CSCE 689: Special Topics in Modern Algorithms for Data Science

Lecture 25

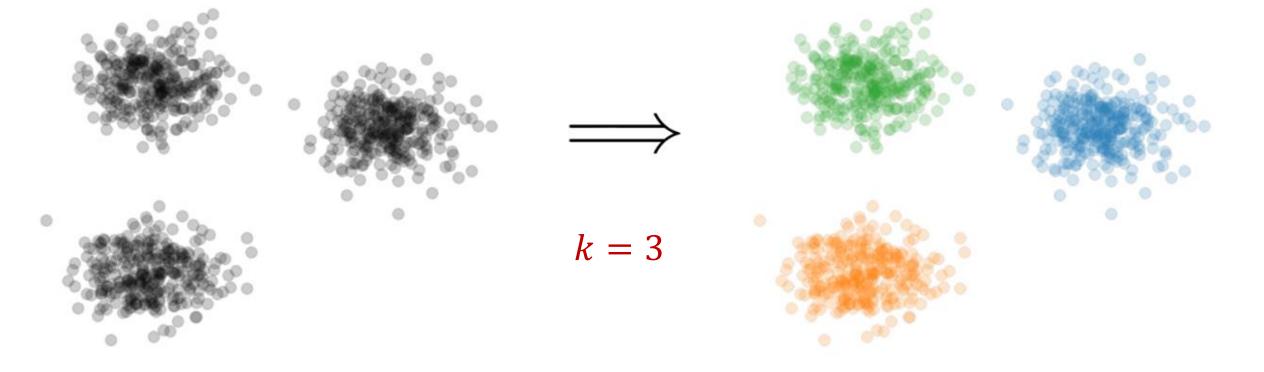
Samson Zhou

Presentation Schedule

- November 27: Chunkai, Jung, Galaxy Al
- November 29: STMI, Anmol, Jason
- December 1: Bokun, Ayesha, Dawei, Lipai

Previously: *k*-Clustering

- Goal: Given input dataset X, partition X so that "similar" points are in the same cluster and "different" points are in different clusters
- There can be at most k different clusters



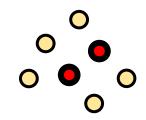
Previously: *k*-Clustering

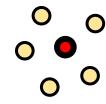
• Define clustering cost Cost(X, C) to be a function of $\{\operatorname{dist}(x,C)\}_{x\in C}$

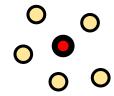
- k-center: $Cost(X, C) = \max_{x \in X} dist(x, C)$ k-median: $Cost(X, C) = \sum_{x \in X} dist(x, C)$
- k-means: $Cost(X, C) = \sum_{x \in X} (dist(x, C))^2$
- (k, z)-clustering: $Cost(X, C) = \sum_{x \in X} (dist(x, C))^z$

Previously: Coreset

 Subset X' of representative points of X for a specific clustering objective







• $Cost(X, C) \approx Cost(X', C)$ for all sets C with |C| = k

Previously: Coreset

• Given a set X and an accuracy parameter $\varepsilon > 0$, we say a set X' with weight function w is an $(1 + \varepsilon)$ -multiplicative coreset for a cost function C ost, if for all queries C with $|C| \le k$, we have

```
(1 - \varepsilon) \operatorname{Cost}(X, C) \leq \operatorname{Cost}(X', C, w) \leq (1 + \varepsilon) \operatorname{Cost}(X, C)
(k, z) \text{-clustering: } \operatorname{Cost}(X', C, w) = \sum_{x \in X'} w(x) \cdot \left(\operatorname{dist}(x, C)\right)^z
```

Previously: Bernstein's Inequality

• Bernstein's inequality: Let $X_1, ..., X_n \in [-M, M]$ be independent random variables and let $X = X_1 + \cdots + X_n$ have mean μ and variance σ^2 . Then for any $t \ge 0$:

$$\Pr[|X - \mu| \ge t] \le 2e^{-\frac{t^2}{2\sigma^2 + \frac{4}{3}Mt}}$$

• Example: Suppose M=1 and let $t=k\sigma$. Then

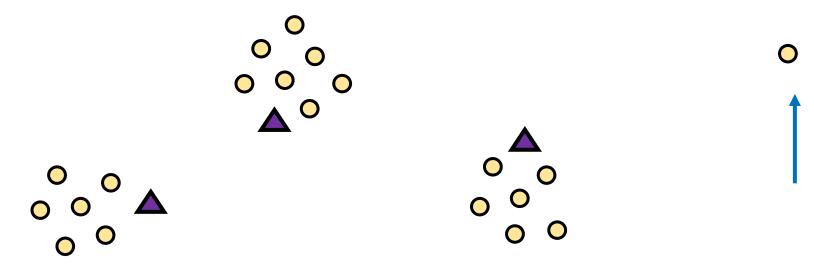
$$\Pr[|X - \mu| \ge k\sigma] \le 2\exp\left(-\frac{k^2}{4}\right)$$

Previously: Importance Sampling for Sum Estimation

- Suppose $x_1, \dots, x_n \in [1, n]$
- Suppose $p_i = \frac{x_i}{x}$ for all $i \in [n]$

- Can get a 2-approximation for importance sampling
- How many samples do we expect? $\frac{x_1}{x} + \cdots + \frac{x_n}{x} = 1$, so just a constant number of samples!

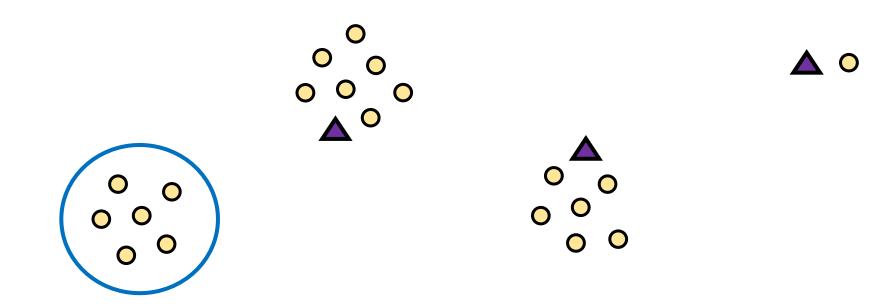
- Consider a fixed set X and a fixed set C of K centers, which induces a fixed cost Cost(X,C)
- Uniform sampling needs a lot of samples if there is a single point that greatly contributes to Cost(X, C)



• Importance sampling, sample each point $x \in X$ into X' with probability proportional Cost(x, C), i.e., Cost(x, C)/ Cost(X, C)

• Importance sampling only needs X' to have size $O\left(\frac{1}{\varepsilon^2}\right)$ to achieve $(1 + \varepsilon)$ -approximation to Cost(X, C)

- Importance sampling only needs X' to have size $O\left(\frac{1}{\varepsilon^2}\right)$ to achieve $(1 + \varepsilon)$ -approximation to Cost(X, C)
- What about a different choice C of k centers?



- Importance sampling only needs X' to have size $O\left(\frac{1}{\varepsilon^2}\right)$ to achieve $(1 + \varepsilon)$ -approximation to Cost(X, C)
- To handle all possible sets of k centers:
 - Need to sample each point x with probability $\max_{C} \frac{\text{Cost}(x,C)}{\text{Cost}(X,C)} \text{ instead of } \frac{\text{Cost}(x,C)}{\text{Cost}(X,C)}$
 - Need to union bound over a net of all possible sets of k centers

Net with size
$$\left(\frac{n\Delta}{\varepsilon}\right)^{O(kd)}$$

Last Time: Sensitivity Sampling

• The quantity $s(x) = \max_{C} \frac{\text{Cost}(x,C)}{\text{Cost}(x,C)}$ is called the *sensitivity* of x and intuitively measures how "important" the point x is

• The total sensitivity of X is $\sum_{x \in X} s(x)$ and quantifies how many points will be sampled into X' through importance/sensitivity sampling (before the union bound)

• Consider a fixed set X and a fixed set C of K centers, which induces a fixed cost Cost(X,C)

• If we sample each point with probability $p(x) := \min\left(\frac{s(x)}{\varepsilon^2}\log\frac{1}{\delta}\right)$, then we get achieve $(1+\varepsilon)$ -approximation to $\text{Cost}(X,\mathcal{C})$ with probability $1-\delta$

• What should δ be? How many points are sampled?

• What should δ be? How many points are sampled?

Can union bound over multiple choices of C

• Recall: Net with size $\left(\frac{n\Delta}{\varepsilon}\right)^{O(kd)}$

- Recall: Net with size $\left(\frac{n\Delta}{\varepsilon}\right)^{O(Ra)}$
- Correctness on net implies correctness everywhere, so we set $\delta = \frac{1}{100} \cdot \left(\frac{\varepsilon}{n\Delta}\right)^{O(kd)}$ and by a union bound, our algorithm succeeds with probability 0.99

•
$$\log \frac{1}{\delta} = kd \cdot \log \frac{n\Delta}{\varepsilon}$$

• $p(x) \coloneqq \min\left(\frac{s(x)}{\varepsilon^2}\log\frac{1}{\delta}\right)$, so we sample $\sum_{x \in X} p(x)$ points in expectation

- At most $\frac{1}{\varepsilon^2} \log \frac{1}{\delta} \sum_{x \in X} s(x)$ points in total
- Since $\log \frac{1}{\delta} = kd \cdot \log \frac{n\Delta}{\varepsilon}$, then $\frac{kd}{\varepsilon^2} \cdot \log \frac{n\Delta}{\varepsilon} \cdot \sum_{x \in X} s(x)$ points
- What is $\sum_{x \in X} s(x)$? Total sensitivity!

$$s(x_t) = \max_{C:|C| \le k} \frac{\mathrm{Cost}(x_t,C)}{\mathrm{Cost}(X,C)} = \max_{C:|C| \le k} \frac{\mathrm{Cost}(x_t,C)}{\sum_{i=1}^n \mathrm{Cost}(x_i,C)}$$

$$s(x_t) = \max_{C:|C| \le k} \frac{\operatorname{Cost}(x_t, C)}{\operatorname{Cost}(X, C)} = \max_{C:|C| \le k} \frac{\operatorname{Cost}(x_t, C)}{\sum_{i=1}^n \operatorname{Cost}(x_i, C)}$$

$$s(x_t) = \max_{C:|C| \le k} \frac{\operatorname{Cost}(x_t, C)}{\operatorname{Cost}(X, C)} = \max_{C:|C| \le k} \frac{\operatorname{Cost}(x_t, C)}{\sum_{i=1}^n \operatorname{Cost}(x_i, C)}$$

Point has sensitivity 1 🖎

$$s(x_t) = \max_{C:|C| \le k} \frac{\operatorname{Cost}(x_t, C)}{\operatorname{Cost}(X, C)} = \max_{C:|C| \le k} \frac{\operatorname{Cost}(x_t, C)}{\sum_{i=1}^n \operatorname{Cost}(x_i, C)}$$

Point has sensitivity 1

Point has sensitivity 1 🖎

$$s(x_t) = \max_{C:|C| \le k} \frac{\operatorname{Cost}(x_t, C)}{\operatorname{Cost}(X, C)} = \max_{C:|C| \le k} \frac{\operatorname{Cost}(x_t, C)}{\sum_{i=1}^n \operatorname{Cost}(x_i, C)}$$

Point has sensitivity 1

Point has sensitivity 1

O

Point has sensitivity 1 🖎

$$s(x_t) = \max_{C:|C| \le k} \frac{\operatorname{Cost}(x_t, C)}{\operatorname{Cost}(X, C)} = \max_{C:|C| \le k} \frac{\operatorname{Cost}(x_t, C)}{\sum_{i=1}^n \operatorname{Cost}(x_i, C)}$$

Point has sensitivity 1

Point has sensitivity 1

Point has sensitivity 1 🖎

Point has sensitivity 1

$$s(x_t) = \max_{C:|C| \le k} \frac{\operatorname{Cost}(x_t, C)}{\operatorname{Cost}(X, C)} = \max_{C:|C| \le k} \frac{\operatorname{Cost}(x_t, C)}{\sum_{i=1}^n \operatorname{Cost}(x_i, C)}$$

Point has sensitivity 1

Point has sensitivity 1

Point has sensitivity 1 🖎

Point has sensitivity 1

Point has sensitivity 1

$$s(x_t) = \max_{C:|C| \le k} \frac{\operatorname{Cost}(x_t, C)}{\operatorname{Cost}(X, C)} = \max_{C:|C| \le k} \frac{\operatorname{Cost}(x_t, C)}{\sum_{i=1}^n \operatorname{Cost}(x_i, C)}$$

Point has sensitivity 1

Point has sensitivity 1

Point has sensitivity 1 🖎

Point has sensitivity 1

Point has sensitivity 1

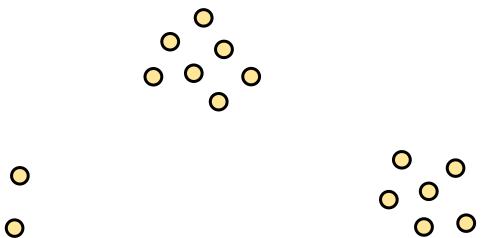
Point has sensitivity 1

Total Sensitivity

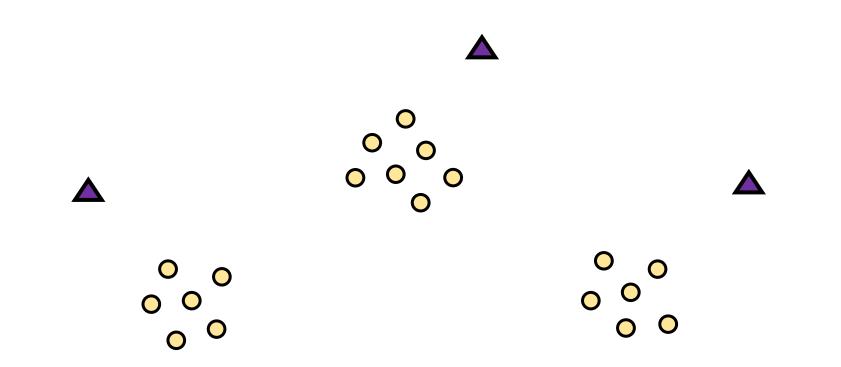
• Total sensitivity = Sum of sensitivities can be at least k

How large can it be?

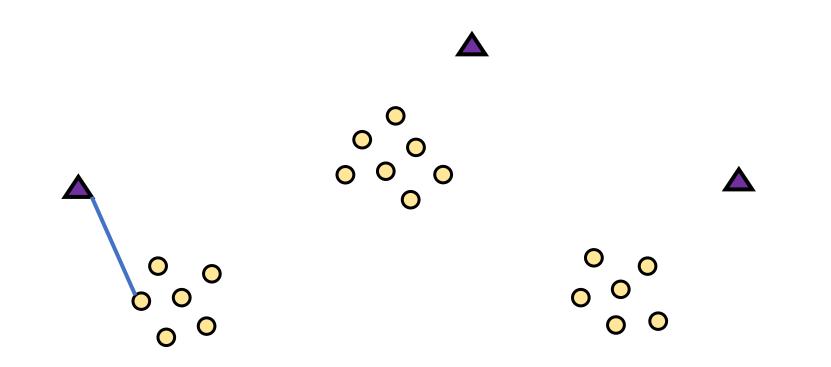
$$s(x_t) = \max_{C:|C| \le k} \frac{\operatorname{Cost}(x_t, C)}{\operatorname{Cost}(X, C)} = \max_{C:|C| \le k} \frac{\operatorname{Cost}(x_t, C)}{\sum_{i=1}^n \operatorname{Cost}(x_i, C)}$$



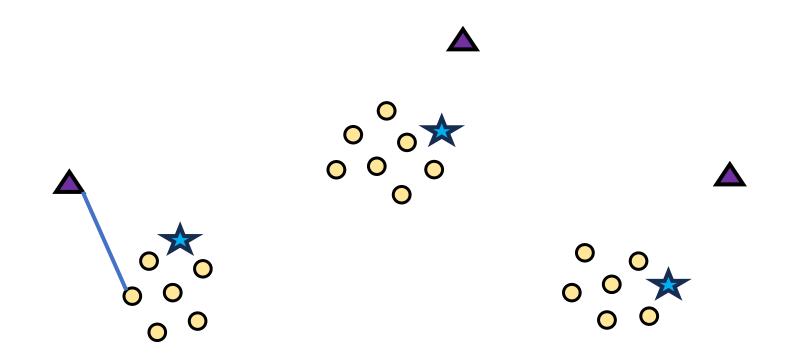
$$s(x_t) = \max_{C:|C| \le k} \frac{\operatorname{Cost}(x_t, C)}{\operatorname{Cost}(X, C)} = \max_{C:|C| \le k} \frac{\operatorname{Cost}(x_t, C)}{\sum_{i=1}^n \operatorname{Cost}(x_i, C)}$$



$$s(x_t) = \max_{C:|C| \le k} \frac{\operatorname{Cost}(x_t, C)}{\operatorname{Cost}(X, C)} = \max_{C:|C| \le k} \frac{\operatorname{Cost}(x_t, C)}{\sum_{i=1}^n \operatorname{Cost}(x_i, C)}$$

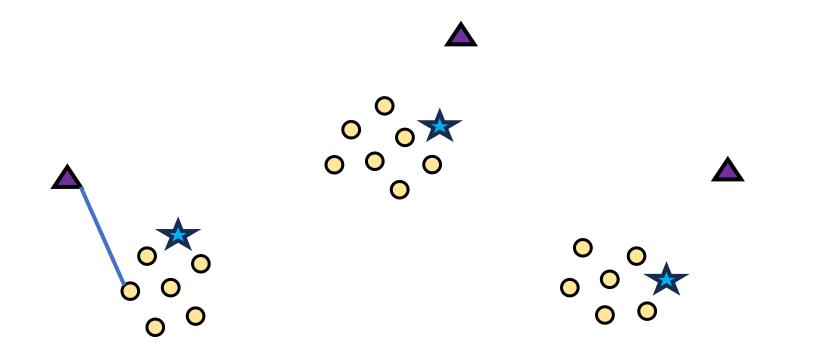


$$s(x_t) = \max_{C:|C| \le k} \frac{\operatorname{Cost}(x_t, C)}{\operatorname{Cost}(X, C)} = \max_{C:|C| \le k} \frac{\operatorname{Cost}(x_t, C)}{\sum_{i=1}^n \operatorname{Cost}(x_i, C)}$$

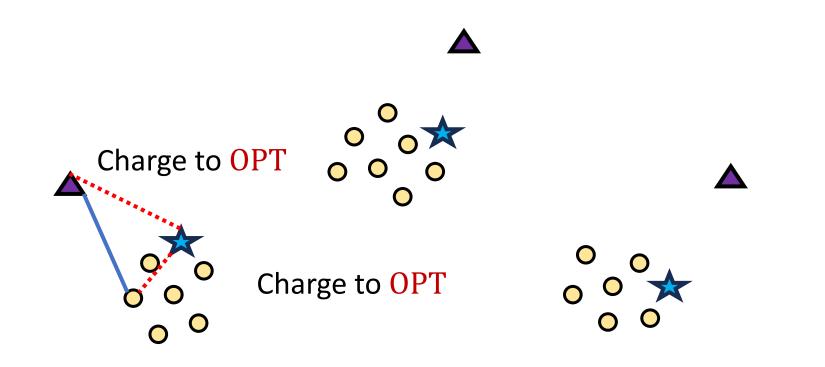


$$s(x_t) = \max_{C:|C| \le k} \frac{\operatorname{Cost}(x_t, C)}{\operatorname{Cost}(X, C)} = \max_{C:|C| \le k} \frac{\operatorname{Cost}(x_t, C)}{\sum_{i=1}^n \operatorname{Cost}(x_i, C)}$$

Partition the sum of the sensitivities by each cluster



$$s(x_t) = \max_{C:|C| \le k} \frac{\operatorname{Cost}(x_t, C)}{\operatorname{Cost}(X, C)} = \max_{C:|C| \le k} \frac{\operatorname{Cost}(x_t, C)}{\sum_{i=1}^n \operatorname{Cost}(x_i, C)}$$



Total Sensitivity

 Intuition: The sum of the sensitivities in each cluster induced by OPT is at most 1

• Since there are k clusters, the sum of the sensitivities is $O_z(k)$

- Recall: $\frac{kd}{\varepsilon^2} \cdot \log \frac{n\Delta}{\varepsilon} \cdot \sum_{x \in X} s(x)$ points sampled
- $\bullet \sum_{x \in X} s(x) = O_z(k)$

• In total, roughly $\frac{k^2d}{\varepsilon^2} \cdot \log \frac{n\Delta}{\varepsilon}$ points sampled in expectation

How to Compute Sensitivities?

Estimations to sensitivities suffice

• Bicriteria algorithms, e.g., online facility location