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Motivation

. Algorithm takes input of size n

. Pixels of an image

. Entries in an adjacency matrix of a graph.

. n is large

. Assumed to be too slow to look at entire input

Sublinear Time Algorithms 2 / 76



Pixels of an Image

Input size n is the number of pixels
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Example Problem on Image

Is the image a convex shape?
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Graph Adjacency Matrix

Input size n is the number of matrix entries
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Example Problem on Graph

Is the graph connected?
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Sublinear Time Algorithm

Definition

A sublinear time algorithm is an algorithm whose execution time, T (n),
grows slower than the size of the problem, n, but only gives an
approximate or probably correct answer. So T (n) = o(n).

Examples of sublinear time:

. O(log(n))

. O(1/ε) for constant ε

. O(
√
n)
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Sublinear Time Algorithms

. Can’t answer “exactly” types of statements.

. Approximate answers

. Random samples
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Diameter of a Metric Space

In this problem we wish to find the largest distance between any pair of
points in a finite subset of R2.
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Diameter of a Metric Space
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Diameter of a Metric Space
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Diameter of a Metric Space

. Input is of size n2

. Looking at each distance and finding max is linear time

. Instead propose algorithm that gives approximation
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Algorithm for Diameter of a Metric Space
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Algorithm for Diameter of a Metric Space

What is the run time of this algorithm?
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Diameter of a Metric Space
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Diameter of a Metric Space
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Diameter of a Metric Space
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Testing for an all “0” String

We now look at the problem of testing whether a binary string is all “0”s.
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Testing for an all “0” String
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Testing for an all “0” String
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Testing for an all “0” String
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Testing for an all “0” String
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Testing for an all “0” String
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Testing for an all “0” String
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Testing for an all “0” String
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Testing for an all “0” String
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Testing for an all “0” String
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Testing for an all “0” String
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Testing for an all “0” String
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Testing for an all “0” String
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Approximate Algorithm for All “0” String

Suppose that ε = 0.2 and p = 0.9999.

. What is s?

. Why does it not depend on the input size n?

. What will the algorithm do on input:

. “0000000000000000000000000000000000000000”

. “1001110001000111100111000111011001011001”

. “0000000000000010000000000000000000001000”
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ε-far

Input x is ε-far from property P if ε fraction of x has to be changed in
order for x to have property P. E.g. P is whether x is an all “0” string.

What is the ε for the below input for the property of being all “0”?

. “0100000000”

. “0000000000”

. “0010101101”

. “1111111111”
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ε-tester

An algorithm with parameters ε, p ∈ (0.1), is an ε-tester of property P if:

. If input x has property P it returns “YES” with probability at least p

. If input x is ε-far from property P it returns “NO” with probability at
least p.
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Pixels of an Image

Input size n is the number of pixels
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Half Plane Tester

The half plane tester problem is, given an image, return “YES” if the
image is a half plane, and “NO” otherwise.
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Half Plane Tester

An image is a half plane if there exists a w ∈ R2 and an a ∈ R such that
pixel x is black (white) if and only if wT x ≥ a.
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Half Plane Tester

The ε-tester version of the half plane tester problem is, given an image,
return “YES” if the image is a half plane, and if the image is ε-far from
being a half plane return “NO” with probability at least p.
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ε-far from a half plane

What is the ε in the examples below?
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ε-tester for Half Plane

. Step 1: Determine what type of half plane this could be

. Step 2: Use random sampling in order to confirm, or reject
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ε-tester for Half Plane

Step 1: Look at the four sides of the image, count how many have
different color endpoints.
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Case 1 of Algorithm

Case 1: All four sides have different color endpoint =⇒ return “NO”
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Case 2 of Algorithm

Case 2: No sides have different color endpoints

Sublinear Time Algorithms 42 / 76



Case 2 of Algorithm

Do random sampling to decide with high probability if all one color
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Witness Lemma

If a test catches a witness with probability ≥ ε, then

s =
ln
(

1
1−p

)
ε

iterations of the test catches a witness with probability ≥ p.
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Case 2 of Algorithm

If ε-far from half plane =⇒ all black (white) but with ε fraction of white
(black) pixels.
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Case 2 of Algorithm

Take s = ln
(

1
1−p

)
/ε random samples. If all black/white =⇒ return

“YES”. Otherwise =⇒ return “NO”.

Sublinear Time Algorithms 46 / 76



Case 3 of Algorithm

Case 3: Two sides have different color endpoints.
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Case 3 of Algorithm

First, do a binary search of those sides to find approximately where the flip
occurs.
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Case 3 of Algorithm

Then sample on either side of the region to test if each side is one color.
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Case 3 of Algorithm

The border region contains at most εn2/2 pixels, therefore if a picture is ε
far from a half plane there has to be at least εn2/2 “wrong” pixels in the
sampled regions. So the probability of witnessing one is at least ε/2.
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Analysis of ε-tester for Half Plane

. If half plane =⇒ always returns “YES”

. If ε-far from half plane =⇒ returns “NO” with probability ≥ p

. Run time is looks at O(ln(1/ε) + ln(1/(1− p))/ε) pixels
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Other Problems on Images

Is the image a convex shape? Is the image a connected shape?

Raskhodnikova, Sofya. ”Approximate testing of visual properties.”
International Workshop on Randomization and Approximation Techniques
in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003.
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ε-far

Input x is ε-far from property P if ε fraction of x has to be changed in
order for x to have property P. E.g. P is whether x is an all “0” string.
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ε-tester

An algorithm with parameters ε, p ∈ (0.1), is an ε-tester of property P if:

. If input x has property P it returns “YES” with probability at least p

. If input x is ε-far from property P it returns “NO” with probability at
least p.
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Large Graph

Consider algorithms run on large input undirected graph G = (V ,E ),
where V are n vertices and E are pairs of vertices representing an edge.

Sublinear Time Algorithms 55 / 76



Adjacency Matrix Representation

G = (V ,E ) can be represented as an adjacency matrix. If |V | = n, then
the size of the adjacency matrix is n2 entries. Good for dense graphs,

wasteful for sparse graphs.
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Adjacency List Representation

G = (V ,E ) can be represented as an adjacency list. Good for sparse
graphs. If G has bounded degree d , adjacency list is of size nd entries.
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Graphs of Bounded Degree

The degree of a node if the number of edges incident with it. A graph has
bounded degree d if no node in its graph has degree more than d .
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Adjacency List Distance

Let G1 = (V ,E1) and G2 = (V ,E2) be graphs of bounded degree d , and
|V | = n. Then the distance between G1 and G2 is

# entries in adjacency lists that are different

dn
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Example of Distance Between Adjacency Lists
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Connected Graph

A graph G = (V ,E ) is connected if for every u, v ∈ V there exists a path
from u to v in G .
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ε-far from Connected

Consider only graphs of bounded degree d . Graph G = (V ,E ) is ε-far
from connected if ε fraction of the adjacency list has to be changed in
order for G to be a connected graph.
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ε-far from Connected

Let d = 3.
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ε-tester for Connectedness

Want algorithm with parameters ε, p ∈ (0.1), that takes in any graph
G = (V ,E ) of bounded degree d , and:

. If G is connected it returns “YES”;

. If G is ε-far from connected it returns “NO” with probability at least
p.
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Algorithm Overview

. Step 1: Randomly sample some number of nodes

. Step 2: Do a small breadth first search to see if we are in a small,
connected component of the graph that is disconnected from the rest
of the graph.

. Step 3: If we detect any disconnected component, return “NO”.
Otherwise, return “YES”.
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Algorithm

Intuitively, ε-far from connected ⇐⇒ Many connected components that
are not connected from the rest of the graph ⇐⇒ Each of those
components is small
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Connected Component Lemma

Lemma

If graph G = (V ,E ) is ε-far from connected, then G has at least εdn/2
connected components that are not connected to each other.
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Connected Component Lemma

Proof by the contrapositive. Suppose that G has less than εdn/2
connected components that are not connected to each other. Let k be the
number of such components in G .
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Connected Component Lemma

Then it is possible to connect these components with no more than k − 1
edges, and therefore we can change the adjacency matrix representation of
G in at most 2k < εdn spots and make G connected. Therefore G is less
than ε-far from connected.
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Average Number of Nodes in a Component

Lemma

If graph G = (V ,E ) is ε-far from connected, then G has an average of
2/(εd) nodes in each of its at least εdn/2 components.
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Average Number of Nodes in a Component

Proof.

From the previous Lemma, G has at least εdn/2 components. Therefore
the average number of nodes is at most

n

εdn/2
=

2

εd
.
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Markov’s Inequality

Theorem (Markov’s Inequality)

Let X be a non-negative random variable, and let a > 0. Then

P(X ≥ aE(X )) ≤ 1

a
.
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Number of Small Components

Lemma

If G is ε-far from connected it has at least εdn/4 connected components of
size at most 4/(εd).

Proof.

Suppose we uniformly randomly choose a component of G , and let the
random variable X be the number of nodes in this connected component.
Then by applying Markov’s and the previous lemma, we have that

P(X ≥ 2E[X ]) ≤ 1

2
.

Therefore at least half of G ’s components have the number of nodes at
most 4/(εd).
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Probability of Finding a Small Component

Since each small connected component has at least a single element in it,
this means that if we uniformly randomly sample an element then we have
at least a εd/4 chance of being in a small component!
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Witness Lemma

If a test catches a witness with probability ≥ ε, then

s =
ln
(

1
1−p

)
ε

iterations of the test catches a witness with probability ≥ p.
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Algorithm Overview

. Step 1: Randomly sample s = 4 ln(1/(1− p))/(εd) number of nodes

. Step 2: Do a breadth first search of size at most 4/(εd) for each of
the nodes.

. Step 3: If we detect any disconnected component, return “NO”.
Otherwise, return “YES”.
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