Sublinear Time Algorithms

Motivation

\triangleright Algorithm takes input of size n
\triangleright Pixels of an image
\triangleright Entries in an adjacency matrix of a graph.
$\triangleright n$ is large
\triangleright Assumed to be too slow to look at entire input

Pixels of an Image

Input size n is the number of pixels

157	153	174	168	150	152	129	151	172	161	156	156
158	122	163	74	75	62	33	17	110	210	180	154
130	180	50	14	34	6	10	33	48	166	159	181
256	109	5	124	131	111	120	204	166	15	56	180
134	${ }_{88}$	137	251	237	239	239	228	227	87	n	201
172	106	207	239	233	214	220	239	228	48	74	266
188	88	179	209	185	215	211	158	139	75	20	169
189	97	165	4	10	168	134	11	31	62	22	148
199	168	191	133	158	227	178	143	182	166	36	150
206	174	155	252	236	231	149	178	228	43	5	234
150	216	116	149	236	187	${ }^{6}$	150	79	38	218	241
150	224	147	168	227	210	127	162	36	101	255	224
150	214	173	66	103	143	96	50	2	168	249	215
187	156	235	75	1	81	47	0	6	217	255	21
183	202	277	145	0	0	12	168	200	138	243	236
195	206	123	207	177	121	133	250	175	13	96	218

Example Problem on Image

Is the image a convex shape?

Graph Adjacency Matrix

Input size n is the number of matrix entries

Example Problem on Graph

Is the graph connected?

Sublinear Time Algorithm

Definition

A sublinear time algorithm is an algorithm whose execution time, $T(n)$, grows slower than the size of the problem, n, but only gives an approximate or probably correct answer. So $T(n)=o(n)$.

Examples of sublinear time:
$\triangleright O(\log (n))$
$\triangleright O(1 / \epsilon)$ for constant ϵ
$\triangleright O(\sqrt{n})$

Sublinear Time Algorithms

\triangleright Can't answer "exactly" types of statements.
\triangleright Approximate answers
\triangleright Random samples

Diameter of a Metric Space

In this problem we wish to find the largest distance between any pair of points in a finite subset of \mathbb{R}^{2}.

Diameter of a Metric Space

Input：Distance matrix D of n data points in \mathbb{R}^{2}, U

$$
\begin{aligned}
& x^{\bar{Q}: \text { What is 部瓜 input size? }}
\end{aligned}
$$

Diameter of a Metric Space

Problem: Find the diameter

Diameter of a Metric Space

\triangleright Input is of size n^{2}
\triangleright Looking at each distance and finding max is linear time
\triangleright Instead propose algorithm that gives approximation

Algorithm for Diameter of a Metric Space

Step 1: Pick arbitrary $u \in U$

Algorithm for Diameter of a Metric Space
Step 2: Return $\max _{x \in T} d(x, u)$

What is the run time of this algorithm?

Diameter of a Metric Space

What is the run time?
Input size $=n^{2}$
Run time $O(n)$

Algorithm is sublinear!

Diameter of a Metric Space

How does it perform?
$\max _{x \in J} d(x, u) \geq \frac{1}{2} \max _{x, y \in U} d(x, y)$ $x \in U \quad 2 \underbrace{x, y \in U}$
diameter
${ }^{4} Q$: How to prove this?

Diameter of a Metric Space

PF. Let u^{\prime}, v ' be the elements of U such that $\alpha\left(u^{\prime}, v^{\prime}\right)=\max _{x, y \in U} d(x, y)$. Then $x, y \in U$, that the Δ property states that

$$
\begin{aligned}
& d\left(u^{\prime}, v^{\prime}\right) \leq d\left(u^{\prime}, u\right)+d\left(u, v^{\prime}\right) \\
& \leq 2 \max _{x \in J} d(x, u) .
\end{aligned}
$$

Testing for an all "0" String

We now look at the problem of testing whether a binary string is all " 0 " s .

$$
\begin{aligned}
& 000 \ldots 101 \ldots 0 \\
& \tau \text { check for } \\
& \text { any "I"s }
\end{aligned}
$$

Testing for an all "0" String

Input : A string we $\{0,1\}$

Problem: Determine whether w is all "O", retum "YES" if it is, "NO" otherwise.

* Can you do this in sublinear time?

Testing for an all "0" String

Can tolu answer this exactly in sublinear time?
No. Anywhere in the input you don't bol coned be a "lb.

Testing for an all "0" String

Alternative Problem: Parameters $\varepsilon, P(0,1)$

If all "ODs \Rightarrow return "YES" of w are
If at least ε fraction "'"s (εn " "sss) \Rightarrow return "NO" with probability $\geq p$.

Testing for an all "0" String

Algorithm
we will take a r andem sampling approach.

Testing for an all "0" String

Input: string $w \in\{0,1\}^{n}$ suppose that ε fraction of w are "Ins.

So bigger $\varepsilon \Rightarrow$ mare "I's smaller $\varepsilon \Rightarrow$ Less "1"s

* If we uniformly randeraty sample a spot in w, what is the probability it's a " 0 "?

Testing for an all "0" String
probability of sampling $a^{\prime \prime} 0$ " is $1-\varepsilon$.

Suppose we tale s independent, whifermly randan samples.

* Probability of geltires all "0"s?

Testing for an all "0" String

Probability of getting all "OMs is $(1-\varepsilon)^{s}$. This is because if events A and B are independent then $P(A \cap B)=P(A) P(B)$.

Testing for an all "0" String

Witness Lemma
If a test catches a witness with probability $\geq \varepsilon$, then $s=\frac{\ln \left(\frac{1}{1-p}\right)}{\varepsilon}$ iterations of the test catches a witness with probability $\geqslant p$.

Testing for an all "0" String

$$
\begin{aligned}
& \frac{P F_{1}}{P[\text { don't catch witness }] \leq(1-\varepsilon)^{s}} \\
& \leq e^{-\varepsilon s}\left(\text { Identity } 1-x \leq e^{-x}\right) \\
& =e^{-\ln (1-p)}=e^{\ln (1-p)}=1-p . \\
& \therefore P[\text { catch witness }] \geq p .
\end{aligned}
$$

Testing for an all "0" String

Algorithm for approximate all "0" tester
step 1: Take $s=\frac{\ln \left(\frac{1}{1-p}\right)}{\varepsilon}$ random samples from string w.
Step 2: If all "O" \Rightarrow return "YEs otherwise \Rightarrow return " $N O$ ".

Testing for an all "0" String

* If all "OBs, what will the algorithm return?
* If at least ε fraction of w are "Ins?

Testing for an all "0" String

Apply the witness lemma.
"witness $=A^{*} I^{*}$
Witness lemma states that if $\geqslant \varepsilon$ fraction of ω are " 1 ", then "NO" is returned $w /$ prob $\geq p$. * What about it $<\varepsilon$ fraction?

Approximate Algorithm for All "0" String

Suppose that $\epsilon=0.2$ and $p=0.9999$.
\triangleright What is s ?
\triangleright Why does it not depend on the input size n ?
\triangleright What will the algorithm do on input:

- "00"
- "1001110001000111100111000111011001011001"
- "0000000000000010000000000000000000001000"

Input x is ϵ-far from property P if ϵ fraction of x has to be changed in order for x to have property P. E.g. P is whether x is an all " 0 " string.

What is the ϵ for the below input for the property of being all " 0 "?

- "0100000000"
- "0000000000"
- "0010101101"
- "1111111111"

ϵ-tester

An algorithm with parameters $\epsilon, p \in(0.1)$, is an ϵ-tester of property P if:
\triangleright If input x has property P it returns "YES" with probability at least p
\triangleright If input x is ϵ-far from property P it returns "NO" with probability at least p.

Pixels of an Image

Input size n is the number of pixels

157	153	174	168	150	152	129	151	172	161	156	156
158	122	163	74	75	62	33	17	110	210	180	154
130	180	50	14	34	6	10	33	48	166	159	181
256	109	5	124	131	111	120	204	166	15	56	180
134	${ }_{88}$	137	251	237	239	239	228	227	87	n	201
172	106	207	239	233	214	220	239	228	48	74	266
188	88	179	209	185	215	211	158	139	75	20	169
189	97	165	4	10	168	134	11	31	62	22	148
199	168	191	133	158	227	178	143	182	166	36	150
206	174	155	252	236	231	149	178	228	43	5	234
150	216	116	149	236	187	${ }^{6}$	150	79	38	218	241
150	224	147	168	227	210	127	102	36	101	255	224
150	214	173	66	109	143	96	50	2	108	249	215
187	156	235	75	1	81	47	0	6	217	255	21
183	202	277	145	0	0	12	168	200	138	243	236
195	206	123	207	177	121	133	250	175	13	96	218

Half Plane Tester

The half plane tester problem is, given an image, return "YES" if the image is a half plane, and "NO" otherwise.

Half Plane Tester

An image is a half plane if there exists a $w \in \mathbb{R}^{2}$ and an $a \in \mathbb{R}$ such that pixel x is black (white) if and only if $w^{\top} x \geq a$.

Half Plane Tester

The ϵ-tester version of the half plane tester problem is, given an image, return "YES" if the image is a half plane, and if the image is ϵ-far from being a half plane return "NO" with probability at least p.

ϵ-far from a half plane

What is the ϵ in the examples below?

ϵ-tester for Half Plane

\triangleright Step 1: Determine what type of half plane this could be
\triangleright Step 2: Use random sampling in order to confirm, or reject

ϵ-tester for Half Plane

Step 1: Look at the four sides of the image, count how many have different color endpoints.

Case 1 of Algorithm

Case 1: All four sides have different color endpoint \Longrightarrow return "NO"

Case 2 of Algorithm

Case 2: No sides have different color endpoints

Case 2 of Algorithm

Do random sampling to decide with high probability if all one color

Witness Lemma

If a test catches a witness with probability $\geq \epsilon$, then

$$
s=\frac{\ln \left(\frac{1}{1-p}\right)}{\epsilon}
$$

iterations of the test catches a witness with probability $\geq p$.

Case 2 of Algorithm

If ϵ-far from half plane \Longrightarrow all black (white) but with ϵ fraction of white (black) pixels.

Case 2 of Algorithm

Take $s=\ln \left(\frac{1}{1-p}\right) / \epsilon$ random samples. If all black/white \Longrightarrow return "YES". Otherwise \Longrightarrow return "NO".

Case 3 of Algorithm

Case 3: Two sides have different color endpoints.

Case 3 of Algorithm

First, do a binary search of those sides to find approximately where the flip occurs.

Case 3 of Algorithm

Then sample on either side of the region to test if each side is one color.

Case 3 of Algorithm

The border region contains at most $\epsilon n^{2} / 2$ pixels, therefore if a picture is ϵ far from a half plane there has to be at least $\epsilon n^{2} / 2$ "wrong" pixels in the sampled regions. So the probability of witnessing one is at least $\epsilon / 2$.

Analysis of ϵ-tester for Half Plane

\triangleright If half plane \Longrightarrow always returns "YES"
\triangleright If ϵ-far from half plane \Longrightarrow returns "NO" with probability $\geq p$
\triangleright Run time is looks at $O(\ln (1 / \epsilon)+\ln (1 /(1-p)) / \epsilon)$ pixels

Other Problems on Images

Is the image a convex shape? Is the image a connected shape?
Raskhodnikova, Sofya. "Approximate testing of visual properties." International Workshop on Randomization and Approximation Techniques in Computer Science. Berlin, Heidelberg: Springer Berlin Heidelberg, 2003.

ϵ-far

Input x is ϵ-far from property P if ϵ fraction of x has to be changed in order for x to have property P. E.g. P is whether x is an all " 0 " string.

ϵ-tester

An algorithm with parameters $\epsilon, p \in(0.1)$, is an ϵ-tester of property P if:
\triangleright If input x has property P it returns "YES" with probability at least p
\triangleright If input x is ϵ-far from property P it returns "NO" with probability at least p.

Large Graph

Consider algorithms run on large input undirected graph $G=(V, E)$, where V are n vertices and E are pairs of vertices representing an edge.

Adjacency Matrix Representation

$G=(V, E)$ can be represented as an adjacency matrix. If $|V|=n$, then the size of the adjacency matrix is n^{2} entries. Good for dense graphs, wasteful for sparse graphs.

Adjacency Matrix

	0	1	2	3	4
0	0	1	1	0	0
1	0	0	1	0	1
2	0	0	0	1	0
3	0	0	0	0	1
4	0	0	0	0	0

Adjacency List Representation

$G=(V, E)$ can be represented as an adjacency list. Good for sparse graphs. If G has bounded degree d, adjacency list is of size nd entries.

Graphs of Bounded Degree

The degree of a node if the number of edges incident with it. A graph has bounded degree d if no node in its graph has degree more than d.

Adjacency List Distance

Let $G_{1}=\left(V, E_{1}\right)$ and $G_{2}=\left(V, E_{2}\right)$ be graphs of bounded degree d, and $|V|=n$. Then the distance between G_{1} and G_{2} is
\# entries in adjacency lists that are different

Example of Distance Between Adjacency Lists

(5)

1	2	3	$\phi \phi$
2	1	3	$\phi \phi$
3	1	2	4
4	3	ϕ	$\phi \phi$
5	3	$\phi \phi \phi$	

(5)

1	2	3
2	$\phi \phi$	
3	1	$4 \phi \phi \phi$
4	2	3
5	5	ϕ
5	4	$\phi \phi \phi$

Connected Graph

A graph $G=(V, E)$ is connected if for every $u, v \in V$ there exists a path from u to v in G.

ϵ-far from Connected

Consider only graphs of bounded degree d. Graph $G=(V, E)$ is ϵ-far from connected if ϵ fraction of the adjacency list has to be changed in order for G to be a connected graph.

ϵ-far from Connected

Let $d=3$.

ϵ-tester for Connectedness

Want algorithm with parameters $\epsilon, p \in(0.1)$, that takes in any graph $G=(V, E)$ of bounded degree d, and:
\triangleright If G is connected it returns "YES";
\triangleright If G is ϵ-far from connected it returns "NO" with probability at least p.

Algorithm Overview

\triangleright Step 1: Randomly sample some number of nodes
\triangleright Step 2: Do a small breadth first search to see if we are in a small, connected component of the graph that is disconnected from the rest of the graph.
\triangleright Step 3: If we detect any disconnected component, return "NO". Otherwise, return "YES".

Algorithm

Intuitively, ϵ-far from connected \Longleftrightarrow Many connected components that are not connected from the rest of the graph \Longleftrightarrow Each of those components is small

Connected Component Lemma

Lemma

If graph $G=(V, E)$ is ϵ-far from connected, then G has at least $\epsilon d n / 2$ connected components that are not connected to each other.

Connected Component Lemma

Proof by the contrapositive. Suppose that G has less than $\epsilon d n / 2$ connected components that are not connected to each other. Let k be the number of such components in G.

Connected Component Lemma

Then it is possible to connect these components with no more than $k-1$ edges, and therefore we can change the adjacency matrix representation of G in at most $2 k<\epsilon d n$ spots and make G connected. Therefore G is less than ϵ-far from connected.

Average Number of Nodes in a Component

Lemma
If graph $G=(V, E)$ is ϵ-far from connected, then G has an average of $2 /(\epsilon d)$ nodes in each of its at least $\epsilon d n / 2$ components.
(2)
(3)

'T average \#

$$
\leq \frac{2}{\varepsilon d}
$$

Average Number of Nodes in a Component

Proof.

From the previous Lemma, G has at least $\epsilon d n / 2$ components. Therefore the average number of nodes is at most

$$
\frac{n}{\epsilon d n / 2}=\frac{2}{\epsilon d}
$$

Markov's Inequality

Theorem (Markov's Inequality)
Let X be a non-negative random variable, and let $a>0$. Then

$$
P(X \geq a \mathbb{E}(X)) \leq \frac{1}{a}
$$

Number of Small Components

Lemma

If G is ϵ-far from connected it has at least $\epsilon d n / 4$ connected components of size at most $4 /(\epsilon d)$.

Proof.

Suppose we uniformly randomly choose a component of G, and let the random variable X be the number of nodes in this connected component. Then by applying Markov's and the previous lemma, we have that

$$
P(X \geq 2 \mathbb{E}[X]) \leq \frac{1}{2}
$$

Therefore at least half of G's components have the number of nodes at most $4 /(\epsilon d)$.

Probability of Finding a Small Component

Since each small connected component has at least a single element in it, this means that if we uniformly randomly sample an element then we have at least a $\epsilon d / 4$ chance of being in a small component!

Witness Lemma

If a test catches a witness with probability $\geq \epsilon$, then

$$
s=\frac{\ln \left(\frac{1}{1-p}\right)}{\epsilon}
$$

iterations of the test catches a witness with probability $\geq p$.

Algorithm Overview

\triangleright Step 1: Randomly sample $s=4 \ln (1 /(1-p)) /(\epsilon d)$ number of nodes
\triangleright Step 2: Do a breadth first search of size at most $4 /(\epsilon d)$ for each of the nodes.
\triangleright Step 3: If we detect any disconnected component, return "NO". Otherwise, return "YES".

