝑛

• How many samples do we expect? 𝑛𝑝 is now WAY larger



Uniform Sampling for Sum Estimation

• Suppose 𝑥1, … , 𝑥𝑛 ∈ [1, 𝑛]

• Suppose 𝑝𝑖 = 𝑝 for all 𝑖 ∈ [𝑛]

• Can we get a 2-approximation with high probability?



Uniform Sampling for Sum Estimation

• Bernstein’s inequality: Let 𝑦1, … , 𝑦𝑛 ∈ [−𝑀, 𝑀] be independent 
random variables and let 𝑦 = 𝑦1 + ⋯ + 𝑦𝑛 have mean 𝜇 and variance 
𝜎2. Then for any 𝑡 ≥ 0:

• Set 𝑀 =
𝑛

𝑝
 , 𝑡 =

𝑥

2
, and 𝜎2 ≈

𝑛2

𝑝
. Then

Pr 𝑦 − 𝜇 ≥
𝑥

2
≤ 2exp −

𝑥/2 2

2 𝑛2/𝑝 + (4/3)(𝑛𝑥/2𝑝)

Pr 𝑦 − 𝜇 ≥ 𝑡 ≤ 2𝑒
−

𝑡2

2𝜎2+
4
3

𝑀𝑡



Uniform Sampling for Sum Estimation

• Suppose 𝑥1, … , 𝑥𝑛 ∈ [1, 𝑛]

• Suppose 𝑝𝑖 = 𝑝 for all 𝑖 ∈ [𝑛]

• For Pr 𝑦 − 𝜇 ≥
𝑥

2
≤ 2exp −

𝑥/2 2

2 𝑛2/𝑝 +(4/3)(𝑛𝑥/2𝑝)
, we 

require 
2𝑛2

𝑝
≈

𝑥

2

2
 and 𝑥 can be as small as 𝑛, so we need 

𝑝 ≈ 1



Uniform Sampling for Sum Estimation

• Suppose 𝑥1, … , 𝑥𝑛 ∈ [1, 𝑛]

• Suppose 𝑝𝑖 = 𝑝 for all 𝑖 ∈ [𝑛]

• What can we say about concentration?

• Can get a 2-approximation for 𝑝 ≈ 1

• How many samples do we expect? 𝑛𝑝 is now 𝑛



Uniform Sampling for Sum Estimation

• Suppose 𝑥1, … , 𝑥𝑛 ∈ [1, 𝑛]

• Suppose 𝑝𝑖 = 𝑝 for all 𝑖 ∈ [𝑛]

• Do we really need 𝑝 to be a constant?



Uniform Sampling for Sum Estimation

• Suppose 𝑥1, … , 𝑥𝑛 ∈ [1, 𝑛]

• Suppose 𝑝𝑖 = 𝑝 for all 𝑖 ∈ [𝑛]

• Do we really need 𝑝 to be a constant? YES!

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 𝑛 𝑛



Sampling for Sum Estimation

• Consider a fixed set 𝑋 = {𝑥1, … , 𝑥𝑛} of 𝑛 numbers

• Suppose we sample each point 𝑥𝑖  with some probability 𝑝𝑖 

and rescale by 
1

𝑝𝑖

• What is the expected sum? E 𝑦1 + ⋯ + 𝑦𝑛 = 𝑥1 +  … + 𝑥𝑛

• What can we say about concentration?



Sampling for Sum Estimation

• Consider a fixed set 𝑋 = {𝑥1, … , 𝑥𝑛} of 𝑛 numbers

• What if we choose the probability 𝑝𝑖 different for each 𝑥𝑖?



Sampling for Sum Estimation

• Consider a fixed set 𝑋 = {𝑥1, … , 𝑥𝑛} of 𝑛 numbers

• What if we choose the probability 𝑝𝑖 different for each 𝑥𝑖?

• Choose 𝑝𝑖 proportional to 𝑥𝑖



Importance Sampling for Sum Estimation

• Consider a fixed set 𝑋 = {𝑥1, … , 𝑥𝑛} of 𝑛 numbers

• What if we choose the probability 𝑝𝑖 different for each 𝑥𝑖?

• Choose 𝑝𝑖 proportional to 𝑥𝑖

• Let 𝑥 = 𝑥1 + ⋯ + 𝑥𝑛, set 𝑝𝑖 =
𝑥𝑖

𝑥
 



Importance Sampling for Sum Estimation

• Bernstein’s inequality: Let 𝑦1, … , 𝑦𝑛 ∈ [−𝑀, 𝑀] be independent 
random variables and let 𝑦 = 𝑦1 + ⋯ + 𝑦𝑛 have mean 𝜇 and variance 
𝜎2. Then for any 𝑡 ≥ 0:

• Set 𝑡 =
𝑥

2
. What about 𝑀 and 𝜎2?

Pr 𝑦 − 𝜇 ≥ 𝑡 ≤ 2𝑒
−

𝑡2

2𝜎2+
4
3

𝑀𝑡



Importance Sampling for Sum Estimation

• 𝑦𝑖 ≤
1

𝑝
⋅ 𝑥𝑖 =

𝑥

𝑥𝑖
⋅ 𝑥𝑖 = 𝑥

• Can set 𝑀 = 𝑥 in Bernstein’s inequality



Importance Sampling for Sum Estimation

• What is the variance for each 𝑦𝑖?

• Var 𝑦𝑖 ≤
1

𝑝𝑖
⋅ 𝑥𝑖

2 ≤ 𝑥𝑖 ⋅ 𝑥

• Var 𝑦 = Var 𝑦1 + ⋯ + Var 𝑦𝑛 ≤ 𝑥 ⋅ 𝑥1 + ⋯ + 𝑥𝑛 = 𝑥2

• What is the variance for 𝑦 under uniform sampling? 
𝑛𝑥𝑖

2

𝑝

• What is the variance for each 𝑦𝑖 under uniform sampling? 
𝑥𝑖

2

𝑝



Importance Sampling for Sum Estimation

• Bernstein’s inequality: Let 𝑦1, … , 𝑦𝑛 ∈ [−𝑀, 𝑀] be independent 
random variables and let 𝑦 = 𝑦1 + ⋯ + 𝑦𝑛 have mean 𝜇 and variance 
𝜎2. Then for any 𝑡 ≥ 0:

• Set 𝑀 = 𝑥, 𝑡 =
𝑥

2
, and 𝜎2 ≈ 𝑥2. Then

Pr 𝑦 − 𝜇 ≥
𝑥

2
≤ 2exp −

𝑥/2 2

2𝑥2 + (4/3)(𝑥2/2)

Pr 𝑦 − 𝜇 ≥ 𝑡 ≤ 2𝑒
−

𝑡2

2𝜎2+
4
3

𝑀𝑡



Importance Sampling for Sum Estimation

• Suppose 𝑥1, … , 𝑥𝑛 ∈ [1, 𝑛]

• Suppose 𝑝𝑖 =
𝑥𝑖

𝑥
 for all 𝑖 ∈ [𝑛]

• Can get a 2-approximation for importance sampling

• How many samples do we expect? 
𝑥1

𝑥
+ ⋯ +

𝑥𝑛

𝑥
= 1, so just a 

constant number of samples!
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