CSCE 689: Special Topics in Modern Algorithms for Data Science

Lecture 26

Samson Zhou

Presentation Schedule

- November 27: Chunkai, Jung, Galaxy Al
- November 29: STMI, Anmol, Jason
- December 1: Bokun, Ayesha, Dawei, Lipai

Streaming Model

- Input: Elements of an underlying data set S, which arrives sequentially
- Output: Evaluation (or approximation) of a given function
- Goal: Use space *sublinear* in the size m of the input S

47 72 81 10 14 33 51 29 54 9 36 46 10

Suppose stream S induces a frequency vector f

- Algorithm framework:
 - Generate a random matrix A and maintain $A \cdot f$
 - Apply a post-processing function $g(A \cdot f)$ as the output

• What algorithms have we discussed that fit this framework?

- What algorithms have we discussed that fit this framework?
 - YES: AMS, CountSketch, CountMin, sparse recovery, distinct elements, coreset construction for clustering
 - NO: Greedy algorithm for maximal matching, connectivity, bipartiteness, MisraGries

- What algorithms have we discussed that fit this framework?
 - YES: AMS, CountSketch, CountMin, sparse recovery, distinct elements, coreset construction for clustering
 - NO: Greedy algorithm for maximal matching, connectivity, bipartiteness, MisraGries
- Which of these algorithms work for insertion-deletion streams?

- What algorithms have we discussed that fit this framework?
 - YES: AMS, CountSketch, CountMin, sparse recovery, distinct elements, coreset construction for clustering
 - NO: Greedy algorithm for maximal matching, connectivity, bipartiteness, MisraGries
- Which of these algorithms work for insertion-deletion streams?
 - YES: AMS, CountSketch, CountMin, sparse recovery, distinct elements, coreset construction for clustering
 - NO: Greedy algorithm for maximal matching, connectivity, bipartiteness, MisraGries

• Theorem [LiNguyenWoodruff14]: For sufficiently long data streams with arbitrarily large coordinates at intermediate stages of the stream, any one-pass insertion-deletion streaming algorithm can be implemented with a linear sketch

- Input: Elements of an underlying data set S, which arrives sequentially
- Output: Evaluation (or approximation) of a given function
- Goal: Use space *sublinear* in the size m of the input S
- Sliding Window: "Only the m most recent updates form the underlying data set S"

- Input: Elements of an underlying data set S, which arrives sequentially
- Output: Evaluation (or approximation) of a given function
- Goal: Use space *sublinear* in the size m of the input S

• Sliding Window: "Only the m most recent updates form the underlying data set S"

- Input: Elements of an underlying data set S, which arrives sequentially
- Output: Evaluation (or approximation) of a given function
- Goal: Use space *sublinear* in the size m of the input S
- Sliding Window: "Only the m most recent updates form the underlying data set S"

- Input: Elements of an underlying data set S, which arrives sequentially
- Output: Evaluation (or approximation) of a given function
- Goal: Use space *sublinear* in the size m of the input S
- Sliding Window: "Only the m most recent updates form the underlying data set S"
 - Emphasizes recent interactions, appropriate for time sensitive settings

 Consumer analytics: Consumer patterns may be sensitive to temporal trends or seasonal shifts

 Data retention policy: the Facebook data policy says user search histories are stored for 6 months, the Apple differential privacy overview says collected user information is retained for 3 months, and the Google data retention policy states that browser information may be stored for up 9 months

Sliding Window Model and Linear Sketches

Can we use linear sketches for the sliding window model?

Sliding Window Model and Linear Sketches

Can we use linear sketches for the sliding window model? YES/NO

- Suppose $F_2(u) = n^2$ and $F_2(v) = n$.
- Then A(u+v) might (and should) think $F_2(u+v)=n^2$
- If u expires, then what do we do with A(u + v)?

1111111111234567891011

 Recall: we can sample each point with probability proportional to how "important" the point is

Last Time: Sensitivity Sampling

- Recall: $\frac{kd}{\varepsilon^2} \cdot \log \frac{n\Delta}{\varepsilon} \cdot \sum_{x \in X} s(x)$ points sampled
- $\bullet \sum_{x \in X} s(x) = O_z(k)$

• In total, roughly $\frac{k^2d}{\varepsilon^2} \cdot \log \frac{n\Delta}{\varepsilon}$ points sampled in expectation

- Recall: we can sample each point with probability proportional to how "important" the point is
- We can also consider the "importance" of each point with respect to the following points in the stream

 Intuition: previous points do not matter in the importance of a point because the previous points can be expired

• Theorem: There exists a sliding window model algorithm that samples roughly $\frac{k^2d}{\varepsilon^2}$ · polylog $\frac{n\Delta}{\varepsilon}$ points and outputs a coreset for (k,z)-clustering [WoodruffZhongZhou23]

Sliding Window Algorithms

- Suppose we are trying to approximate some given function
 - Suppose we have a streaming algorithm for this function
 - Suppose this function is "smooth": If f(B) is a "good" approximation to f(A), then $f(B \cup C)$ will always be a "good" approximation to $f(A \cup C)$.

• Smooth histogram framework [BravermanOstrovsky07] gives a sliding window algorithm for this function

- Suppose we are trying to approximate some given function
- Smooth histogram framework [BO07] gives a sliding window algorithm for this function
- Start a new instance of the streaming algorithm (along with existing instances) each time a new element arrives
- Each time there are three instances that report "close" values, delete the middle one
- Use different checkpoints to "sandwich" the sliding window

- Start a new instance of the streaming algorithm (along with existing instances) each time a new element arrives
- Each time there are three instances that report "close" values, delete the middle one
- Use different checkpoints to "sandwich" the sliding window

- Start a new instance of the streaming algorithm (along with existing instances) each time a new element arrives
- Each time there are three instances that report "close" values, delete the middle one
- Use different checkpoints to "sandwich" the sliding window

- Start a new instance of the streaming algorithm (along with existing instances) each time a new element arrives
- Each time there are three instances that report "close" values, delete the middle one
- Use different checkpoints to "sandwich" the sliding window

- Start a new instance of the streaming algorithm (along with existing instances) each time a new element arrives
- Each time there are three instances that report "close" values, delete the middle one
- Use different checkpoints to "sandwich" the sliding window

- Start a new instance of the streaming algorithm (along with existing instances) each time a new element arrives
- Each time there are three instances that report "close" values, delete the middle one
- Use different checkpoints to "sandwich" the sliding window

- Start a new instance of the streaming algorithm (along with existing instances) each time a new element arrives
- Each time there are three instances that report "close" values, delete the middle one
- Use different checkpoints to "sandwich" the sliding window

- Start a new instance of the streaming algorithm (along with existing instances) each time a new element arrives
- Each time there are three instances that report "close" values, delete the middle one
- Use different checkpoints to "sandwich" the sliding window

- Start a new instance of the streaming algorithm (along with existing instances) each time a new element arrives
- Each time there are three instances that report "close" values, delete the middle one
- Use different checkpoints to "sandwich" the sliding window

- Start a new instance of the streaming algorithm (along with existing instances) each time a new element arrives
- Each time there are three instances that report "close" values, delete the middle one
- Use different checkpoints to "sandwich" the sliding window

- Start a new instance of the streaming algorithm (along with existing instances) each time a new element arrives
- Each time there are three instances that report "close" values, delete the middle one
- Use different checkpoints to "sandwich" the sliding window

- Example: Number of ones in sliding window (2-approximation)
- Number of ones in sliding window is at least 4 and at most 7
- 4 is a good approximation

 Converts a streaming algorithm for a smooth function into a sliding window algorithm