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Presentation Schedule

* November 27: Chunkai, Jung, Galaxy Al
 November 29: STMI, Anmol, Jason
e December 1: Bokun, Ayesha, Dawei, Lipai



Streaming Model

* Input: Elements of an underlying data set S, which arrives
sequentially

* Qutput: Evaluation (or approximation) of a given function
e Goal: Use space sublinear in the size m of the input S
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Linear Sketch

* Suppose stream S induces a frequency vector f

e Algorithm framework:
* Generate a random matrix A and maintain 4 - f
* Apply a post-processing function g(A - f) as the output

* What algorithms have we discussed that fit this framework?
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* What algorithms have we discussed that fit this framework?

* YES: AMS, CountSketch, CountMin, sparse recovery, distinct
elements, coreset construction for clustering

* NO: Greedy algorithm for maximal matching, connectivity,
bipartiteness, MisraGries
* Which of these algorithms work for insertion-deletion streams?

* YES: AMS, CountSketch, CountMin, sparse recovery, distinct
elements, coreset construction for clustering

* NO: Greedy algorithm for maximal matching, connectivity,
bipartiteness, MisraGries



Linear Sketch

* Theorem [LiNguyenWoodruff14]: For sufficiently long data
streams with arbitrarily large coordinates at intermediate stages
of the stream, any one-pass insertion-deletion streaming
algorithm can be implemented with a linear sketch
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Sliding Window Model

* Input: Elements of an underlying data set S, which arrives
sequentially

* Qutput: Evaluation (or approximation) of a given function
e Goal: Use space sublinear in the size m of the input S

* Sliding Window: “Only the m most recent updates form the
underlying data set S”
* Emphasizes recent interactions, appropriate for time sensitive settlngs



Sliding Window Model

e Consumer analytics: Consumer patterns may be sensitive to temporal
trends or seasonal shifts
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Sliding Window Model

e Data retention policy: the Facebook data policy says user search
histories are stored for 6 months, the Apple differential privacy
overview says collected user information is retained for 3 months,
and the Google data retention policy states that browser information

may be stored for up 9 months




Sliding Window Model and Linear Sketches

* Can we use linear sketches for the sliding window model?



Sliding Window Model and Linear Sketches

* Can we use linear sketches for the sliding window model? YES/NO

e Suppose F,(u) = n? and F,(v) = n.
* Then A(u + v) might (and should) think F, (u + v) = n?
* If u expires, then what do we do with A(u + v)?
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Sliding Window Model and Sampling
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Sliding Window Model and Sampling

e Recall: we can sample each point with probability proportional to
how “important” the point is
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Last Time: Sensitivity Sampling

« Recall: %2 log - Yrcex S(x) points sampled
* Dixex S(X) = OZ(k)

kzd nA
* In total, roughly log— points sampled in expectation



Sliding Window Model and Sampling

e Recall: we can sample each point with probability proportional to
how “important” the point is

e We can also consider the * |[ntuition: previous points do
“importance” of each point o not matter in the |
with respect to the following © _© importance of a point
points in the stream O OO © because the previous points
can be expired
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Sliding Window Model and Sampling

* Theorem: There exists a sliding window model algorithm that samples

2
roughly kg—zd : polylog% points and outputs a coreset for (k, z)-clustering

[WoodruffZhongZhou?23]
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Sliding Window Algorithms

* Suppose we are trying to approximate some given function
* Suppose we have a streaming algorithm for this function

* Suppose this function is “smooth”: If f(B) is a “good” approximation to f(4),
then f(B U C) will always be a “good” approximationto f(A U C).
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* Smooth histogram framework [BravermanOstrovsky07] gives a sliding
window algorithm for this function



Smooth Histogram
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* Smooth histogram framework [BOO7]| gives a sliding window
algorithm for this function
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the middle one

e Use different checkpoints to “sandwich” the sliding window
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e Start a new instance of the streaming algorithm (along with existing
instances) each time a new element arrives

* Each time there are three instances that report “close” values, delete
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Smooth Histogram

e Start a new instance of the streaming algorithm (along with existing
instances) each time a new element arrives

* Each time there are three instances that report “close” values, delete
the middle one

* Use different checkpoints to ”sandwich” the sliding window
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Smooth Histogram

e Start a new instance of the streaming algorithm (along with existing
instances) each time a new element arrives

* Each time there are three instances that report “close” values, delete
the middle one

* Use different checkpoints to ”sandwich” the sliding window
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sliding window (2-approximation)
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Smooth Histogram

e Converts a streaming algorithm for a smooth function into a sliding
window algorithm
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