
CSCE 689: Special Topics in 
Modern Algorithms for Data 

Science 
Lecture 27

Samson Zhou



Presentation Schedule

• November 27: Chunkai, Jung, Galaxy AI

• November 29: STMI, Anmol, Jason
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Last Time: Linear Sketch

• Suppose stream 𝑆 induces a frequency vector 𝑓 

• Algorithm framework: 

• Generate a random matrix 𝐴 and maintain 𝐴 ⋅ 𝑓

• Apply a post-processing function 𝑔(𝐴 ⋅ 𝑓) as the output

• What algorithms have we discussed that fit this framework?



Last Time: Sliding Window Model

• Input: Elements of an underlying data set 𝑆, which arrives 
sequentially

• Output: Evaluation (or approximation) of a given function

• Goal: Use space sublinear in the size 𝑚 of the input 𝑆

• Sliding Window: “Only the 𝑚 most recent updates form the 
underlying data set 𝑆”
• Emphasizes recent interactions, appropriate for time sensitive settings
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Last Time: Smooth Histogram

• Converts a streaming algorithm for a smooth function into a sliding 
window algorithm



Last Time: Smooth Histogram

• Start a new instance of the streaming algorithm (along with existing 
instances) each time a new element arrives

• Each time there are three instances that report “close” values, delete 
the middle one

• Use different checkpoints to “sandwich” the sliding window
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• Example: Number of ones in 
sliding window (2-approximation)

• Number of ones in sliding window 
is at least 4 and at most 7

• 4 is a good approximation



Streaming Model

• Input: Elements of an underlying data set 𝑆, which arrives 
sequentially

• Output: Evaluation (or approximation) of a given function

• Goal: Use space sublinear in the size 𝑚 of the input 𝑆
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Streaming Model

• We inherently assume the input is fixed in advance and thus 
independent of the algorithm

• What if we need to interact with the algorithm multiple 
times?



Case Study #1

• Suppose we run the same algorithm on multiple datasets. Do 
we know how to handle this?



Case Study #1

• Suppose we run the same algorithm on multiple datasets. Do 
we know how to handle this? YES (union bound)



Case Study #2

• Suppose I have a batch of queries for a randomized database 
algorithm. Do we know how to handle this?



Case Study #2

• Suppose I have a batch of queries for a randomized database 
algorithm. Do we know how to handle this? YES, if the batch 
of queries is fixed in advance



Case Study #3

• Suppose I ask a sequence of queries for a randomized 
database algorithm. Do we know how to handle this? 



Case Study #3

• Suppose I ask a sequence of queries for a randomized 
database algorithm. Do we know how to handle this? YES, if 
the batch of queries is fixed in advance, NO if each query can 
depend on the answer to previous queries

• In the latter case, future inputs may not be independent of 
the algorithm’s randomness



Adversarially Robust Streaming

• Input: Elements of an underlying data set 𝑆, which arrives 
sequentially and adversarially

• Output: Evaluation (or approximation) of a given function

• Goal: Use space sublinear in the size 𝑚 of the input 𝑆
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Adversarially Robust Streaming

• Input: Elements of an underlying data set 𝑆, which arrives 
sequentially and adversarially

• Output: Evaluation (or approximation) of a given function

• Goal: Use space sublinear in the size 𝑚 of the input 𝑆

• Adversarially Robust: “Future queries may depend on previous 
queries”

• Motivation: Database queries, adversarial ML



Human readers will easily identify the image as showing 
two men on skis. Google’s Cloud Vision service reported 
being 91 percent certain it saw a dog. Other stunts have 
shown how to make stop signs invisible, or audio that 
sounds benign to humans but is transcribed by software 
as “OK Google browse to evil dot com.”







AMS 𝐹2 Algorithm

• Let 𝑠 ∈ −1, +1 𝑛 be a sign vector of length 𝑛

• Let 𝑍 = 𝑠, 𝑓 = 𝑠1𝑓1 + ⋯ + 𝑠𝑛𝑓𝑛 and consider 𝑍2

• Take the mean of 𝑂
1

𝜀2  inner products for (1 + 𝜀)-approximation 

[AlonMatiasSzegedy99] 

𝐸 𝑍2 = σ𝑖,𝑗 𝐸 𝑠𝑖𝑠𝑗𝑓𝑖𝑓𝑗 = 𝑓1
2 + ⋯ + 𝑓𝑛

2

𝑉𝑎𝑟 𝑍2 ≤ σ𝑖,𝑗 𝐸 𝑠𝑖𝑠𝑗𝑠𝑘𝑠𝑙𝑓𝑖𝑓𝑗𝑓𝑘𝑓𝑙 ≤ 2𝐹2
2



“Attack” on AMS

• Can learn whether 𝑠𝑖 = 𝑠𝑗  from 𝑠, 𝑒𝑖 + 𝑒𝑗  

• Let 𝑓𝑖 = 1 if 𝑠𝑖 = 𝑠1 and 𝑓𝑖 = −1 if 𝑠𝑖 ≠ 𝑠1

• 𝑍 = 𝑠, 𝑓 = 𝑠1𝑓1 + ⋯ + 𝑠𝑛𝑓𝑛 = 𝑚 and 𝑍2 = 𝑚2 deterministically

• What happened? Randomness of algorithm not independent of 
input



Reconstruction Attack on Linear Sketches

• Linear sketches are “not robust” to adversarial attacks, must use 
Ω(𝑛) space [HardtWoodruff13] 

• Approximately learn sketch matrix 𝑈, query something in the kernel 
of 𝑈

• Iterative process, start with 𝑉1, … , 𝑉𝑟

• Correlation finding: Find vectors weakly correlated with 𝑈 
orthogonal to 𝑉𝑖−1

• Boosting: Use these vectors to find strongly correlated vector 𝑣

• Progress: Set 𝑉𝑖 = span(𝑉𝑖−1, 𝑣)



Insertion-Only Streams

• Key: Deletions are needed to perform this attack

• Similar lower bounds for the sliding window model 
[DatarGionisIndykMotwani02]

• Assume insertion-only updates

• How do the previous results work?



Robust Algorithms

• Suppose we are trying to approximate some given function
• Suppose we have a streaming algorithm for this function

• Suppose this function is monotonic and the stream is insertion-only

• Sketch switching framework [Ben-EliezerJayaramWoodruffYogev20] 
gives a robust for this function 

• Start many instances of the streaming algorithm at the beginning

• Use an instance of the algorithm but “freeze” the output

• Each time the next instance has value (1 + 𝑂 𝜀 ) more than the 
“frozen” output, use the next instance and “freeze” its output
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Sketch Switching

• Start many instances of the streaming algorithm at the beginning

• Use an instance of the algorithm but “freeze” the output

• Each time the next instance has value (1 + 𝑂 𝜀 ) more than the 
“frozen” output, use the next instance and “freeze” its output

• Example: Number of ones in the  
stream (2-approximation)

• Number of ones stream is at least 
4 and at most 8

• 4 is a good approximation
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Sketch Switching Summary

• Sketch switching for robust algorithms uses 
1

𝜀2 space each time 𝐹𝑝 

increases by (1 + 𝜀) and function increases 
1

𝜀
 times

• How much space do “typical” algorithms use?



1 + 𝜀 -Approximation Streaming Algorithms

• Space 𝑂
1

𝜀2 +log 𝑛  algorithm for 𝐹0 [KaneNelsonWoodruff10, 

Blasiok20] 

• Space 𝑂
1

𝜀2 log 𝑛  algorithm for 𝐹𝑝 with 𝑝 ∈ 0, 2  

[BlasiokDingNelson17]

• Space 𝑂
1

𝜀2 𝑛1−2/𝑝 log2 𝑛  algorithm for 𝐹𝑝 with 𝑝 > 2 [Ganguly11, 

GangulyWoodruff18]

• Space 𝑂
1

𝜀2 log 𝑛  algorithm for 𝐿2-heavy hitters 

[BravermanChestnutIvkinNelsonWangWoodruff17]



Sketch Switching Summary

• Sketch switching for robust algorithms uses 
1

𝜀2 space each time 𝐹𝑝 

increases by (1 + 𝜀) and function increases 
1

𝜀
 times

• Sketch switching gives 𝑂
1

𝜀3  dependency in space for many 

problems
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