CSCE 689: Special Topics in Modern Algorithms for Data Science

Lecture 24

Samson Zhou

Presentation Schedule

- November 27: Chunkai, Jung, Galaxy Al
- November 29: STMI, Anmol, Jason
- December 1: Bokun, Ayesha, Dawei, Lipai

Previously: Coreset

• Subset X' of representative points of X for a specific clustering objective

0

0 0

• $Cost(X, C) \approx Cost(X', C)$ for all sets C with |C| = k

Previously: Coreset

• Given a set X and an accuracy parameter $\varepsilon > 0$, we say a set X' with weight function w is an $(1 + \varepsilon)$ -multiplicative coreset for a cost function Cost, if for all queries C with $|C| \le k$, we have

 $(1 - \varepsilon)\operatorname{Cost}(X, C) \le \operatorname{Cost}(X', C, w) \le (1 + \varepsilon)\operatorname{Cost}(X, C)$ $(k, z) \text{-clustering: } \operatorname{Cost}(X', C, w) = \sum_{x \in X'} w(x) \cdot \left(\operatorname{dist}(x, C)\right)^{z}$

Previously: Bernstein's Inequality

• Bernstein's inequality: Let $X_1, ..., X_n \in [-M, M]$ be independent random variables and let $X = X_1 + \cdots + X_n$ have mean μ and variance σ^2 . Then for any $t \ge 0$:

 $\Pr[|X - \mu| \ge t] \le 2e^{-\frac{t^2}{2\sigma^2 + \frac{4}{3}Mt}}$

• Example: Suppose M = 1 and let $t = k\sigma$. Then $\Pr[|X - \mu| \ge k\sigma] \le 2\exp\left(-\frac{k^2}{4}\right)$

Last Time: Sampling for Sum Estimation

• Consider a fixed set $X = \{x_1, ..., x_n\}$ of n numbers

- Suppose we sample each point x_i with some probability p_i and rescale by $\frac{1}{p_i}$
- What is the expected sum? $E[y_1 + \cdots + y_n] = x_1 + \ldots + x_n$
- What can we say about concentration?

Last Time: Uniform Sampling for Sum Estimation

- Suppose $x_1 = \cdots = x_n = 1$
- Suppose $p_i = p$ for all $i \in [n]$
- What can we say about concentration?
- Can get a 2-approximation even for $p = \Theta\left(\frac{1}{n}\right)$
- How many samples do we expect? $np = \Theta(1)$

Last Time: Uniform Sampling for Sum Estimation

- Suppose $x_1, ..., x_n \in [1, 100]$
- Suppose $p_i = p$ for all $i \in [n]$
- What can we say about concentration?
- Can get a 2-approximation even for $p \approx \frac{80000}{n}$
- How many samples do we expect? np is now WAY larger

Last Time: Uniform Sampling for Sum Estimation

- Suppose $x_1, \dots, x_n \in [1, n]$
- Suppose $p_i = p$ for all $i \in [n]$
- What can we say about concentration?
- Can get a 2-approximation for $p \approx 1$
- How many samples do we expect? *np* is now *n*

Uniform Sampling for Sum Estimation

- Suppose $x_1, ..., x_n \in [1, n]$
- Suppose $p_i = p$ for all $i \in [n]$
- Do we really need *p* to be a constant? YES!

Last Time: Importance Sampling for Sum Estimation

- Suppose $x_1, \dots, x_n \in [1, n]$
- Suppose $p_i = \frac{x_i}{x}$ for all $i \in [n]$
- Can get a 2-approximation for importance sampling
- How many samples do we expect? $\frac{x_1}{x} + \dots + \frac{x_n}{x} = 1$, so just a constant number of samples!

 Consider a fixed set X and a fixed set C of k centers, which induces a fixed cost Cost(X, C)

- Consider a fixed set X and a fixed set C of k centers, which induces a fixed cost Cost(X, C)
- A simple way to obtain X' with $Cost(X', C) \approx Cost(X, C)$ is to uniformly sample points of X into X'

 Consider a fixed set X and a fixed set C of k centers, which induces a fixed cost Cost(X, C)

• Suppose all points have the same cost, $Cost(x, C) = \frac{Cost(X, C)}{n}$

How many points do I need to sample to approximate
 Cost(X, C) within a 2-factor?

Bernstein's Inequality

• Bernstein's inequality: Let $y_1, ..., y_n \in [-M, M]$ be independent random variables and let $y = y_1 + \cdots + y_n$ have mean μ and variance σ^2 . Then for any $t \ge 0$:

 $\Pr[|y - \mu| \ge t] \le 2e^{-\frac{1}{2\sigma^2 + \frac{4}{3}Mt}}$

Bernstein's Inequality

• Bernstein's inequality: Let $y_1, ..., y_n \in [-M, M]$ be independent random variables and let $y = y_1 + \cdots + y_n$ have mean μ and variance σ^2 . Then for any $t \ge 0$:

$$\Pr[|y - \mu| \ge t] \le 2e^{-\frac{2\sigma^2 + \frac{4}{3}Mt}{3}}$$

• Set
$$M = \frac{1}{p}$$
, $t = \frac{1}{2} \cdot \operatorname{Cost}(X, C)$, and $\sigma^2 \approx \frac{n}{p}$. Then for $x = \operatorname{Cost}(X, C)$,
 $\Pr\left[|y - \mu| \ge \frac{x}{2}\right] \le 2\exp\left(-\frac{(x/2)^2}{2(4n/p) + (4/3)(x/p)}\right)$

 Consider a fixed set X and a fixed set C of k centers, which induces a fixed cost Cost(X, C)

- Suppose all points have the same cost, $Cost(x, C) = \frac{Cost(X, C)}{n}$
- Can get a 2-approximation to Cost(X, C) even for $p = \Theta\left(\frac{1}{n}\right)$
- How many samples do we expect? $np = \Theta(1)$

- Consider a fixed set X and a fixed set C of k centers, which induces a fixed cost Cost(X, C)
- Suppose all points have cost between 1 and 100
- Suppose $p_i = p$ for all $i \in [n]$

Bernstein's Inequality

• Bernstein's inequality: Let $y_1, ..., y_n \in [-M, M]$ be independent random variables and let $y = y_1 + \cdots + y_n$ have mean μ and variance σ^2 . Then for any $t \ge 0$:

 $\Pr[|y - \mu| \ge t] \le 2e^{-\frac{1}{2\sigma^2 + \frac{4}{3}Mt}}$

Bernstein's Inequality

• Bernstein's inequality: Let $y_1, ..., y_n \in [-M, M]$ be independent random variables and let $y = y_1 + \cdots + y_n$ have mean μ and variance σ^2 . Then for any $t \ge 0$: t^2

$$\Pr[|y - \mu| \ge t] \le 2e^{-\frac{2\sigma^2 + \frac{4}{3}Mt}{3}}$$

• Set
$$M = \frac{100}{p}$$
, $t = \frac{1}{2} \cdot \text{Cost}(X, C)$, and $\sigma^2 \approx \frac{10000n}{p}$. Then for $x = \text{Cost}(X, C)$,
 $\Pr\left[|y - \mu| \ge \frac{x}{2}\right] \le 2\exp\left(-\frac{(x/2)^2}{2(100n/p) + (4/3)(50x/p)}\right)$

- Suppose $x_1, ..., x_n \in [1, 100]$
- Suppose $p_i = p$ for all $i \in [n]$

• For
$$\Pr\left[|y-\mu| \ge \frac{x}{2}\right] \le 2\exp\left(-\frac{(x/2)^2}{2(10000n/p)+(4/3)(100x/p)}\right)$$
,
we require $\frac{20000n}{p} \approx \left(\frac{x}{2}\right)^2$ and x can be as small as n , so we
need $p \approx \frac{80000}{n}$

 Consider a fixed set X and a fixed set C of k centers, which induces a fixed cost Cost(X, C)

- Suppose all points have cost between 1 and 100
- Can get a 2-approximation even for $p \approx \frac{80000}{n}$
- How many samples do we expect? np is now WAY larger

• Bernstein's inequality: Let $y_1, ..., y_n \in [-M, M]$ be independent random variables and let $y = y_1 + \cdots + y_n$ have mean μ and variance σ^2 . Then for any $t \ge 0$:

$$\Pr[|y - \mu| \ge t] \le 2e^{-\frac{2\sigma^2 + \frac{4}{3}Mt}{3}}$$

• Set
$$M = \frac{n}{p}$$
, $t = \frac{1}{2} \cdot \text{Cost}(X, C)$, and $\sigma^2 \approx \frac{n^3}{p}$. Then for $x = \text{Cost}(X, C)$,
 $\Pr\left[|y - \mu| \ge \frac{x}{2}\right] \le 2\exp\left(-\frac{(x/2)^2}{2(n^2/p) + (4/3)(nx/2p)}\right)$

- Consider a fixed set X and a fixed set C of k centers, which induces a fixed cost Cost(X, C)
- \bullet Suppose all points have cost between 1 and 100
- Suppose $p_i = p$ for all $i \in [n]$
- For $\Pr\left[|y-\mu| \ge \frac{x}{2}\right] \le 2\exp\left(-\frac{(x/2)^2}{2(10000n/p)+(4/3)(100x/p)}\right)$, we require $\frac{20000n}{p} \approx \left(\frac{x}{2}\right)^2$ and x can be as small as n, so $p \approx \frac{80000}{2}$

- Suppose $p_i = p$ for all $i \in [n]$
- What can we say about concentration?
- Can get a 2-approximation even for $p \approx \frac{80000}{n}$
- How many samples do we expect? np is now WAY larger

 Consider a fixed set X and a fixed set C of k centers, which induces a fixed cost Cost(X, C)

• Suppose all points have cost between 1 and *n*

• How many points do I need to sample to approximate Cost(X, C) within a $(1 + \varepsilon)$ -factor?

• Bernstein's inequality: Let $y_1, ..., y_n \in [-M, M]$ be independent random variables and let $y = y_1 + \cdots + y_n$ have mean μ and variance σ^2 . Then for any $t \ge 0$:

$$\Pr[|y - \mu| \ge t] \le 2e^{-\frac{2\sigma^2 + \frac{4}{3}Mt}{3}}$$

• Set
$$M = \frac{n}{p}$$
, $t = \frac{x}{2}$, and $\sigma^2 \approx \frac{n^2}{p}$. Then
 $\Pr\left[|y - \mu| \ge \frac{x}{2}\right] \le 2\exp\left(-\frac{(x/2)^2}{2(n^2/p) + (4/3)(nx/2p)}\right)$

Uniform Sampling for Sum Estimation

- Consider a fixed set X and a fixed set C of k centers, which induces a fixed cost Cost(X, C)
- Suppose all points have cost between 1 and *n*
- Suppose $p_i = p$ for all $i \in [n]$
- For $\Pr\left[|y \mu| \ge \frac{x}{2}\right] \le 2\exp\left(-\frac{(x/2)^2}{2(n^2/p) + (4/3)(nx/2p)}\right)$, we require $\frac{2n^2}{p} \approx \left(\frac{x}{2}\right)^2$ and x can be as small as n, so we need $p \approx 1$

- Consider a fixed set X and a fixed set C of k centers, which induces a fixed cost Cost(X, C)
- Uniform sampling needs a lot of samples if there is a single point that greatly contributes to Cost(X, C)

• Fix: Importance sampling, sample each point $x \in X$ into X' with probability proportional Cost(x, C), i.e., Cost(x, C)/Cost(X, C)

• Fix: Importance sampling, sample each point $x \in X$ into X' with probability proportional Cost(x, C), i.e., Cost(x, C)/Cost(X, C)

Importance Sampling for Coreset Construction

• What is the variance for each y_i ?

•
$$\operatorname{Var}[y_i] \leq \frac{1}{p_i} \cdot \left(\operatorname{Cost}(x_i, C)\right)^2 \leq \operatorname{Cost}(x_i, C) \cdot \operatorname{Cost}(X, C)$$

• $\operatorname{Var}[y] = \operatorname{Var}[y_1] + \dots + \operatorname{Var}[y_n] \leq \left(\operatorname{Cost}(X, C)\right)^2$

• Fix: Importance sampling, sample each point $x \in X$ into X' with probability proportional Cost(x, C), i.e., Cost(x, C)/Cost(X, C)

• Importance sampling only needs X' to have size $O\left(\frac{1}{\epsilon^2}\right)$ to achieve $(1 + \epsilon)$ -approximation to Cost(X, C)

- Importance sampling only needs X' to have size $O\left(\frac{1}{\epsilon^2}\right)$ to achieve $(1 + \epsilon)$ -approximation to Cost(X, C)
- What about a different choice *C* of *k* centers?

- Importance sampling only needs X' to have size $O\left(\frac{1}{\epsilon^2}\right)$ to achieve $(1 + \epsilon)$ -approximation to Cost(X, C)
- To handle all possible sets of *k* centers:
 - Need to sample each point x with probability $\max_{C} \frac{\operatorname{Cost}(x,C)}{\operatorname{Cost}(X,C)}$ instead of $\frac{\operatorname{Cost}(x,C)}{\operatorname{Cost}(X,C)}$
 - Need to union bound over a net of all possible sets of k centers

Nets

• A net *N* is a set of sets *C* of *k* centers such that accuracy on *N* implies accuracy everywhere

- Importance sampling only needs X' to have size $O\left(\frac{1}{\epsilon^2}\right)$ to achieve $(1 + \epsilon)$ -approximation to Cost(X, C)
- To handle all possible sets of *k* centers:
 - Need to sample each point x with probability $\max_{C} \frac{\operatorname{Cost}(x,C)}{\operatorname{Cost}(X,C)}$ instead of $\frac{\operatorname{Cost}(x,C)}{\operatorname{Cost}(X,C)}$
 - Need to union bound over a net of all possible sets of k centers

Net with size
$$\left(\frac{n\Delta}{\varepsilon}\right)^{O(kd)}$$

Sensitivity Sampling

• The quantity $s(x) = \max_{C} \frac{Cost(x,C)}{Cost(X,C)}$ is called the *sensitivity* of *x* and intuitively measures how "important" the point *x* is

• The *total sensitivity* of X is $\sum_{x \in X} s(x)$ and quantifies how many points will be sampled into X' through importance/sensitivity sampling (before the union bound)