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Presentation Schedule

• November 27: Chunkai, Jung, Galaxy AI

• November 29: STMI, Anmol, Jason

• December 1: Bokun, Ayesha, Dawei, Lipai



Previously: 𝑘-Clustering

• Goal: Given input dataset 𝑋, partition 𝑋 so that “similar” points are in 
the same cluster and “different” points are in different clusters

• There can be at most 𝑘 different clusters

𝑘 = 3



Previously: 𝑘-Clustering

• Define clustering cost Cost 𝑋, 𝐶  to be a function of 
dist 𝑥, 𝐶 𝑥∈𝐶

• 𝑘-center: Cost 𝑋, 𝐶 = max
𝑥∈𝑋

dist(𝑥, 𝐶)

• 𝑘-median: Cost 𝑋, 𝐶 = σ𝑥∈𝑋 dist 𝑥, 𝐶

• 𝑘-means: Cost 𝑋, 𝐶 = σ𝑥∈𝑋 dist 𝑥, 𝐶
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• (𝑘, 𝑧)-clustering: Cost 𝑋, 𝐶 = σ𝑥∈𝑋 dist 𝑥, 𝐶
𝑧
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• Subset 𝑋′ of representative 
points of 𝑋 for a specific 
clustering objective

• Cost 𝑋, 𝐶 ≈ Cost(𝑋′, 𝐶) 
for all sets 𝐶 with 𝐶 = 𝑘

Previously: Coreset



Previously: Coreset

• Given a set 𝑋 and an accuracy parameter ε > 0, we say a set 
𝑋′ with weight function 𝑤 is an (1 + 휀)-multiplicative 
coreset for a cost function Cost, if for all queries 𝐶 with 
𝐶 ≤ 𝑘, we have

1 − ε Cost(𝑋, 𝐶) ≤ Cost(𝑋′, 𝐶, 𝑤) ≤ 1 + ε Cost(𝑋, 𝐶)

(𝑘, 𝑧)-clustering: Cost 𝑋′, 𝐶, 𝑤 = σ𝑥∈𝑋′ 𝑤 𝑥 ⋅ dist 𝑥, 𝐶
𝑧



Previously: Bernstein’s Inequality

• Bernstein’s inequality: Let 𝑋1, … , 𝑋𝑛 ∈ [−𝑀, 𝑀] be independent 
random variables and let 𝑋 = 𝑋1 + ⋯ + 𝑋𝑛 have mean 𝜇 and 
variance 𝜎2. Then for any 𝑡 ≥ 0:

• Example: Suppose 𝑀 = 1 and let 𝑡 = 𝑘𝜎. Then

Pr 𝑋 − 𝜇 ≥ 𝑘𝜎 ≤ 2exp −
𝑘2
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Pr 𝑋 − 𝜇 ≥ 𝑡 ≤ 2𝑒
−

𝑡2

2𝜎2+
4
3

𝑀𝑡



Previously: Importance Sampling for Sum 
Estimation

• Suppose 𝑥1, … , 𝑥𝑛 ∈ [1, 𝑛]

• Suppose 𝑝𝑖 =
𝑥𝑖

𝑥
 for all 𝑖 ∈ [𝑛]

• Can get a 2-approximation for importance sampling

• How many samples do we expect? 
𝑥1

𝑥
+ ⋯ +

𝑥𝑛

𝑥
= 1, so just a 

constant number of samples!



Last Time: Coreset Construction and Sampling

• Consider a fixed set 𝑋 and a fixed set 𝐶 of 𝑘 centers, which 
induces a fixed cost Cost(𝑋, 𝐶)

• Uniform sampling needs a lot of samples if there is a single 
point that greatly contributes to Cost(𝑋, 𝐶)



Last Time: Coreset Construction and Sampling

• Importance sampling, sample each point 𝑥 ∈ 𝑋 into 𝑋′ with 
probability proportional Cost(𝑥, 𝐶), i.e., Cost(𝑥, 𝐶)/
Cost(𝑋, 𝐶)

• Importance sampling only needs 𝑋′ to have size 𝑂
1
2  to 

achieve 1 + 휀 -approximation to Cost(𝑋, 𝐶)



Last Time: Coreset Construction and Sampling

• Importance sampling only needs 𝑋′ to have size 𝑂
1
2  to 

achieve 1 + 휀 -approximation to Cost(𝑋, 𝐶)

• What about a different choice 𝐶 of 𝑘 centers?



Last Time: Coreset Construction and Sampling

• Importance sampling only needs 𝑋′ to have size 𝑂
1
2  to 

achieve 1 + 휀 -approximation to Cost(𝑋, 𝐶)

• To handle all possible sets of 𝑘 centers:
• Need to sample each point 𝑥 with probability 

max
𝐶

Cost 𝑥,𝐶

Cost 𝑋,𝐶
 instead of 

Cost 𝑥,𝐶

Cost 𝑋,𝐶

• Need to union bound over a net of all possible sets of 𝑘 
centers

Net with size
𝑛Δ 𝑂(𝑘𝑑)



Last Time: Sensitivity Sampling

• The quantity 𝑠 𝑥 = max
𝐶

Cost 𝑥,𝐶

Cost 𝑋,𝐶
 is called the sensitivity of 

𝑥 and intuitively measures how “important” the point 𝑥 is

• The total sensitivity of 𝑋 is σ𝑥∈𝑋 𝑠(𝑥) and quantifies how 
many points will be sampled into 𝑋′ through 
importance/sensitivity sampling (before the union bound)



Putting Things Together

• Consider a fixed set 𝑋 and a fixed set 𝐶 of 𝑘 centers, which 
induces a fixed cost Cost(𝑋, 𝐶)

• If we sample each point with probability 𝑝 𝑥 ≔

min
𝑠 𝑥

2 log
1

𝛿
, then we get achieve 1 + 휀 -approximation 

to Cost(𝑋, 𝐶) with probability 1 − 𝛿

• What should 𝛿 be? How many points are sampled?



Putting Things Together

• What should 𝛿 be? How many points are sampled?

• Can union bound over multiple choices of 𝐶

• Recall: Net with size 
𝑛Δ 𝑂(𝑘𝑑)



Putting Things Together

• Recall: Net with size 
𝑛Δ 𝑂(𝑘𝑑)

• Correctness on net implies correctness everywhere, so we 

set 𝛿 =
1

100
⋅

𝑛Δ

𝑂(𝑘𝑑)
 and by a union bound, our algorithm 

succeeds with probability 0.99

• log
1

𝛿
= 𝑘𝑑 ⋅ log

𝑛Δ



Putting Things Together

• 𝑝 𝑥 ≔ min
𝑠 𝑥

2 log
1

𝛿
, so we sample σ𝑥∈𝑋 𝑝(𝑥) points in 

expectation

• At most 
1
2 log

1

𝛿
σ𝑥∈𝑋 𝑠(𝑥) points in total

• Since log
1

𝛿
= 𝑘𝑑 ⋅ log

𝑛Δ
, then 

𝑘𝑑
2 ⋅ log

𝑛Δ
⋅ σ𝑥∈𝑋 𝑠(𝑥) points

• What is σ𝑥∈𝑋 𝑠(𝑥)? Total sensitivity!



𝑠 𝑥𝑡 = max
𝐶: 𝐶 ≤𝑘

Cost 𝑥𝑡, 𝐶

Cost 𝑋, 𝐶
= max

𝐶: 𝐶 ≤𝑘

Cost 𝑥𝑡, 𝐶

σ𝑖=1
𝑛 Cost 𝑥𝑖 , 𝐶
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Point has sensitivity 1
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Total Sensitivity

• Total sensitivity = Sum of sensitivities can be at least 𝑘

• How large can it be? 



𝑠 𝑥𝑡 = max
𝐶: 𝐶 ≤𝑘
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𝑠 𝑥𝑡 = max
𝐶: 𝐶 ≤𝑘

Cost 𝑥𝑡, 𝐶

Cost 𝑋, 𝐶
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Cost 𝑥𝑡, 𝐶

σ𝑖=1
𝑛 Cost 𝑥𝑖 , 𝐶

Partition the sum of the sensitivities by each cluster



𝑠 𝑥𝑡 = max
𝐶: 𝐶 ≤𝑘

Cost 𝑥𝑡, 𝐶

Cost 𝑋, 𝐶
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𝐶: 𝐶 ≤𝑘

Cost 𝑥𝑡, 𝐶

σ𝑖=1
𝑛 Cost 𝑥𝑖 , 𝐶

Charge to OPT

Charge to OPT



Total Sensitivity

• Intuition: The sum of the sensitivities in each cluster induced by 
OPT is at most 1

• Since there are 𝑘 clusters, the sum of the sensitivities is 𝑂𝑧(𝑘)



Putting Things Together

• Recall:
𝑘𝑑

2 ⋅ log
𝑛Δ

⋅ σ𝑥∈𝑋 𝑠(𝑥) points sampled

• σ𝑥∈𝑋 𝑠(𝑥) = 𝑂𝑧(𝑘)

• In total, roughly 
𝑘2𝑑

2 ⋅ log
𝑛Δ

 points sampled in expectation



How to Compute Sensitivities?

• Estimations to sensitivities suffice

• Bicriteria algorithms, e.g., online facility location
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