CSCE 689: Special Topics in Modern Algorithms for Data Science

Lecture 25

Samson Zhou

Presentation Schedule

- November 27: Chunkai, Jung, Galaxy AI
- November 29: STMI, Anmol, Jason
- December 1: Bokun, Ayesha, Dawei, Lipai

Previously: \boldsymbol{k}-Clustering

- Goal: Given input dataset X, partition X so that "similar" points are in the same cluster and "different" points are in different clusters
- There can be at most k different clusters

Previously: k-Clustering

- Define clustering cost $\operatorname{Cost}(X, C)$ to be a function of $\{\operatorname{dist}(x, C)\}_{x \in C}$
- k-center: $\operatorname{Cost}(X, C)=\max _{x \in X} \operatorname{dist}(x, C)$
- k-median: $\operatorname{Cost}(X, C)=\sum_{x \in X} \operatorname{dist}(x, C)$

- k-means: $\operatorname{Cost}(X, C)=\sum_{x \in X}(\operatorname{dist}(x, C))^{2}$
- (k, z)-clustering: $\operatorname{Cost}(X, C)=\sum_{x \in X}(\operatorname{dist}(x, C))^{z}$

Previously: Coreset

- Subset X^{\prime} of representative points of X for a specific clustering objective

- $\operatorname{Cost}(X, C) \approx \operatorname{Cost}\left(X^{\prime}, C\right)$ for all sets C with $|C|=k$

Previously: Coreset

- Given a set X and an accuracy parameter $\varepsilon>0$, we say a set X^{\prime} with weight function w is an $(1+\varepsilon)$-multiplicative coreset for a cost function Cost, if for all queries C with $|C| \leq k$, we have

$$
\begin{gathered}
(1-\varepsilon) \operatorname{Cost}(X, C) \leq \operatorname{Cost}\left(X^{\prime}, C, w\right) \leq(1+\varepsilon) \operatorname{Cost}(X, C) \\
(k, z) \text {-clustering: } \operatorname{Cost}\left(X^{\prime}, C, w\right)=\sum_{x \in X^{\prime}} w(x) \cdot(\operatorname{dist}(x, C))^{z}
\end{gathered}
$$

Previously: Bernstein's Inequality

- Bernstein's inequality: Let $X_{1}, \ldots, X_{n} \in[-M, M]$ be independent random variables and let $X=X_{1}+\cdots+X_{n}$ have mean μ and variance σ^{2}. Then for any $t \geq 0$:

$$
\operatorname{Pr}[|X-\mu| \geq t] \leq 2 e^{-\frac{t^{2}}{2 \sigma^{2}+\frac{4}{3} M t}}
$$

- Example: Suppose $M=1$ and let $t=k \sigma$. Then

$$
\operatorname{Pr}[|X-\mu| \geq k \sigma] \leq 2 \exp \left(-\frac{k^{2}}{4}\right)
$$

Previously: Importance Sampling for Sum Estimation

- Suppose $x_{1}, \ldots, x_{n} \in[1, n]$
- Suppose $p_{i}=\frac{x_{i}}{x}$ for all $i \in[n]$
- Can get a 2 -approximation for importance sampling
- How many samples do we expect? $\frac{x_{1}}{x}+\cdots+\frac{x_{n}}{x}=1$, so just a constant number of samples!

Last Time: Coreset Construction and Sampling

- Consider a fixed set X and a fixed set C of k centers, which induces a fixed cost $\operatorname{Cost}(X, C)$
- Uniform sampling needs a lot of samples if there is a single point that greatly contributes to $\operatorname{Cost}(X, C)$

Last Time: Coreset Construction and Sampling

- Importance sampling, sample each point $x \in X$ into X^{\prime} with probability proportional $\operatorname{Cost}(x, C)$, i.e., $\operatorname{Cost}(x, C) /$ $\operatorname{Cost}(X, C)$
- Importance sampling only needs X^{\prime} to have size $O\left(\frac{1}{\varepsilon^{2}}\right)$ to achieve $(1+\varepsilon)$-approximation to $\operatorname{Cost}(X, C)$

Last Time: Coreset Construction and Sampling

- Importance sampling only needs X^{\prime} to have size $O\left(\frac{1}{\varepsilon^{2}}\right)$ to achieve $(1+\varepsilon)$-approximation to $\operatorname{Cost}(X, C)$
- What about a different choice C of k centers?

Last Time: Coreset Construction and Sampling

- Importance sampling only needs X^{\prime} to have size $O\left(\frac{1}{\varepsilon^{2}}\right)$ to achieve $(1+\varepsilon)$-approximation to $\operatorname{Cost}(X, C)$
- To handle all possible sets of k centers:
- Need to sample each point x with probability $\max _{C} \frac{\operatorname{Cost}(x, C)}{\operatorname{Cost}(X, C)}$ instead of $\frac{\operatorname{Cost}(x, C)}{\operatorname{Cost}(X, C)}$
- Need to union bound over a net of all possible sets of k centers

$$
\varlimsup_{\text {Net with size }\left(\frac{n \Delta}{\varepsilon}\right)^{O(k d)}}
$$

Last Time: Sensitivity Sampling

- The quantity $s(x)=\max _{C} \frac{\operatorname{Cost}(x, C)}{\operatorname{Cost}(X, C)}$ is called the sensitivity of x and intuitively measures how "important" the point x is
- The total sensitivity of X is $\sum_{x \in X} S(x)$ and quantifies how many points will be sampled into X^{\prime} through importance/sensitivity sampling (before the union bound)

Putting Things Together

- Consider a fixed set X and a fixed set C of k centers, which induces a fixed cost $\operatorname{Cost}(X, C)$
- If we sample each point with probability $p(x):=$ $\min \left(\frac{s(x)}{\varepsilon^{2}} \log \frac{1}{\delta}\right)$, then we get achieve $(1+\varepsilon)$-approximation to $\operatorname{Cost}(X, C)$ with probability $1-\delta$
- What should δ be? How many points are sampled?

Putting Things Together

-What should δ be? How many points are sampled?

- Can union bound over multiple choices of C
- Recall: Net with size $\left(\frac{n \Delta}{\varepsilon}\right)^{O(k d)}$

Putting Things Together

- Recall: Net with size $\left(\frac{n \Lambda}{\varepsilon}\right)^{o(k d)}$
- Correctness on net implies correctness everywhere, so we set $\delta=\frac{1}{100} \cdot\left(\frac{\varepsilon}{n \Delta}\right)^{O(k d)}$ and by a union bound, our algorithm succeeds with probability 0.99
- $\log \frac{1}{\delta}=k d \cdot \log \frac{n \Delta}{\varepsilon}$

Putting Things Together

- $p(x):=\min \left(\frac{s(x)}{\varepsilon^{2}} \log \frac{1}{\delta}\right)$, so we sample $\sum_{x \in X} p(x)$ points in expectation
- At most $\frac{1}{\varepsilon^{2}} \log \frac{1}{\delta} \sum_{x \in X} S(x)$ points in total
- Since $\log \frac{1}{\delta}=k d \cdot \log \frac{n \Delta}{\varepsilon}$, then $\frac{k d}{\varepsilon^{2}} \cdot \log \frac{n \Delta}{\varepsilon} \cdot \sum_{x \in X} S(x)$ points
-What is $\sum_{x \in X} S(x)$? Total sensitivity!

$$
s\left(x_{t}\right)=\max _{C:|C| \leq k} \frac{\operatorname{Cost}\left(x_{t}, C\right)}{\operatorname{Cost}(X, C)}=\max _{C:|C| \leq k} \frac{\operatorname{Cost}\left(x_{t}, C\right)}{\sum_{i=1}^{n} \operatorname{Cost}\left(x_{i}, C\right)}
$$

		0	
	0		0
0			
	0		0

$$
s\left(x_{t}\right)=\max _{C:|C| \leq k} \frac{\operatorname{Cost}\left(x_{t}, C\right)}{\operatorname{Cost}(X, C)}=\max _{C:|C| \leq k} \frac{\operatorname{Cost}\left(x_{t}, C\right)}{\sum_{i=1}^{n} \operatorname{Cost}\left(x_{i}, C\right)}
$$

9

Point has sensitivity 10

9

$9 \quad 9$

$$
s\left(x_{t}\right)=\max _{C:|C| \leq k} \frac{\operatorname{Cost}\left(x_{t}, C\right)}{\operatorname{Cost}(X, C)}=\max _{C:|C| \leq k} \frac{\operatorname{Cost}\left(x_{t}, C\right)}{\sum_{i=1}^{n} \operatorname{Cost}\left(x_{i}, C\right)}
$$

$$
9
$$

Point has sensitivity 1

Point has sensitivity 1 (

$$
s\left(x_{t}\right)=\max _{C:|C| \leq k} \frac{\operatorname{Cost}\left(x_{t}, C\right)}{\operatorname{Cost}(X, C)}=\max _{C:|C| \leq k} \frac{\operatorname{Cost}\left(x_{t}, C\right)}{\sum_{i=1}^{n} \operatorname{Cost}\left(x_{i}, C\right)}
$$

Point has sensitivity 1
0

Point has sensitivity 1

Point has sensitivity 1 (

$0 \Delta \quad 9$

$$
s\left(x_{t}\right)=\max _{C:|C| \leq k} \frac{\operatorname{Cost}\left(x_{t}, C\right)}{\operatorname{Cost}(X, C)}=\max _{C:|C| \leq k} \frac{\operatorname{Cost}\left(x_{t}, C\right)}{\sum_{i=1}^{n} \operatorname{Cost}\left(x_{i}, C\right)}
$$

Point has sensitivity 1

9

Point has sensitivity 1
Point has sensitivity 1
Δ
0
Point has sensitivity 1 (

$9 \quad 9$

$$
s\left(x_{t}\right)=\max _{C:|C| \leq k} \frac{\operatorname{Cost}\left(x_{t}, C\right)}{\operatorname{Cost}(X, C)}=\max _{C:|C| \leq k} \frac{\operatorname{Cost}\left(x_{t}, C\right)}{\sum_{i=1}^{n} \operatorname{Cost}\left(x_{i}, C\right)}
$$

Point has sensitivity 1 9

Point has sensitivity 1
Point has sensitivity 1
 OA

Point has sensitivity 1Δ

$0^{\text {Point has sensitivity } 1}$

$$
s\left(x_{t}\right)=\max _{C:|C| \leq k} \frac{\operatorname{Cost}\left(x_{t}, C\right)}{\operatorname{Cost}(X, C)}=\max _{C:|C| \leq k} \frac{\operatorname{Cost}\left(x_{t}, C\right)}{\sum_{i=1}^{n} \operatorname{Cost}\left(x_{i}, C\right)}
$$

Point has sensitivity 1 9

Point has sensitivity 1
Point has sensitivity 1

OA
Point has sensitivity 1Δ

0

$$
\text { Point has sensitivity } 1
$$

Point has sensitivity 1

$$
s\left(x_{t}\right)=\max _{C:|C| \leq k} \frac{\operatorname{Cost}\left(x_{t}, C\right)}{\operatorname{Cost}(X, C)}=\max _{C:|C| \leq k} \frac{\operatorname{Cost}\left(x_{t}, C\right)}{\sum_{i=1}^{n} \operatorname{Cost}\left(x_{i}, C\right)}
$$

$$
\text { Point has sensitivity } 1
$$

$$
9
$$

Point has sensitivity 1

Point has sensitivity 1 OA

Point has sensitivity 1Δ
Point has sensitivity 1°
-
Point has sensitivity 1

Total Sensitivity

- Total sensitivity $=$ Sum of sensitivities can be at least k
- How large can it be?

$$
s\left(x_{t}\right)=\max _{C:|C| \leq k} \frac{\operatorname{Cost}\left(x_{t}, C\right)}{\operatorname{Cost}(X, C)}=\max _{C:|C| \leq k} \frac{\operatorname{Cost}\left(x_{t}, C\right)}{\sum_{i=1}^{n} \operatorname{Cost}\left(x_{i}, C\right)}
$$

$$
0_{0}^{\circ} 0_{0}^{\circ}
$$

$$
\begin{array}{cc}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}
$$

$$
\begin{array}{ll}
0 & 0 \\
0 & 0 \\
0 & 0
\end{array}
$$

$$
s\left(x_{t}\right)=\max _{C:|C| \leq k} \frac{\operatorname{Cost}\left(x_{t}, C\right)}{\operatorname{Cost}(X, C)}=\max _{C:|C| \leq k} \frac{\operatorname{Cost}\left(x_{t}, C\right)}{\sum_{i=1}^{n} \operatorname{Cost}\left(x_{i}, C\right)}
$$

$$
s\left(x_{t}\right)=\max _{C:|C| \leq k} \frac{\operatorname{Cost}\left(x_{t}, C\right)}{\operatorname{Cost}(X, C)}=\max _{C:|C| \leq k} \frac{\operatorname{Cost}\left(x_{t}, C\right)}{\sum_{i=1}^{n} \operatorname{Cost}\left(x_{i}, C\right)}
$$

$$
s\left(x_{t}\right)=\max _{C:|C| \leq k} \frac{\operatorname{Cost}\left(x_{t}, C\right)}{\operatorname{Cost}(X, C)}=\max _{C:|C| \leq k} \frac{\operatorname{Cost}\left(x_{t}, C\right)}{\sum_{i=1}^{n} \operatorname{Cost}\left(x_{i}, C\right)}
$$

$$
s\left(x_{t}\right)=\max _{C:|C| \leq k} \frac{\operatorname{Cost}\left(x_{t}, C\right)}{\operatorname{Cost}(X, C)}=\max _{C:|C| \leq k} \frac{\operatorname{Cost}\left(x_{t}, C\right)}{\sum_{i=1}^{n} \operatorname{Cost}\left(x_{i}, C\right)}
$$

Partition the sum of the sensitivities by each cluster

$$
s\left(x_{t}\right)=\max _{C:|C| \leq k} \frac{\operatorname{Cost}\left(x_{t}, C\right)}{\operatorname{Cost}(X, C)}=\max _{C:|C| \leq k} \frac{\operatorname{Cost}\left(x_{t}, C\right)}{\sum_{i=1}^{n} \operatorname{Cost}\left(x_{i}, C\right)}
$$

Total Sensitivity

- Intuition: The sum of the sensitivities in each cluster induced by OPT is at most 1
- Since there are k clusters, the sum of the sensitivities is $O_{z}(k)$

Putting Things Together

- Recall: $\frac{k d}{\varepsilon^{2}} \cdot \log \frac{n \Delta}{\varepsilon} \cdot \sum_{x \in X} S(x)$ points sampled
- $\sum_{x \in X} S(x)=O_{z}(k)$
- In total, roughly $\frac{k^{2} d}{\varepsilon^{2}} \cdot \log \frac{n \Delta}{\varepsilon}$ points sampled in expectation

How to Compute Sensitivities?

- Estimations to sensitivities suffice
- Bicriteria algorithms, e.g., online facility location

