
CSCE 689: Special Topics in
Modern Algorithms for Data

Science
Lecture 27

Samson Zhou

Presentation Schedule

• November 27: Chunkai, Jung, Galaxy AI

• November 29: STMI, Anmol, Jason

• December 1: Bokun, Ayesha, Dawei, Lipai

Last Time: Linear Sketch

• Suppose stream 𝑆 induces a frequency vector 𝑓

• Algorithm framework:

• Generate a random matrix 𝐴 and maintain 𝐴 ⋅ 𝑓

• Apply a post-processing function 𝑔(𝐴 ⋅ 𝑓) as the output

• What algorithms have we discussed that fit this framework?

Last Time: Sliding Window Model

• Input: Elements of an underlying data set 𝑆, which arrives
sequentially

• Output: Evaluation (or approximation) of a given function

• Goal: Use space sublinear in the size 𝑚 of the input 𝑆

• Sliding Window: “Only the 𝑚 most recent updates form the
underlying data set 𝑆”
• Emphasizes recent interactions, appropriate for time sensitive settings

1 0 1 1 1 0 0 1 1 0 1

Last Time: Smooth Histogram

• Converts a streaming algorithm for a smooth function into a sliding
window algorithm

Last Time: Smooth Histogram

• Start a new instance of the streaming algorithm (along with existing
instances) each time a new element arrives

• Each time there are three instances that report “close” values, delete
the middle one

• Use different checkpoints to “sandwich” the sliding window

1 0 1 1 1 0 0 1 1 0 1
7

4

2

1

• Example: Number of ones in
sliding window (2-approximation)

• Number of ones in sliding window
is at least 4 and at most 7

• 4 is a good approximation

Streaming Model

• Input: Elements of an underlying data set 𝑆, which arrives
sequentially

• Output: Evaluation (or approximation) of a given function

• Goal: Use space sublinear in the size 𝑚 of the input 𝑆

47 72 81 10 14 33 51 29 54 9 36 46 10

5

1 2

34

6

Streaming Model

• We inherently assume the input is fixed in advance and thus
independent of the algorithm

• What if we need to interact with the algorithm multiple
times?

Case Study #1

• Suppose we run the same algorithm on multiple datasets. Do
we know how to handle this?

Case Study #1

• Suppose we run the same algorithm on multiple datasets. Do
we know how to handle this? YES (union bound)

Case Study #2

• Suppose I have a batch of queries for a randomized database
algorithm. Do we know how to handle this?

Case Study #2

• Suppose I have a batch of queries for a randomized database
algorithm. Do we know how to handle this? YES, if the batch
of queries is fixed in advance

Case Study #3

• Suppose I ask a sequence of queries for a randomized
database algorithm. Do we know how to handle this?

Case Study #3

• Suppose I ask a sequence of queries for a randomized
database algorithm. Do we know how to handle this? YES, if
the batch of queries is fixed in advance, NO if each query can
depend on the answer to previous queries

• In the latter case, future inputs may not be independent of
the algorithm’s randomness

Adversarially Robust Streaming

• Input: Elements of an underlying data set 𝑆, which arrives
sequentially and adversarially

• Output: Evaluation (or approximation) of a given function

• Goal: Use space sublinear in the size 𝑚 of the input 𝑆

1 1

Adversarially Robust Streaming

• Input: Elements of an underlying data set 𝑆, which arrives
sequentially and adversarially

• Output: Evaluation (or approximation) of a given function

• Goal: Use space sublinear in the size 𝑚 of the input 𝑆

10 1

Adversarially Robust Streaming

• Input: Elements of an underlying data set 𝑆, which arrives
sequentially and adversarially

• Output: Evaluation (or approximation) of a given function

• Goal: Use space sublinear in the size 𝑚 of the input 𝑆

101 2

Adversarially Robust Streaming

• Input: Elements of an underlying data set 𝑆, which arrives
sequentially and adversarially

• Output: Evaluation (or approximation) of a given function

• Goal: Use space sublinear in the size 𝑚 of the input 𝑆

1010 3

Adversarially Robust Streaming

• Input: Elements of an underlying data set 𝑆, which arrives
sequentially and adversarially

• Output: Evaluation (or approximation) of a given function

• Goal: Use space sublinear in the size 𝑚 of the input 𝑆

1010 3

Adversarially Robust Streaming

• Input: Elements of an underlying data set 𝑆, which arrives
sequentially and adversarially

• Output: Evaluation (or approximation) of a given function

• Goal: Use space sublinear in the size 𝑚 of the input 𝑆

• Adversarially Robust: “Future queries may depend on previous
queries”

• Motivation: Database queries, adversarial ML

Human readers will easily identify the image as showing
two men on skis. Google’s Cloud Vision service reported
being 91 percent certain it saw a dog. Other stunts have
shown how to make stop signs invisible, or audio that
sounds benign to humans but is transcribed by software
as “OK Google browse to evil dot com.”

AMS 𝐹2 Algorithm

• Let 𝑠 ∈ −1, +1 𝑛 be a sign vector of length 𝑛

• Let 𝑍 = 𝑠, 𝑓 = 𝑠1𝑓1 + ⋯ + 𝑠𝑛𝑓𝑛 and consider 𝑍2

• Take the mean of 𝑂
1

𝜀2 inner products for (1 + 𝜀)-approximation

[AlonMatiasSzegedy99]

𝐸 𝑍2 = σ𝑖,𝑗 𝐸 𝑠𝑖𝑠𝑗𝑓𝑖𝑓𝑗 = 𝑓1
2 + ⋯ + 𝑓𝑛

2

𝑉𝑎𝑟 𝑍2 ≤ σ𝑖,𝑗 𝐸 𝑠𝑖𝑠𝑗𝑠𝑘𝑠𝑙𝑓𝑖𝑓𝑗𝑓𝑘𝑓𝑙 ≤ 2𝐹2
2

“Attack” on AMS

• Can learn whether 𝑠𝑖 = 𝑠𝑗 from 𝑠, 𝑒𝑖 + 𝑒𝑗

• Let 𝑓𝑖 = 1 if 𝑠𝑖 = 𝑠1 and 𝑓𝑖 = −1 if 𝑠𝑖 ≠ 𝑠1

• 𝑍 = 𝑠, 𝑓 = 𝑠1𝑓1 + ⋯ + 𝑠𝑛𝑓𝑛 = 𝑚 and 𝑍2 = 𝑚2 deterministically

• What happened? Randomness of algorithm not independent of
input

Reconstruction Attack on Linear Sketches

• Linear sketches are “not robust” to adversarial attacks, must use
Ω(𝑛) space [HardtWoodruff13]

• Approximately learn sketch matrix 𝑈, query something in the kernel
of 𝑈

• Iterative process, start with 𝑉1, … , 𝑉𝑟

• Correlation finding: Find vectors weakly correlated with 𝑈
orthogonal to 𝑉𝑖−1

• Boosting: Use these vectors to find strongly correlated vector 𝑣

• Progress: Set 𝑉𝑖 = span(𝑉𝑖−1, 𝑣)

Insertion-Only Streams

• Key: Deletions are needed to perform this attack

• Similar lower bounds for the sliding window model
[DatarGionisIndykMotwani02]

• Assume insertion-only updates

• How do the previous results work?

Robust Algorithms

• Suppose we are trying to approximate some given function
• Suppose we have a streaming algorithm for this function

• Suppose this function is monotonic and the stream is insertion-only

• Sketch switching framework [Ben-EliezerJayaramWoodruffYogev20]
gives a robust for this function

• Start many instances of the streaming algorithm at the beginning

• Use an instance of the algorithm but “freeze” the output

• Each time the next instance has value (1 + 𝑂 𝜀) more than the
“frozen” output, use the next instance and “freeze” its output

Sketch Switching

1
1

1

1

1

• Start many instances of the streaming algorithm at the beginning

• Use an instance of the algorithm but “freeze” the output

• Each time the next instance has value (1 + 𝑂 𝜀) more than the
“frozen” output, use the next instance and “freeze” its output

• Example: Number of ones in the
stream (2-approximation)

Sketch Switching

1 0
1

1

1

1

• Start many instances of the streaming algorithm at the beginning

• Use an instance of the algorithm but “freeze” the output

• Each time the next instance has value (1 + 𝑂 𝜀) more than the
“frozen” output, use the next instance and “freeze” its output

• Example: Number of ones in the
stream (2-approximation)

Sketch Switching

1 0 1
1

2

2

2

• Start many instances of the streaming algorithm at the beginning

• Use an instance of the algorithm but “freeze” the output

• Each time the next instance has value (1 + 𝑂 𝜀) more than the
“frozen” output, use the next instance and “freeze” its output

• Example: Number of ones in the
stream (2-approximation)

Sketch Switching

1 0 1
1

2

2

2

• Start many instances of the streaming algorithm at the beginning

• Use an instance of the algorithm but “freeze” the output

• Each time the next instance has value (1 + 𝑂 𝜀) more than the
“frozen” output, use the next instance and “freeze” its output

• Example: Number of ones in the
stream (2-approximation)

Sketch Switching

1 0 1 1
1

2

3

3

• Start many instances of the streaming algorithm at the beginning

• Use an instance of the algorithm but “freeze” the output

• Each time the next instance has value (1 + 𝑂 𝜀) more than the
“frozen” output, use the next instance and “freeze” its output

• Example: Number of ones in the
stream (2-approximation)

Sketch Switching

1 0 1 1 1
1

2

4

4

• Start many instances of the streaming algorithm at the beginning

• Use an instance of the algorithm but “freeze” the output

• Each time the next instance has value (1 + 𝑂 𝜀) more than the
“frozen” output, use the next instance and “freeze” its output

• Example: Number of ones in the
stream (2-approximation)

Sketch Switching

1 0 1 1 1
1

2

4

4

• Start many instances of the streaming algorithm at the beginning

• Use an instance of the algorithm but “freeze” the output

• Each time the next instance has value (1 + 𝑂 𝜀) more than the
“frozen” output, use the next instance and “freeze” its output

• Example: Number of ones in the
stream (2-approximation)

Sketch Switching

• Start many instances of the streaming algorithm at the beginning

• Use an instance of the algorithm but “freeze” the output

• Each time the next instance has value (1 + 𝑂 𝜀) more than the
“frozen” output, use the next instance and “freeze” its output

• Example: Number of ones in the
stream (2-approximation)

• Number of ones stream is at least
4 and at most 8

• 4 is a good approximation

1 0 1 1 1 0 0 1 1 0 1
1

2

4

7

Sketch Switching Summary

• Sketch switching for robust algorithms uses
1

𝜀2 space each time 𝐹𝑝

increases by (1 + 𝜀) and function increases
1

𝜀
 times

• How much space do “typical” algorithms use?

1 + 𝜀 -Approximation Streaming Algorithms

• Space 𝑂
1

𝜀2 +log 𝑛 algorithm for 𝐹0 [KaneNelsonWoodruff10,

Blasiok20]

• Space 𝑂
1

𝜀2 log 𝑛 algorithm for 𝐹𝑝 with 𝑝 ∈ 0, 2

[BlasiokDingNelson17]

• Space 𝑂
1

𝜀2 𝑛1−2/𝑝 log2 𝑛 algorithm for 𝐹𝑝 with 𝑝 > 2 [Ganguly11,

GangulyWoodruff18]

• Space 𝑂
1

𝜀2 log 𝑛 algorithm for 𝐿2-heavy hitters

[BravermanChestnutIvkinNelsonWangWoodruff17]

Sketch Switching Summary

• Sketch switching for robust algorithms uses
1

𝜀2 space each time 𝐹𝑝

increases by (1 + 𝜀) and function increases
1

𝜀
 times

• Sketch switching gives 𝑂
1

𝜀3 dependency in space for many

problems

	Slide 1: CSCE 689: Special Topics in Modern Algorithms for Data Science
	Slide 2: Presentation Schedule
	Slide 3: Last Time: Linear Sketch
	Slide 4: Last Time: Sliding Window Model
	Slide 5: Last Time: Smooth Histogram
	Slide 6: Last Time: Smooth Histogram
	Slide 7: Streaming Model
	Slide 8
	Slide 9
	Slide 10
	Slide 11: Streaming Model
	Slide 12: Case Study #1
	Slide 13: Case Study #1
	Slide 14: Case Study #2
	Slide 15: Case Study #2
	Slide 16: Case Study #3
	Slide 17: Case Study #3
	Slide 18: Adversarially Robust Streaming
	Slide 19: Adversarially Robust Streaming
	Slide 20: Adversarially Robust Streaming
	Slide 21: Adversarially Robust Streaming
	Slide 22: Adversarially Robust Streaming
	Slide 23: Adversarially Robust Streaming
	Slide 24
	Slide 25
	Slide 26
	Slide 27: AMS cap F sub 2 Algorithm
	Slide 28: “Attack” on AMS
	Slide 29: Reconstruction Attack on Linear Sketches
	Slide 30: Insertion-Only Streams
	Slide 31: Robust Algorithms
	Slide 32: Sketch Switching
	Slide 33: Sketch Switching
	Slide 34: Sketch Switching
	Slide 35: Sketch Switching
	Slide 36: Sketch Switching
	Slide 37: Sketch Switching
	Slide 38: Sketch Switching
	Slide 39: Sketch Switching
	Slide 40: Sketch Switching Summary
	Slide 41: open paren 1 plus script epsilon , close paren -Approximation Streaming Algorithms
	Slide 42: Sketch Switching Summary

