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Streaming Model

• Input: Elements of an underlying data set 𝑆, which arrives 
sequentially

• Output: Evaluation (or approximation) of a given function

• Goal: Use space sublinear in the size 𝑚 of the input 𝑆



47 72 81 10 14 33 51 29 54 9 36 46 10



5

1 2

34

6





Linear Sketch

• Suppose stream 𝑆 induces a frequency vector 𝑓 

• Algorithm framework: 

• Generate a random matrix 𝐴 and maintain 𝐴 ⋅ 𝑓

• Apply a post-processing function 𝑔(𝐴 ⋅ 𝑓) as the output

• What algorithms have we discussed that fit this framework?
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Linear Sketch

• Theorem [LiNguyenWoodruff14]: For sufficiently long data 
streams with arbitrarily large coordinates at intermediate stages 
of the stream, any one-pass insertion-deletion streaming 
algorithm can be implemented with a linear sketch



Sliding Window Model

• Input: Elements of an underlying data set 𝑆, which arrives 
sequentially

• Output: Evaluation (or approximation) of a given function

• Goal: Use space sublinear in the size 𝑚 of the input 𝑆

• Sliding Window: “Only the 𝑚 most recent updates form the 
underlying data set 𝑆”
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Sliding Window Model

• Input: Elements of an underlying data set 𝑆, which arrives 
sequentially

• Output: Evaluation (or approximation) of a given function

• Goal: Use space sublinear in the size 𝑚 of the input 𝑆

• Sliding Window: “Only the 𝑚 most recent updates form the 
underlying data set 𝑆”
• Emphasizes recent interactions, appropriate for time sensitive settings
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Sliding Window Model

• Consumer analytics: Consumer patterns may be sensitive to temporal 
trends or seasonal shifts 



Sliding Window Model

• Data retention policy: the Facebook data policy says user search 
histories are stored for 6 months, the Apple differential privacy 
overview says collected user information is retained for 3 months, 
and the Google data retention policy states that browser information 
may be stored for up 9 months



Sliding Window Model and Linear Sketches

• Can we use linear sketches for the sliding window model? 



Sliding Window Model and Linear Sketches

• Can we use linear sketches for the sliding window model? YES/NO

• Suppose 𝐹2 𝑢 = 𝑛2 and 𝐹2 𝑣 = 𝑛. 

• Then 𝐴(𝑢 + 𝑣) might (and should) think 𝐹2 𝑢 + 𝑣 = 𝑛2

• If 𝑢 expires, then what do we do with 𝐴(𝑢 + 𝑣)?

1 1 1 1 1 1 1 1 1 1 1 2 3 4 5 6 7 8 9 10 11
𝑢 𝑣



Sliding Window Model and Sampling
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Sliding Window Model and Sampling

• Recall: we can sample each point with probability proportional to 
how “important” the point is 



Last Time: Sensitivity Sampling

• Recall:
𝑘𝑑

𝜀2 ⋅ log
𝑛Δ

𝜀
⋅ σ𝑥∈𝑋 𝑠(𝑥) points sampled

• σ𝑥∈𝑋 𝑠(𝑥) = 𝑂𝑧(𝑘)

• In total, roughly 
𝑘2𝑑

𝜀2 ⋅ log
𝑛Δ

𝜀
 points sampled in expectation



Sliding Window Model and Sampling

• Recall: we can sample each point with probability proportional to 
how “important” the point is

• We can also consider the 
“importance” of each point 
with respect to the following 
points in the stream

• Intuition: previous points do 
not matter in the 
importance of a point 
because the previous points 
can be expired



Sliding Window Model and Sampling

• Theorem: There exists a sliding window model algorithm that samples 

roughly 
𝑘2𝑑

𝜀2 ⋅ polylog
𝑛Δ

𝜀
 points and outputs a coreset for (𝑘, 𝑧)-clustering 

[WoodruffZhongZhou23]



Sliding Window Algorithms

• Suppose we are trying to approximate some given function
• Suppose we have a streaming algorithm for this function

• Suppose this function is “smooth”: If 𝑓 𝐵  is a “good” approximation to 𝑓 𝐴 , 
then 𝑓 𝐵 ∪ 𝐶  will always be a “good” approximation to 𝑓 𝐴 ∪ 𝐶 .

• Smooth histogram framework [BravermanOstrovsky07] gives a sliding 
window algorithm for this function 



Smooth Histogram

• Suppose we are trying to approximate some given function

• Smooth histogram framework [BO07] gives a sliding window 
algorithm for this function 

• Start a new instance of the streaming algorithm (along with existing 
instances) each time a new element arrives

• Each time there are three instances that report “close” values, delete 
the middle one

• Use different checkpoints to “sandwich” the sliding window
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Smooth Histogram

• Start a new instance of the streaming algorithm (along with existing 
instances) each time a new element arrives

• Each time there are three instances that report “close” values, delete 
the middle one

• Use different checkpoints to “sandwich” the sliding window
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• Example: Number of ones in 
sliding window (2-approximation)

• Number of ones in sliding window 
is at least 4 and at most 7

• 4 is a good approximation



Smooth Histogram

• Converts a streaming algorithm for a smooth function into a sliding 
window algorithm
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