CSCE 689: Special Topics in Modern Algorithms for Data Science
 Lecture 3

Samson Zhou

Last Time: Hashing

- Hashing is a method to quickly map items from a universe to a location in a database

$$
h(x)
$$

Last Time: Birthday Paradox

- Suppose we have a fair n-sided die. "On average", how many times should we roll the die before we see a repeated outcome among the rolls? Example: 1, 5, 2, 4, 5
- $\Theta(1)$
- $\Theta(\log n)$
- $\Theta(\sqrt{n})$
- $\Theta(n)$

Last Time: Birthday Paradox

- Suppose we have a fair n-sided die. "On average", how many times should we roll the die before we see a repeated outcome among the rolls? Example: 1, 5, 2, 4, 5
- $\Theta(1)$
- $\Theta(\log n)$
- $\Theta(\sqrt{n})$
- $\Theta(n)$

Future

- Next Monday: Sign up for LaTeX scribe note slots
- Today: Meet your classmates (1)
- Next Monday: Meet your classmates (2), receive and consider list of potential projects/groups
- Next Wednesday: Discuss potential project groups
- Next Friday: Email me the members/group name

Case Study

- We are trying to learn a new language on an app, which claims to have a database of 1 million words
- Each time we ask the app, it gives us a random word in the database
- We want to verify the claim

Case Study

- We could use the app until we see 1 million unique words, but that would take at least 1 million checks
- Instead, we use the app for 1000 times and count the number of pairwise duplicates
- If there are many duplicates, the database is probably not very large

Case Study

- We use the app for k times and count the number of pairwise duplicates
- If we see the same word on the 3 -rd time, the 100-th time, and the 205th time, there are 3 pairwise duplicates: $(3,100),(3,205)$, $(100,205)$

Expected Value

- The expected value of a random variable X over Ω is:

$$
\mathrm{E}[X]=\sum_{x \in \Omega} \operatorname{Pr}[X=x] \cdot x
$$

- The "average value of the random variable"
- Linearity of expectation: $\mathrm{E}[X+Y]=\mathrm{E}[X]+\mathrm{E}[Y]$

Expected Value

- Suppose we roll a 6-sided die
- Let X be the outcome of the roll
- What is $\mathrm{E}[X]$?

Linearity of Expectation

- Linearity of expectation: $\mathrm{E}[X+Y]=\mathrm{E}[X]+\mathrm{E}[Y]$
$\mathrm{E}[X+Y]=\sum_{x \in \Omega_{\mathrm{X}}} \sum_{y \in \Omega_{\mathrm{Y}}} \operatorname{Pr}[X=x, Y=y] \cdot(x+y)$

Linearity of Expectation

- Linearity of expectation: $\mathrm{E}[X+Y]=\mathrm{E}[X]+\mathrm{E}[Y]$

$$
\begin{aligned}
\mathrm{E}[X+Y] & =\sum_{x \in \Omega_{\mathrm{X}}} \sum_{y \in \Omega_{\mathrm{Y}}} \operatorname{Pr}[X=x, Y=y] \cdot(x+y) \\
& =\sum_{x \in \Omega_{\mathrm{X}}} \sum_{y \in \Omega_{\mathrm{Y}}} \operatorname{Pr}[X=x, Y=y] \cdot x+\sum_{x \in \Omega_{\mathrm{X}}} \sum_{y \in \Omega_{\mathrm{Y}}} \operatorname{Pr}[X=x, Y=y] \cdot y
\end{aligned}
$$

Linearity of Expectation

- Linearity of expectation: $\mathrm{E}[X+Y]=\mathrm{E}[X]+\mathrm{E}[Y]$

$$
\begin{aligned}
\mathrm{E}[X+Y] & =\sum_{x \in \Omega_{\mathrm{X}}} \sum_{y \in \Omega_{\mathrm{Y}}} \operatorname{Pr}[X=x, Y=y] \cdot(x+y) \\
& =\sum_{x \in \Omega_{\mathrm{X}}} \sum_{y \in \Omega_{\mathrm{Y}}} \operatorname{Pr}[X=x, Y=y] \cdot x+\sum_{x \in \Omega_{\mathrm{X}}} \sum_{y \in \Omega_{\mathrm{Y}}} \operatorname{Pr}[X=x, Y=y] \cdot y \\
& =\sum_{x \in \Omega_{\mathrm{X}}} x \sum_{y \in \Omega_{\mathrm{Y}}} \operatorname{Pr}[X=x, Y=y]+\sum_{y \in \Omega_{\mathrm{Y}}} y \sum_{x \in \Omega_{\mathrm{X}}} \operatorname{Pr}[X=x, Y=y]
\end{aligned}
$$

Linearity of Expectation

- Linearity of expectation: $\mathrm{E}[X+Y]=\mathrm{E}[X]+\mathrm{E}[Y]$

$$
\begin{aligned}
\mathrm{E}[X+Y] & =\sum_{x \in \Omega_{\mathrm{X}}} \sum_{y \in \Omega_{\mathrm{Y}}} \operatorname{Pr}[X=x, Y=y] \cdot(x+y) \\
& =\sum_{x \in \Omega_{\mathrm{X}}} \sum_{y \in \Omega_{\mathrm{Y}}} \operatorname{Pr}[X=x, Y=y] \cdot x+\sum_{x \in \Omega_{\mathrm{X}}} \sum_{y \in \Omega_{\mathrm{Y}}} \operatorname{Pr}[X=x, Y=y] \cdot y \\
& =\sum_{x \in \Omega_{\mathrm{X}}} x \sum_{y \in \Omega_{\mathrm{Y}}} \operatorname{Pr}[X=x, Y=y]+\sum_{y \in \Omega_{\mathrm{Y}}} y \sum_{x \in \Omega_{\mathrm{X}}} \operatorname{Pr}[X=x, Y=y] \\
& =\sum_{x \in \Omega_{\mathrm{X}}} x \cdot \operatorname{Pr}[X=x]+\sum_{y \in \Omega_{\mathrm{Y}}} y \cdot \operatorname{Pr}[Y=y]=\mathrm{E}[X]+\mathrm{E}[Y]
\end{aligned}
$$

Birthday Paradox

- Suppose we have a fair n-sided die that we roll $k=1,2,3,4, \ldots$ times. What is the probability we DO NOT see a repeated outcome among the rolls?

$$
\left(1-\frac{0}{n}\right)\left(1-\frac{1}{n}\right) \ldots\left(1-\frac{k-1}{n}\right)
$$

Birthday Paradox, Revisited

- Suppose we have a fair n-sided die that we roll $k=1,2,3,4, \ldots$ times. What is the expected number of pairwise collisions among the rolls?
- Let X_{i} be the number of pairwise collisions on the i-th roll
- We have $\mathrm{E}\left[X_{i}\right]=\frac{i-1}{n}$

Birthday Paradox, Revisited

- Let X be the number of pairwise collisions after k rolls
- What is $\mathrm{E}[X]$?

Birthday Paradox, Revisited

- Let X be the number of pairwise collisions after k rolls

$$
\begin{aligned}
\mathrm{E}[X] & =\mathrm{E}\left[X_{1}+\cdots+X_{k}\right] \\
& =\mathrm{E}\left[X_{1}\right]+\cdots+\mathrm{E}\left[X_{k}\right] \\
& =\frac{0}{n}+\cdots+\frac{k-1}{n} \\
& =\frac{k(k-1)}{2 n}
\end{aligned}
$$

Birthday Paradox, Revisited

- $\mathrm{E}[X]=\frac{k(k-1)}{2 n}$
- $\frac{(k-1)^{2}}{2 n} \leq \mathrm{E}[X] \leq \frac{k^{2}}{2 n}$
- $k=2 \sqrt{n}+1$ implies $\mathrm{E}[X] \geq 1$
- $k=\frac{\sqrt{n}}{2}$ implies $\mathrm{E}[X] \leq \frac{1}{4}$

Case Study

- We use the app for $k=1000$ times and count the number of pairwise duplicates
- If the database contains 1 million words, the expected number of pairwise duplicates is $\mathrm{E}[X]=$ $\frac{k(k-1)}{2 n}<0.5$

Case Study

- If the database contains 1 million words, the expected number of pairwise duplicates is $\mathrm{E}[X]=$ $\frac{k(k-1)}{2 n}<0.5$
- ...We see 20 duplicates
- We think the claim is incorrect, but how can we be sure?

Concentration Inequalities

- Concentration inequalities bound the probability that a random variable is "far away" from its expectation
- Often used in understanding the performance of statistical tests, the behavior of data sampled from various distributions, and for our purposes,the guarantees of randomized algorithms

Markov's Inequality

- Let $X \geq 0$ be a non-negative random variable. Then for any $t>0$:

$$
\operatorname{Pr}[X \geq t \cdot E[X]] \leq \frac{1}{t}
$$

Proof of Markov's Inequality

- Let $X \geq 0$ be a non-negative random variable. Then for any $t>0$:

$$
\begin{aligned}
\mathrm{E}[X] & =\sum_{x \in \Omega} \operatorname{Pr}[X=x] \cdot x \\
& =\sum_{x \geq t \cdot \mathrm{E}[X]} \operatorname{Pr}[X=x] \cdot x+\sum_{x<t \cdot \mathrm{E}[X]} \operatorname{Pr}[X=x] \cdot x \\
& \geq \sum_{x \geq t \cdot \mathrm{E}[X]} \operatorname{Pr}[X=x] \cdot x \\
& \geq t \cdot \mathrm{E}[X] \sum_{x \geq t \cdot \mathrm{E}[X]} \operatorname{Pr}[X=x] \\
& =t \cdot \mathrm{E}[X] \cdot \operatorname{Pr}[X \geq t \cdot \mathrm{E}[X]]
\end{aligned}
$$

Birthday Paradox

- Suppose we have a fair n-sided die that we roll $k=1,2,3,4, \ldots$ times. What is the probability we DO NOT see a repeated outcome among the rolls?

$$
\left(1-\frac{0}{n}\right)\left(1-\frac{1}{n}\right) \ldots\left(1-\frac{k-1}{n}\right)
$$

Birthday Paradox, Revisited

- Suppose we have a fair n-sided die that we roll $k=1,2,3,4, \ldots$ times. What is the expected number of pairwise collisions among the rolls?
- Let X_{i} be the number of pairwise collisions on the i-th roll
- We have $\mathrm{E}\left[X_{i}\right]=\frac{i-1}{n}$

Birthday Paradox, Revisited

- $\mathrm{E}[X]=\frac{k(k-1)}{2 n}$
- $\frac{(k-1)^{2}}{2 n} \leq \mathrm{E}[X] \leq \frac{k^{2}}{2 n}$
- $k=2 \sqrt{n}+1$ implies $\mathrm{E}[X] \geq 1$
- $k=\frac{\sqrt{n}}{2}$ implies $\mathrm{E}[X] \leq \frac{1}{4}$

Birthday Paradox, Revisited

- $\mathrm{E}[X]=\frac{k(k-1)}{2 n}$
- $\frac{(k-1)^{2}}{2 n} \leq \mathrm{E}[X] \leq \frac{k^{2}}{2 n}$
- $k=2 \sqrt{n}+1$ implies $\mathrm{E}[X] \geq 1$
- $k=\frac{\sqrt{n}}{2}$ implies $\mathrm{E}[X] \leq \frac{1}{4}$, and by Markov's inequality, $\operatorname{Pr}[X \geq 1] \leq \frac{1}{4}$

Case Study

- If the database contains 1 million words, the expected number of pairwise duplicates is $\mathrm{E}[X]=$ $\frac{k(k-1)}{2 n}<0.5$
- ...We see 20 duplicates
- We think the claim is incorrect, but how can we be sure?

Case Study

- If the database contains 1 million words, the expected number of pairwise duplicates is $\mathrm{E}[X]=$ $\frac{k(k-1)}{2 n}<0.5$
- ...We see 20 duplicates
- $\operatorname{Pr}[X \geq 20] \leq \frac{1}{40}$

