CSCE 689: Special Topics in Modern Algorithms for Data Science

Lecture 30

Samson Zhou

Presentation Schedule

- November 27: Chunkai, Jung, Galaxy AI
- November 29: STMI, Anmol, Jason
- December 1: Bokun, Ayesha, Dawei, Lipai

Linear Algebra Review

Regression

- Let A be a set of n observations, each with d features
- Let b be the vector of outcomes/labels for each observation
- Find the vector x such that $A x=b$

Karl Rohe @karlrohe•3h
i'm teaching linear regression in the spring

First thing we'll do: highlight the two *very* different motivations for linear models

1) for causal inference
2) for prediction

Breiman's "two cultures" paper is too advanced for midundergrads... are there any easier readings?
Q 15
〔】 15
○ 234
llı 26K
ద \uparrow

Regression

- Economics and Finance:
- Stock price prediction: Predict stock prices based on historical data and other relevant factors.
- Econometric analysis: Study the relationships between economic variables like GDP, inflation, and interest rates.

Regression

- Medicine and Healthcare:
- Medical research: Understand the relationship between factors such as age, genetics, and lifestyle on health outcomes.
- Disease prediction: Predicting the probability of disease occurrence based on risk factors like smoking, diet, and exercise.

Regression

- Sports Analytics:
- Player performance forecast: Predicting player performance in sports like baseball, basketball, or soccer based on historical data.
- Game outcome prediction: Predicting the outcome of games based on team statistics and other factors.

Regression

- Environmental Science:
- Climate modeling: Model climate change variables like temperature, precipitation, and sea levels.
- Pollution analysis: Analyze the relationship between pollution levels and various factors like industrial activity and population.

Regression

- Let A be a set of n observations, each with d features
- Let b be the vector of outcomes/labels for each observation
- Find the vector x such that $A x=b$

Linear Algebra Review

- What are conditions for finding x such that $A x=b$?

Linear Algebra Review

- What are conditions for finding x such that $A x=b$?
- If the system is inconsistent, there are no solutions

Linear Algebra Review

- What are conditions for finding x such that $A x=b$?
- If the system is inconsistent, there are no solutions
- Can check for consistency by looking at the rank of the coefficient matrix and the augmented matrix

Linear Algebra Review

- For a square matrix $A \in \mathbb{R}^{n \times n}$, if A is full rank, i.e., $\operatorname{rank}(A)=n$, then A has an inverse $A^{-1} \in \mathbb{R}^{n \times n}$ such that $A A^{-1}=A^{-1} A=\mathbb{I}_{n}$
- For a general matrix $A \in \mathbb{R}^{n \times d}$ with linearly independent columns, the Moore-Penrose inverse/pseudoinverse A^{\dagger} of A satisfies $A^{\dagger}=\left(A^{\top} A\right)^{-1} A^{\top}$ so that $A^{\dagger} A=\mathbb{I}_{d}$

Linear Algebra Review

- What are conditions for finding x such that $A x=b$?
- If the system is inconsistent, there are no solutions
- If the system is consistent and $n=d$, then there is a single solution, $x=A^{-1} b$

Linear Algebra Review

- What are conditions for finding x such that $A x=b$?
- If the system is inconsistent, there are no solutions
- If the system is consistent and $n<d$, then are infinite solutions and can find a solution by looking at n columns of A

Linear Algebra Review

- What are conditions for finding x such that $A x=b$?
- If the system is inconsistent, there are no solutions
- If the system is consistent and $n>d$, then at most one solution ($x=A^{\dagger} b$) and can find by looking at d rows of A

Regression

- What are conditions for finding x such that $A x=b$?
- What to do when there is no x such that $A x=b$?

Regression

- What are conditions for finding x such that $A x=b$?
- What to do when there is no x such that $A x=b$?
- Minimize $\mathcal{L}(A x-b)$ for some loss function \mathcal{L}

Linear Regression

- Find the vector x that minimizes $\|A x-b\|_{2}$
- "Least squares" optimization

Linear Regression

- Find the vector x that minimizes $\|A x-b\|_{2}$
- What is the solution to $\min _{x \in \mathbb{R}^{d}}\|A x-b\|_{2}$?

Linear Regression

$$
\mathrm{o}^{b=\left[\begin{array}{l}
5 \\
5
\end{array}\right]}
$$

$A=\left[\begin{array}{l}2 \\ 1\end{array}\right]$
Find x that minimizes $\|A x-b\|_{2}$

Linear Regression

Linear Regression

- Find the vector x that minimizes $\|A x-b\|_{2}$
- What is the solution to $\min _{x \in \mathbb{R}^{d}}\|A x-b\|_{2}$?
- Let b^{\perp} be the projection of b onto the column space of A
- Decompose b into b^{\perp} and $b^{\|}$

Linear Regression

- We have $\arg \min _{x \in \mathbb{R}^{d}}\|A x-b\|_{2}=\arg \min _{x \in \mathbb{R}^{d}}\|A x-b\|_{2}^{2}$
- $\|A x-b\|_{2}^{2}=\left\|A x-b^{\perp}-b^{\|}\right\|_{2}^{2}$

Linear Regression

- We have $\arg \min _{x \in \mathbb{R}^{d}}\|A x-b\|_{2}=\arg \min _{x \in \mathbb{R}^{d}}\|A x-b\|_{2}^{2}$
- $\|A x-b\|_{2}^{2}=\left\|A x-b^{\perp}-b^{\|}\right\|_{2}^{2}$

$$
=\left\|A x-b^{\|}\right\|_{2}^{2}-2\left\langle A x-b^{\|}, b^{\perp}\right\rangle+\left\|b^{\perp}\right\|_{2}^{2}
$$

Linear Regression

- We have $\arg \min _{x \in \mathbb{R}^{d}}\|A x-b\|_{2}=\arg \min _{x \in \mathbb{R}^{d}}\|A x-b\|_{2}^{2}$
- $\|A x-b\|_{2}^{2}=\left\|A x-b^{\perp}-b^{\|}\right\|_{2}^{2}$

$$
\begin{aligned}
& =\left\|A x-b^{\|}\right\|_{2}^{2}-2\left\langle A x-b^{\|}, b^{\perp}\right\rangle+\left\|b^{\perp}\right\|_{2}^{2} \\
& =\left\|A x-b^{\|}\right\|_{2}^{2}+\left\|b^{\perp}\right\|_{2}^{2}
\end{aligned}
$$

Linear Regression

- We have $\arg \min _{x \in \mathbb{R}^{d}}\|A x-b\|_{2}=\arg \min _{x \in \mathbb{R}^{d}}\|A x-b\|_{2}^{2}$
- $\|A x-b\|_{2}^{2}=\left\|A x-b^{\perp}-b^{\|}\right\|_{2}^{2}$

$$
\begin{aligned}
& =\left\|A x-b^{\|}\right\|_{2}^{2}-2\left\langle A x-b^{\|}, b^{\perp}\right\rangle+\left\|b^{\perp}\right\|_{2}^{2} \\
& =\left\|A x-b^{\|}\right\|_{2}^{2}+\left\|b^{\perp}\right\|_{2}^{2}
\end{aligned}
$$

- Minimized for $\left\|A x-b^{\|}\right\|_{2}^{2}=0$ when $x=A^{\dagger} b^{\|}=A^{\dagger} b$

Linear Regression

- Find the vector x that minimizes $\|A x-b\|_{2}$
- "Least squares" optimization
- MLE under Gaussian noise
- Closed form solution: $x=A^{\dagger} b$

